obeticholic-acid has been researched along with Fatty-Liver* in 9 studies
3 review(s) available for obeticholic-acid and Fatty-Liver
Article | Year |
---|---|
Effect on lipid profile and clinical outcomes of obeticholic acid for the treatment of primary biliary cholangitis and metabolic dysfunction-associated steatohepatitis: A systematic review and meta-analysis.
Obeticholic acid (OCA) is the second-line therapy for primary biliary cholangitis (PBC), as well as an attractive candidate as a treatment for metabolic dysfunction-associated steatohepatitis (MASH). This meta-analysis aims to assess the impact of OCA on lipid profiles and clinical outcomes in patients with PBC and MASH. A comprehensive systematic review and meta-analysis of randomized controlled trials (RCTs) from five major databases were conducted. Changes in lipid profiles from baseline were compared between groups receiving placebo and OCA. Efficacy outcomes were evaluated separately for PBC and MASH trials, while safety outcomes included pruritus, gastrointestinal disturbances, and headache. OCA treatment exhibited a significant increase in low-density lipoprotein cholesterol (LDL-C) (standardized mean difference [SMD] = 0.39; 95 % confidence interval [CI] = 0.15 to 0.63) and a decrease in high-density lipoprotein cholesterol (HDL-C) (SMD = -0.80; 95 % CI = -1.13 to -0.47) in both PBC and MASH patients compared to placebo. OCA demonstrated superior efficacy to placebo in treating PBC and MASH, evident in both primary and secondary outcomes. The incidence of pruritus was significantly higher with OCA compared to placebo (risk ratio = 1.78, 95 % CI = 1.42 to 2.25). OCA is more efficacious than a placebo in the treatment of PBC and MASH. However, caution is needed given the association of OCA use with a significant increase in LDL-C levels and a decrease in HDL-C levels among patients with these conditions. Topics: Cholesterol, LDL; Fatty Liver; Humans; Liver Cirrhosis, Biliary; Pruritus | 2023 |
Non-alcoholic fatty liver diseases: update on the challenge of diagnosis and treatment.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is estimated to be 25-30% of the population, and is the most common cause of elevated liver enzymes in Korea. NAFLD is a "hot potato" for pharmaceutical companies. Many clinical trials are underway to develop a first-in-class drug to treat NAFLD. However, there are several challenging issues regarding the diagnosis of NAFLD. Currently, liver biopsy is the gold standard method for the diagnosis of NAFLD and steatohepatitis. Ideally, globally recognized standards for histological diagnosis and methods to optimize observer agreement on biopsy interpretation should be developed. Liver biopsy is the best method rather than a perfect one. Recently, multi-parametric magnetic resonance imagery can estimate the amount of intrahepatic fat successfully and is widely used in clinical trials. But no diagnostic method can discriminate between steatohepatitis and simple steatosis. The other unresolved issue in regard to NAFLD is the absence of satisfactory treatment options. Vitamin E and obeticholic acid have shown protective effects in randomized controlled trials, but this drug has not been approved for use in Korea. This study will provide a description of diagnostic methods and treatments that are currently recommended for NAFLD. Topics: Biomarkers; Chenodeoxycholic Acid; Clinical Trials as Topic; Fatty Liver; Fibrosis; Humans; Liver; Magnetic Resonance Imaging; Non-alcoholic Fatty Liver Disease; Tomography, X-Ray Computed; Ultrasonography; Vitamin E | 2016 |
Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis.
Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition evolving in a proportion of patients into nonalcoholic steatohepatitis (NASH), an aggressive form of NAFLD associated with increased cardiovascular mortality and significant risk of progressive liver disease, including fibrosis, cirrhosis and hepatocellular carcinoma. At present, no specific therapies for NASH exist. In this review, we examine the evidence supporting activation of the farnesoid X receptor (FXR), a nuclear hormone receptor regulated by bile acids (BAs), for the treatment of NASH. We also discuss the potential of the semi-synthetic BA derivative obeticholic acid (OCA), a first-in-class FXR agonist, as a safe and effective drug to address this significant unmet medical need. Topics: Animals; Chenodeoxycholic Acid; Fatty Liver; Humans; Non-alcoholic Fatty Liver Disease; Receptors, Cytoplasmic and Nuclear | 2012 |
1 trial(s) available for obeticholic-acid and Fatty-Liver
Article | Year |
---|---|
Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease.
Obeticholic acid (OCA; INT-747, 6α-ethyl-chenodeoxycholic acid) is a semisynthetic derivative of the primary human bile acid chenodeoxycholic acid, the natural agonist of the farnesoid X receptor, which is a nuclear hormone receptor that regulates glucose and lipid metabolism. In animal models, OCA decreases insulin resistance and hepatic steatosis.. We performed a double-blind, placebo-controlled, proof-of-concept study to evaluate the effects of OCA on insulin sensitivity in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus. Patients were randomly assigned to groups given placebo (n = 23), 25 mg OCA (n = 20), or 50 mg OCA (n = 21) once daily for 6 weeks. A 2-stage hyperinsulinemic-euglycemic insulin clamp was used to measure insulin sensitivity before and after the 6-week treatment period. We also measured levels of liver enzymes, lipid analytes, fibroblast growth factor 19, 7α-hydroxy-4-cholesten-3-one (a BA precursor), endogenous bile acids, and markers of liver fibrosis.. When patients were given a low-dose insulin infusion, insulin sensitivity increased by 28.0% from baseline in the group treated with 25 mg OCA (P = .019) and 20.1% from baseline in the group treated with 50 mg OCA (P = .060). Insulin sensitivity increased by 24.5% (P = .011) in combined OCA groups, whereas it decreased by 5.5% in the placebo group. A similar pattern was observed in patients given a high-dose insulin infusion. The OCA groups had significant reductions in levels of γ-glutamyltransferase and alanine aminotransferase and dose-related weight loss. They also had increased serum levels of low-density lipoprotein cholesterol and fibroblast growth factor 19, associated with decreased levels of 7α-hydroxy-4-cholesten-3-one and endogenous bile acids, indicating activation of farnesoid X receptor. Markers of liver fibrosis decreased significantly in the group treated with 25 mg OCA. Adverse experiences were similar among groups.. In this phase 2 trial, administration of 25 or 50 mg OCA for 6 weeks was well tolerated, increased insulin sensitivity, and reduced markers of liver inflammation and fibrosis in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Longer and larger studies are warranted. ClinicalTrials.gov, Number: NCT00501592. Topics: Adult; Aged; Biomarkers; Chenodeoxycholic Acid; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Fatty Liver; Female; Humans; Hypoglycemic Agents; Insulin Resistance; Male; Middle Aged; Non-alcoholic Fatty Liver Disease; Receptors, Cytoplasmic and Nuclear; Treatment Outcome | 2013 |
5 other study(ies) available for obeticholic-acid and Fatty-Liver
Article | Year |
---|---|
Obeticholic Acid Ameliorates Valproic Acid-Induced Hepatic Steatosis and Oxidative Stress.
Topics: Animals; Antioxidants; Body Weight; Cell Line, Tumor; Chenodeoxycholic Acid; Cytochrome P-450 Enzyme System; Fatty Liver; Female; Lipid Metabolism; Liver; Liver Function Tests; Mice, Inbred C57BL; Oxidative Stress; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Transcriptome; Valproic Acid | 2020 |
Obeticholic acid improves adipose morphometry and inflammation and reduces steatosis in dietary but not metabolic obesity in mice.
Nonalcoholic steatohepatitis (NASH) is the outcome of interactions between overnutrition, energy metabolism, and adipose function. Obeticholic acid (OCA) improves steatosis in patients but for unknown reasons does not resolve NASH pathology. This study therefore investigated OCA effects in Wt mice, which develop obesity with atherogenic dietary feeding, and appetite-dysregulated, Alms1 mutant foz/foz mice fed the same diet, which develop metabolic obesity and diabetes.. OCA (1 mg/kg) was administered orally to female foz/foz mice and Wt littermates from weaning until 28 weeks. Adipose indices, glucose tolerance, and fatty liver pathology were studied. Experiments were repeated with OCA 10 mg/kg.. OCA reduced body weight and hepatic lipids and improved glucose disposal only in Wt mice. OCA limited Wt adipose expansion, altered morphometry in favor of small adipocytes, enhanced expression of genes indicating adipose browning, and reduced crown-like structure number in visceral adipose tissue. foz/foz mice showed more crown-like structures in all compartments; OCA failed to alter adipose morphometry, browning, inflammation, or improve NASH severity, even at 10 mg/kg.. OCA improved adipose indices, glucose tolerance, and steatosis in a milder metabolic phenotype but failed to improve these factors in morbidly obese diabetic mice. These results help explain OCA's limited efficacy to reverse human NASH. Topics: Adiposity; Animals; Chenodeoxycholic Acid; Diet, Atherogenic; Disease Models, Animal; Fatty Liver; Female; Inflammation; Liver; Mice; Mice, Inbred NOD; Mice, Obese; Obesity; Weight Gain | 2017 |
Nonalcoholic steatohepatitis as a novel player in metabolic syndrome-induced erectile dysfunction: an experimental study in the rabbit.
A pathogenic link between erectile dysfunction (ED) and metabolic syndrome (MetS) is now well established. Nonalcoholic steatohepatitis (NASH), the hepatic hallmark of MetS, is regarded as an active player in the pathogenesis of MetS-associated cardiovascular disease (CVD). This study was aimed at evaluating the relationship between MetS-induced NASH and penile dysfunction. We used a non-genomic, high fat diet (HFD)-induced, rabbit model of MetS, and treated HFD rabbits with testosterone (T), with the selective farnesoid X receptor (FXR) agonist obeticholic acid (OCA), or with the anti-TNFα mAb infliximab. Rabbits fed a regular diet were used as controls. Liver histomorphological and gene expression analysis demonstrated NASH in HFD rabbits. Several genes related to inflammation (including TNFα), activation of stellate cells, fibrosis, and lipid metabolism parameters were negatively associated to maximal acetylcholine (Ach)-induced relaxation in penis. When all these putative liver determinants of penile Ach responsiveness were tested as covariates in a multivariate model, only the association between hepatic TNFα expression and Ach response was confirmed. Accordingly, circulating levels of TNFα were increased 15-fold in HFD rabbits. T and OCA dosing in HFD rabbits both reduced TNFα liver expression and plasma levels, with a parallel increase of penile eNOS expression and responsiveness to Ach. Also neutralization of TNFα with infliximab treatment fully normalized HFD-induced hypo-responsiveness to Ach, as well as responsiveness to vardenafil, a phosphodiesterase type 5 inhibitor. Thus, MetS-induced NASH in HFD rabbits plays an active role in the pathogenesis of ED, likely through TNFα, as indicated by treatments reducing liver and circulating TNFα levels (T or OCA), or neutralizing TNFα action (infliximab), which significantly improve penile responsiveness to Ach in HFD rabbits. Topics: Acetylcholine; Animals; Antibodies, Monoclonal; Chenodeoxycholic Acid; Diet, High-Fat; Dietary Fats; Erectile Dysfunction; Fatty Liver; Gene Expression; Humans; Imidazoles; Infliximab; Liver; Male; Metabolic Syndrome; Non-alcoholic Fatty Liver Disease; Penis; Phosphodiesterase 5 Inhibitors; Piperazines; Rabbits; Receptors, Cytoplasmic and Nuclear; Sulfones; Testosterone; Triazines; Tumor Necrosis Factor-alpha; Vardenafil Dihydrochloride | 2014 |
Do therapeutic bile acids hit the sweet spot of glucose metabolism in NAFLD?
Topics: Chenodeoxycholic Acid; Diabetes Mellitus, Type 2; Fatty Liver; Female; Humans; Hypoglycemic Agents; Male; Non-alcoholic Fatty Liver Disease; Receptors, Cytoplasmic and Nuclear | 2013 |
FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats.
The farnesoid X receptor (FXR) is a bile acid activated nuclear receptor. Zucker (fa/fa) rats, harboring a loss of function mutation of the leptin receptor, develop diabetes, insulin resistance, obesity, and liver steatosis. In this study, we investigated the effect of FXR activation by 6-ethyl-chenodeoxycholic acid, (6E-CDCA, 10 mg/kg) on insulin resistance and liver and muscle lipid metabolism in fa/fa rats and compared its activity with rosiglitazone (10 mg/kg) alone or in combination with 6E-CDCA (5 mg/kg each). In comparison to lean (fa/+), fa/fa rats on a normal diet developed insulin resistance and liver steatosis. FXR activation protected against body weight gain and liver and muscle fat deposition and reversed insulin resistance as assessed by insulin responsive substrate-1 phosphorylation on serine 312 in liver and muscles. Activation of FXR reduced liver expression of genes involved in fatty acid synthesis, lipogenesis, and gluconeogenesis. In the muscles, FXR treatment reduced free fatty acid synthesis. Rosiglitazone reduced blood insulin, glucose, triglyceride, free fatty acid, and cholesterol plasma levels but promoted body weight gain (20%) and liver fat deposition. FXR activation reduced high density lipoprotein plasma levels. In summary, FXR administration reversed insulin resistance and correct lipid metabolism abnormalities in an obesity animal model. Topics: Animals; Chenodeoxycholic Acid; Disease Models, Animal; Drug Therapy, Combination; Fatty Liver; Gene Expression Regulation; Hypoglycemic Agents; Hypolipidemic Agents; Insulin Receptor Substrate Proteins; Insulin Resistance; Lipid Metabolism; Lipids; Liver; Male; Muscle, Skeletal; Obesity; Phosphorylation; Random Allocation; Rats; Rats, Zucker; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Rosiglitazone; Thiazolidinediones; Time Factors | 2010 |