o-(2-fluoroethyl)tyrosine and Astrocytoma

o-(2-fluoroethyl)tyrosine has been researched along with Astrocytoma* in 3 studies

Other Studies

3 other study(ies) available for o-(2-fluoroethyl)tyrosine and Astrocytoma

ArticleYear
Dynamic FET PET Imaging of a "Butterfly" IDH-Wildtype Anaplastic Astrocytoma.
    Clinical nuclear medicine, 2019, Volume: 44, Issue:10

    A variety of neoplastic and nonneoplastic conditions involve the corpus callosum, which may result in a "butterfly" appearance on conventional MRI. Typically, that pattern shows a bilateral and heterogeneous contrast enhancement of the lesion, occasionally with central nonenhancing areas indicating intralesional necrosis. In contrast, anaplastic gliomas may show only minimal or even a lack of contrast enhancement on MRI. We here report neuroimaging findings in a 69-year-old man with a "butterfly" pattern on dynamic FET [O-(2-[F]-fluoroethyl)-L-tyrosine] PET and the diagnosis of an anaplastic astrocytoma (WHO grade III; IDH-1/-2 wildtype, no 1p/19q co-deletion) but without typical MRI contrast enhancement.

    Topics: Aged; Astrocytoma; Brain Neoplasms; Humans; Isocitrate Dehydrogenase; Magnetic Resonance Imaging; Male; Positron-Emission Tomography; Tyrosine

2019
O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2011, Volume: 52, Issue:6

    The objective of this study was to compare MRI response assessment with metabolic O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET response evaluation during antiangiogenic treatment in patients with recurrent high-grade glioma (rHGG).. Eleven patients with rHGG were treated biweekly with bevacizumab-irinotecan. MR images and (18)F-FET PET scans were obtained at baseline and at follow-up 8-12 wk after treatment onset. MRI treatment response was evaluated by T1/T2 volumetry according to response assessment in neurooncology (RANO) criteria. For (18)F-FET PET evaluation, an uptake reduction of more than 45% calculated with a standardized uptake value of more than 1.6 was defined as a metabolic response (receiver-operating-characteristic curve analysis). MRI and (18)F-FET PET volumetry results and response assessment were compared with each other and in relation to progression-free survival (PFS) and overall survival (OS).. At follow-up, MR images showed partial response in 7 of 11 patients (64%), stable disease in 2 of 11 patients (18%), and tumor progression in 2 of 11 patients (18%). In contrast, (18)F-FET PET revealed 5 of 11 metabolic responders (46%) and 6 of 11 nonresponders (54%). MRI and (18)F-FET PET showed that responders survived significantly longer than did nonresponders (10.24 vs. 4.1 mo, P = 0.025, and 7.9 vs. 2.3 mo, P = 0.015, respectively). In 4 patients (36.4%), diagnosis according to RANO criteria and (18)F-FET PET was discordant. In these cases, PET was able to detect tumor progression earlier than was MRI.. In rHGG patients undergoing antiangiogenic treatment, (18)F-FET PET seems to be predictive for treatment failure in that it contributes important information to response assessment based solely on MRI and RANO criteria.

    Topics: Adult; Angiogenesis Inhibitors; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Astrocytoma; Bevacizumab; Brain Neoplasms; Camptothecin; Combined Modality Therapy; Disease-Free Survival; Female; Glioma; Humans; Image Processing, Computer-Assisted; Irinotecan; Magnetic Resonance Imaging; Male; Middle Aged; Nervous System Diseases; Positron-Emission Tomography; Postoperative Complications; Predictive Value of Tests; Radiopharmaceuticals; Retrospective Studies; Survival Analysis; Treatment Failure; Tyrosine; Ultrasonography

2011
Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 1999, Volume: 40, Issue:1

    The aim of the study was to develop a simple 18F-labeled amino acid as a PET tracer for cerebral and peripheral tumors. O-(2-[18F]fluoroethyl)-L-tyrosine (L-[18F]FET) was synthesized and biologically evaluated. Results of the first human PET study are reported.. No carrier added (n.c.a.) and D-[18F]FET were prepared by 18F-fluoroethylation of L- and D-tyrosine in a two-step procedure. Biodistribution studies were performed in mice. The metabolic fate of L-[18F]FET was investigated in plasma, brain, tumor and pancreatic tissue samples using chromatographic procedures. Tumor uptake studies were performed in mammary carcinoma-bearing mice and in mice with the colon carcinoma SW 707. In a human PET study, a 59-y-old man with a recurrent astrocytoma was imaged using n.c.a. L-[18F]FET.. Synthesis of [18F]FET was accomplished in about 50 min with an overall radiochemical yield of 40%. The uptake of L-[18F]FET in the brain of mice reached a level >2% ID/g between 30 and 60 min postinjection. The brain uptake of the D-isomer was negligible, indicating blood-brain barrier penetration by a specific amino acid transport system. L-[18F]FET is not incorporated into proteins. High-performance liquid chromatography (HPLC) analysis of brain, pancreas and tumor homogenates as well as plasma samples of mice at 10, 40 or 60 min postinjection showed only unchanged L-[18F]FET. Activity uptake in the bone did not exceed 2% ID/g at 40 min postinjection. The brain uptake of L-[18F]FET in mice bearing mammary carcinomas and colon carcinomas reached 7.1%+/-1.2% ID/g and 6.4%+/-1.7% ID/g 1h postinjection, respectively. In the first human study, L-[18F]FET-PET allowed a clear delineation of a recurrent astrocytoma. Thirty-five minutes postinjection, the tumor-to-cortex ratio was >2.7. A tumor-to-blood ratio >1.5 was reached at 30 min postinjection and continued to increase. No significant activity accumulation was observed in peripheral organs after approximately 40 min postinjection.. The high in vivo stability of L-[18F]FET, its fast brain and tumor uptake kinetics, its low accumulation in nontumor tissue and its ease of synthesis strongly support further evaluation of L-[18F]FET as an amino acid tracer for cerebral and peripheral tumors.

    Topics: Animals; Astrocytoma; Brain Neoplasms; Chromatography, High Pressure Liquid; Colonic Neoplasms; Female; Humans; Male; Mammary Neoplasms, Experimental; Mice; Middle Aged; Neoplasm Recurrence, Local; Neoplasm Transplantation; Tissue Distribution; Tomography, Emission-Computed; Transplantation, Heterologous; Tyrosine

1999