nyasol has been researched along with Inflammation* in 2 studies
2 other study(ies) available for nyasol and Inflammation
Article | Year |
---|---|
(-)-Nyasol, isolated from Anemarrhena asphodeloides suppresses neuroinflammatory response through the inhibition of I-κBα degradation in LPS-stimulated BV-2 microglial cells.
Microglial activation has been associated with neurodegenerative diseases by inducing the neuroinflammatory mediators such as nitric oxide (NO), TNF-α and IL-1β. (-)-Nyasol, a norlignan isolated from a medicinal plant Anemarrhena asphodeloides, showed anti-inflammatory potential in lipopolysaccharide (LPS)-activated BV-2 microglial cells. (-)-Nyasol inhibited the production of NO and prostaglandin E2 (PGE2) and also the expression of inducible nitric oxide synthase and cyclooxygenase-2, which are responsible for the respective production of NO and PGE2. It also suppressed the mRNA levels of TNF-α and IL-1β in activated microglial cells. These effects of (-)-nyasol were correlated with the inactivation of p38 MAPK and the suppression of LPS-induced I-κBα degradation. Taken together, these results suggest that (-)-nyasol can be a modulator in neuroinflammatory conditions induced by microglial activation. Topics: Anemarrhena; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; I-kappa B Proteins; Inflammation; Lignans; Lipopolysaccharides; Mice; Microglia; Molecular Structure; Phenols; Stereoisomerism | 2013 |
(-)-Nyasol (cis-hinokiresinol), a norneolignan from the rhizomes of Anemarrhena asphodeloides, is a broad spectrum inhibitor of eicosanoid and nitric oxide production.
To assess the anti-inflammatory activity of constituents from the rhizomes of Anemarrhena asphodeloides, (-)-nyasol {cis-hinokiresinol, 4,4-[1Z,3R]-3-ethenyl-1-propene-1,3-diyl]bisphenol} was isolated and its anti-inflammatory activity was examined in lipopolysaccharide (LPS)-treated RAW 264.7 cells and A23187-treated RBL-1 cells. In vivo activity was measured using carrageenan-induced paw edema assay. At > 1 microM, (-)-nyasol significantly inhibited cyclooxygenase-2 (COX-2)-mediated PGE2 production and inducible nitric oxide synthase (iNOS)-mediated NO production in LPS-treated RAW 264.7 cells, a mouse macrophage-like cell line, but did not affect the expression levels of COX-2 and iNOS. (-)-Nyasol also inhibited 5-lipoxygenase (5-LOX)-mediated leukotriene production in A23187-treated RBL-1 cells. Furthermore, (-)-nyasol potently inhibited carrageenan-induced paw edema in mice (28.6-77.1% inhibition at 24-120 mg/kg). Therefore, (-)-nyasol is a potential new lead compound and may contribute to the anti-inflammatory action of A. asphodeloides, possibly by inhibiting COX-2, iNOS and 5-LOX. Topics: Anemarrhena; Animals; Anti-Inflammatory Agents; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Eicosanoids; Inflammation; Lignans; Lipopolysaccharides; Lipoxygenase Inhibitors; Male; Mice; Mice, Inbred ICR; Nitric Oxide; Nitric Oxide Synthase Type II; Phenols; Rats; Rhizome | 2009 |