nutlin-3a and Neoplasm-Metastasis

nutlin-3a has been researched along with Neoplasm-Metastasis* in 3 studies

Other Studies

3 other study(ies) available for nutlin-3a and Neoplasm-Metastasis

ArticleYear
Potentiation of Carboplatin-Mediated DNA Damage by the Mdm2 Modulator Nutlin-3a in a Humanized Orthotopic Breast-to-Lung Metastatic Model.
    Molecular cancer therapeutics, 2015, Volume: 14, Issue:12

    Triple-negative breast cancers (TNBC) are typically resistant to treatment, and strategies that build upon frontline therapy are needed. Targeting the murine double minute 2 (Mdm2) protein is an attractive approach, as Mdm2 levels are elevated in many therapy-refractive breast cancers. The Mdm2 protein-protein interaction inhibitor Nutlin-3a blocks the binding of Mdm2 to key signaling molecules such as p53 and p73α and can result in activation of cell death signaling pathways. In the present study, the therapeutic potential of carboplatin and Nutlin-3a to treat TNBC was investigated, as carboplatin is under evaluation in clinical trials for TNBC. In mutant p53 TMD231 TNBC cells, carboplatin and Nutlin-3a led to increased Mdm2 and was strongly synergistic in promoting cell death in vitro. Furthermore, sensitivity of TNBC cells to combination treatment was dependent on p73α. Following combination treatment, γH2AX increased and Mdm2 localized to a larger degree to chromatin compared with single-agent treatment, consistent with previous observations that Mdm2 binds to the Mre11/Rad50/Nbs1 complex associated with DNA and inhibits the DNA damage response. In vivo efficacy studies were conducted in the TMD231 orthotopic mammary fat pad model in NOD.Cg-Prkdc(scid)Il2rg(tm1Wjl)/SzJ (NSG) mice. Using an intermittent dosing schedule of combined carboplatin and Nutlin-3a, there was a significant reduction in primary tumor growth and lung metastases compared with vehicle and single-agent treatments. In addition, there was minimal toxicity to the bone marrow and normal tissues. These studies demonstrate that Mdm2 holds promise as a therapeutic target in combination with conventional therapy and may lead to new clinical therapies for TNBC.

    Topics: Animals; Carboplatin; Cell Death; Clinical Trials as Topic; Disease Models, Animal; DNA Damage; DNA-Binding Proteins; Histones; Humans; Imidazoles; Lung Neoplasms; MCF-7 Cells; Mice; Neoplasm Metastasis; Nuclear Proteins; Piperazines; Proto-Oncogene Proteins c-mdm2; Triple Negative Breast Neoplasms; Tumor Protein p73; Tumor Suppressor Protein p53; Tumor Suppressor Proteins

2015
Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP.
    Cancer cell, 2013, May-13, Volume: 23, Issue:5

    Nearly 90% of human melanomas contain inactivated wild-type p53, the underlying mechanisms for which are not fully understood. Here, we identify that cyclin B1/CDK1-phosphorylates iASPP, which leads to the inhibition of iASPP dimerization, promotion of iASPP monomer nuclear entry, and exposure of its p53 binding sites, leading to increased p53 inhibition. Nuclear iASPP is enriched in melanoma metastasis and associates with poor patient survival. Most wild-type p53-expressing melanoma cell lines coexpress high levels of phosphorylated nuclear iASPP, MDM2, and cyclin B1. Inhibition of MDM2 and iASPP phosphorylation with small molecules induced p53-dependent apoptosis and growth suppression. Concurrent p53 reactivation and BRAFV600E inhibition achieved additive suppression in vivo, presenting an alternative for melanoma therapy.

    Topics: Active Transport, Cell Nucleus; Animals; Antineoplastic Agents; Apoptosis; CDC2 Protein Kinase; Cell Line, Tumor; Cell Nucleus; Cell Proliferation; Cyclin B1; Dimerization; Humans; Imidazoles; Indoles; Intracellular Signaling Peptides and Proteins; M Phase Cell Cycle Checkpoints; Melanoma; Mice; Neoplasm Metastasis; Nocodazole; Phosphorylation; Piperazines; Proto-Oncogene Proteins c-mdm2; Repressor Proteins; Sulfonamides; Triazoles; Tumor Suppressor Protein p53; Vemurafenib; Xenograft Model Antitumor Assays

2013
Effect of MDM2 and vascular endothelial growth factor inhibition on tumor angiogenesis and metastasis in neuroblastoma.
    Angiogenesis, 2011, Volume: 14, Issue:3

    Neuroblastoma is the most common pediatric abdominal tumor and principally a p53 wild-type, highly vascular, aggressive tumor, with limited response to anti-VEGF therapies alone. MDM2 is a key inhibitor of p53 and a positive activator of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) activity with an important role in neuroblastoma pathogenesis. We hypothesized that concurrent inhibition of both MDM2 and VEGF signaling would have cooperative anti-tumor effects, potentiating anti-angiogenic strategies for neuroblastoma and other p53 wild-type tumors. We orthotopically implanted SH-SY5Y neuroblastoma cells into nude mice (n = 40) and treated as follows: control, bevacizumab, Nutlin-3a, combination of bevacizumab plus Nutlin-3a. Expression of HIF-1α and VEGF were measured by qPCR, Western blot, and ELISA. Tumor apoptosis was measured by immunohistochemistry and caspase assay. Angiogenesis was evaluated by immunohistochemistry for vascular markers (CD-31, type-IV collagen, αSMA). Both angiogenesis and metastatic burden were digitally quantified. In vitro, Nutlin-3a suppresses HIF-1α expression with subsequent downregulation of VEGF. Bevacizumab plus Nutlin-3a leads to significant suppression of tumor growth compared to control (P < 0.01) or either agent alone. Combination treated xenograft tumors display a marked decrease in endothelial cells (P < 0.0001), perivascular basement membrane (P < 0.04), and vascular mural cells (P < 0.004). Nutlin-3a alone and in combination with bevacizumab leads to significant tumor apoptosis (P < 0.0001 for both) and significant decrease in incidence of metastasis (P < 0.05) and metastatic burden (P < 0.03). Bevacizumab plus Nutlin-3a cooperatively inhibits tumor growth and angiogenesis in neuroblastoma in vivo with dramatic effects on tumor vascularity. Concomitantly targeting VEGF and p53 pathways potently suppresses tumor growth, and these results support further clinical development of this approach.

    Topics: Angiogenesis Inhibitors; Animals; Antibodies, Monoclonal, Humanized; Bevacizumab; Cell Line, Tumor; Down-Regulation; Gene Expression Regulation, Neoplastic; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Imidazoles; Mice; Mice, Nude; Neoplasm Metastasis; Neovascularization, Pathologic; Neuroblastoma; Piperazines; Proto-Oncogene Proteins c-mdm2; Tumor Suppressor Protein p53; Vascular Endothelial Growth Factor A; Xenograft Model Antitumor Assays

2011