nutlin-3a has been researched along with Lymphoma--Primary-Effusion* in 3 studies
3 other study(ies) available for nutlin-3a and Lymphoma--Primary-Effusion
Article | Year |
---|---|
Nutlin-3 loaded nanocarriers: Preparation, characterization and in vitro antineoplastic effect against primary effusion lymphoma.
In this investigation, Nutlin-3 (Nut3), a novel antitumor drug with low water solubility (<0.1mg/L at 25°C), was loaded into liposomes (Lipo-Nut3), polymeric nanoparticles (NPs-Nut3) and nanoparticles engineered with an antibody direct against Syndecan-1/CD 138 (Syn-NPs-Nut3) to obtain carriers targeted to PEL (primary effusion lymphoma). The physicochemical properties of these carriers were determined. Atomic force microscopy showed that all the particles were well formed and spherical in shape. The presence of the antibody on surface led to a significant increase of mean diameter (280 ± 63 nm), PDI (0.3) and the shift of zeta potential towards neutrality (-1 mV). The entrapment efficiency of Lipo-Nut3, NPs-Nut3 and Syn-NPs-Nut3 was 30, 52 and 29%, and drug loading was 1.4, 4.5 and 2.6%, respectively. By performing cytofluorimetric analyses and bromodeoxyuridine (BrdU) assay, the efficacy of nanocarriers to deliver the antineoplastic drug into a PEL cell line namely BCBL-1 (immortalized body cavity B-cell lymphoma) was investigated. Two days after the treatment with 20 μM of Syn-NPs-Nut3, the cell density decreased at about 60% while the cell viability decreased at 56% only 5 days after transfection, when compared with untreated cells. A cell cycle arrest was observed with a significant decrease of cells in S-phase and increasing of apoptotic cell, if compared with untreated control. These results confirms the potential of nanocarriers approaches to deliver antitumor drug with unfavorable chemico-physical properties. Moreover, this study strongly suggests that Syn-NPs-Nut3 can be a valuable drug carrier system for the treatment of PEL lymphoma. Topics: Antineoplastic Agents; Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Survival; Drug Carriers; Drug Delivery Systems; Humans; Imidazoles; Liposomes; Lymphoma, Primary Effusion; Nanoparticles; Particle Size; Piperazines; S Phase | 2015 |
Kaposi's sarcoma herpesvirus lytic replication compromises apoptotic response to p53 reactivation in virus-induced lymphomas.
Primary effusion lymphomas (PELs) are aggressive Kaposi's sarcoma herpesvirus (KSHV)-induced malignancies with median survival time <6 months post-diagnosis. Mutations in the TP53 gene seldom occur in PELs, suggesting that genetic alterations in the TP53 are not selected during PEL progression. We have reported that p53 reactivation by an inhibitor of the p53-MDM2 interaction, Nutlin-3, induces selective and massive apoptosis in PEL cells leading to efficient anti-tumor activity in a subcutaneous xenograft model for PEL. Here, we show compelling anti-tumor activity of Nutlin-3 in the majority of intraperitoneal PEL xenografts in vivo. Interestingly, our results demonstrate that spontaneous induction of viral lytic replication in tumors could drastically attenuate the p53-dependent apoptotic response to Nutlin-3. Moreover, viral reactivation compromised p53-dependent apoptosis in PEL cells treated with genotoxic anti-cancer agents doxorubicin and etoposide. We have recently demonstrated that the Ser/Thr kinases Pim 1 and 3 are required to trigger induction of the lytic replication cascade of KSHV. We have now assessed the ability of a novel Pim kinase inhibitor to restore the Nutlin-3-induced cytotoxicity in lytic PEL cells. PEL cells induced to lytic replication by phorbol esters showed 50% inhibition of active viral replication following treatment with the Pim kinase inhibitor. Importantly, co-treatment of these cells with the kinase inhibitor and Nutlin-3 resulted in a robust restoration of the Nutlin-3-induced cell death. These results highlight the potential impact of activation of viral lytic replication on disease progression and response to treatment in KSHV-induced lymphomas. Topics: Apoptosis; Genes, p53; Herpesvirus 8, Human; Humans; Imidazoles; Lymphoma, Primary Effusion; Peritoneal Neoplasms; Piperazines; Transcriptional Activation; Transplantation, Heterologous; Virus Activation; Virus Replication | 2013 |
Recruitment of the tumour suppressor protein p73 by Kaposi's Sarcoma Herpesvirus latent nuclear antigen contributes to the survival of primary effusion lymphoma cells.
Kaposi's Sarcoma Herpesvirus (KSHV) is the causative agent of Kaposi's Sarcoma (KS) and two rare lymphoproliferative disorders, primary effusion lymphoma (PEL) and the plasmablastic variant of multicentric Castleman's disease (MCD). The KSHV latency-associated nuclear antigen-1 (LANA), required for the replication and maintenance of latent viral episomal DNA, is involved in the transcriptional regulation of viral and cellular genes and interacts with different cellular proteins, including the tumour suppressor p53. Here, we report that LANA also recruits the p53-related nuclear transcription factor p73, which influences cellular processes like DNA damage response, cell cycle progression and apoptosis. Both the full-length isoform TAp73α, as well as its dominant negative regulator ΔNp73α, interact with LANA. LANA affects TAp73α stability and sub-nuclear localisation, as well as TAp73α-mediated transcriptional activation of target genes. We observed that the small-molecule inhibitor Nutlin-3, which disrupts the interaction of p53 and p73 with MDM2, induces apoptotic cell death in p53 wild-type, as well as p53-mutant PEL cell lines, suggesting a possible involvement of p73. The small-molecule RETRA, which activates p73 in the context of mutant p53, leads to the induction of apoptosis in p53-mutant PEL cell lines. RNAi-mediated knockdown of p73 confirmed that these effects depend on the presence of the p73 protein. Furthermore, both Nutlin-3 and RETRA disrupt the LANA-p73 interaction in different PEL cell lines. These results suggest that LANA modulates p73 function and that the LANA-p73 interaction may represent a therapeutic target to interfere with the survival of latently KSHV-infected cells. Topics: Antigens, Viral; Apoptosis; Binding Sites; Catechols; Cell Survival; DNA Damage; DNA-Binding Proteins; HEK293 Cells; HeLa Cells; Humans; Imidazoles; Lymphoma, Primary Effusion; Nuclear Proteins; Piperazines; Thiazoles; Tumor Protein p73; Tumor Suppressor Protein p53; Tumor Suppressor Proteins | 2013 |