nsc-680410 and Leukemia--Lymphocytic--Chronic--B-Cell

nsc-680410 has been researched along with Leukemia--Lymphocytic--Chronic--B-Cell* in 2 studies

Other Studies

2 other study(ies) available for nsc-680410 and Leukemia--Lymphocytic--Chronic--B-Cell

ArticleYear
Adaphostin-induced apoptosis in CLL B cells is associated with induction of oxidative stress and exhibits synergy with fludarabine.
    Blood, 2005, Mar-01, Volume: 105, Issue:5

    B-cell chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal lymphocytes resistant to apoptosis. We evaluated the ability of the investigational antileukemic agent adaphostin to induce apoptosis in CLL B cells and synergize with fludarabine in vitro. Analysis by annexin V/propidium iodide (PI) staining revealed that the concentration of adaphostin required to induce 50% cell death (IC50) at 24 hours was 4.2 microM (range, 1.10-11.25 microM; median, 4.25 microM; n=29) for CLL isolates and more than 10 microM for B and T cells from healthy donors. Immunoblots demonstrated adaphostin induced poly(adenosine diphosphate-ribose) polymerase (PARP) cleavage and cleavage of caspase-3 substrates, suggesting that adaphostin induces apoptosis. Adaphostin increased the level of reactive oxygen species (ROS) within CLL B cells, and the antioxidant N-acetylcysteine blocked both adaphostin-induced ROS generation and apoptosis. Adaphostin also caused a decrease in the level of the antiapoptotic protein Bcl-2. When adaphostin was combined with fludarabine (F-ARA-AMP), a synergistic effect on cell death was observed in all 10 CLL samples. These findings not only indicate that adaphostin induces apoptosis selectively in CLL B cells through a mechanism that involves ROS generation but also demonstrate its ability to augment the effects of fludarabine. Further preclinical development of adaphostin as a novel agent for the treatment of CLL appears warranted.

    Topics: Adamantane; Apoptosis; B-Lymphocytes; Cells, Cultured; Drug Synergism; Fusion Proteins, bcr-abl; Humans; Hydroquinones; Inhibitory Concentration 50; Leukemia, Lymphocytic, Chronic, B-Cell; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Vidarabine

2005
Involvement of reactive oxygen species in adaphostin-induced cytotoxicity in human leukemia cells.
    Blood, 2003, Dec-15, Volume: 102, Issue:13

    Adaphostin (NSC 680410), an analog of the tyrphostin AG957, was previously shown to induce Bcr/abl down-regulation followed by loss of clonogenic survival in chronic myelogenous leukemia (CML) cell lines and clinical samples. Adaphostin demonstrated selectivity for CML myeloid progenitors in vitro and remained active in K562 cells selected for imatinib mesylate resistance. In the present study, the mechanism of action of adaphostin was investigated in greater detail in vitro. Initial studies demonstrated that adaphostin induced apoptosis in a variety of Bcr/abl- cells, including acute myelogenous leukemia (AML) blasts and cell lines as well as chronic lymphocytic leukemia (CLL) samples. Further study demonstrated that adaphostin caused intracellular peroxide production followed by DNA strand breaks and, in cells containing wild-type p53, a typical DNA damage response consisting of p53 phosphorylation and up-regulation. Importantly, the antioxidant N-acetylcysteine (NAC) blunted these events, whereas glutathione depletion with buthionine sulfoximine (BSO) augmented them. Collectively, these results not only outline a mechanism by which adaphostin can damage both myeloid and lymphoid leukemia cells, but also indicate that this novel agent might have a broader spectrum of activity than originally envisioned.

    Topics: Acetylcysteine; Adamantane; Antioxidants; Apoptosis; Buthionine Sulfoximine; DNA Damage; DNA, Neoplasm; Enzyme Inhibitors; Fusion Proteins, bcr-abl; Glutathione; Humans; Hydroquinones; K562 Cells; Leukemia; Leukemia, Lymphocytic, Chronic, B-Cell; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid; Neoplasm Proteins; Neoplastic Stem Cells; Quinones; Reactive Oxygen Species; Tumor Stem Cell Assay; Tyrphostins

2003