nsc-4347 and Prostatic-Neoplasms

nsc-4347 has been researched along with Prostatic-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for nsc-4347 and Prostatic-Neoplasms

ArticleYear
    Journal of applied social psychology, 2021, Volume: 51, Issue:5

    Topics: Adult; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibodies, Monoclonal, Humanized; Antigens, Surface; Antineoplastic Agents; Antioxidants; Antiviral Agents; Aporphines; Atherosclerosis; Benzoyl Peroxide; beta Catenin; Biofilms; Biomarkers; Brain; Cannabis; Carcinoma, Squamous Cell; Case-Control Studies; CD4 Lymphocyte Count; CD4-Positive T-Lymphocytes; CD8-Positive T-Lymphocytes; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Child; China; Chlorides; Chlorophyll; Cholesterol, LDL; Coinfection; Corylus; Cross-Sectional Studies; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Developmental Disabilities; Disease Models, Animal; Drug Evaluation, Preclinical; Drug Screening Assays, Antitumor; Electroencephalography; Environmental Exposure; Enzyme Inhibitors; Epilepsy, Generalized; Ethnicity; Female; Fertilization in Vitro; Fluorescent Dyes; Follow-Up Studies; Forecasting; Glutamate Carboxypeptidase II; Glycine; Half-Life; Head and Neck Neoplasms; Health Communication; Heart Ventricles; Hepacivirus; Hepatitis C; Heterosexuality; HIV Infections; Humans; Hypercholesterolemia; Immunoassay; Inhalation Exposure; Isocitrate Dehydrogenase; Laryngeal Neoplasms; Ligands; Light; Lipopolysaccharide Receptors; Liver Cirrhosis; Lung; Lung Neoplasms; Magnetic Resonance Imaging, Cine; Male; Maternal Age; Mechanical Phenomena; Mice; Mice, Nude; Mice, SCID; Microglia; MicroRNAs; Microscopy, Fluorescence; Microsomes, Liver; Middle Aged; Minority Groups; Mitochondrial Membrane Transport Proteins; Models, Biological; Molecular Structure; Molecular Weight; Monte Carlo Method; Muscle Hypotonia; Mutagenesis, Site-Directed; Mutation, Missense; Natriuretic Peptide, Brain; Neoplasms; Nickel; Nitric Oxide; Optical Imaging; Oxides; Particle Size; Particulate Matter; PCSK9 Inhibitors; Peptide Fragments; Phenotype; Photochemotherapy; Photosensitizing Agents; Phytochemicals; Piper; Placenta Growth Factor; Plant Extracts; Plant Leaves; Plant Stems; Platinum; Point-of-Care Testing; Population Surveillance; Postpartum Period; Pregnancy; Pregnancy, Twin; Prevalence; Prospective Studies; Prostatic Neoplasms; Pseudomonas aeruginosa; Pyridines; Pyridones; Racial Groups; Rats; Respiratory Physiological Phenomena; Retrospective Studies; Risk Factors; RNA, Long Noncoding; Semiconductors; Sexual and Gender Minorities; Sexual Behavior; Social Media; Sodium; Solubility; Stereoisomerism; Stochastic Processes; Structure-Activity Relationship; Substance-Related Disorders; Sustained Virologic Response; Sweat; Temperature; Time Factors; Tissue Distribution; Titanium; Transplantation, Heterologous; Tumor Cells, Cultured; Tungsten; Tyramine; United States; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Veterans; Xenograft Model Antitumor Assays; Young Adult

2021
Piper betel leaf extract: anticancer benefits and bio-guided fractionation to identify active principles for prostate cancer management.
    Carcinogenesis, 2013, Volume: 34, Issue:7

    Plant extracts, a concoction of bioactive non-nutrient phytochemicals, have long served as the most significant source of new leads for anticancer drug development. Explored for their unique medicinal properties, the leaves of Piper betel, an evergreen perennial vine, are a reservoir of phenolics with antimutagenic, antitumor and antioxidant activities. Here, we show that oral feeding of betel leaf extract (BLE) significantly inhibited the growth of human prostate xenografts implanted in nude mice compared with vehicle-fed controls. To gain insights into the 'active principles', we performed a bioactivity-guided fractionation of methanolic BLE employing solvents of different polarity strengths using classical column chromatography. This approach yielded 15 fractions, which were then pooled to 10 using similar retention factors on thin-layer chromatographs. Bioactivity assays demonstrated that one fraction in particular, F2, displayed a 3-fold better in vitro efficacy to inhibit proliferation of prostate cancer cells than the parent BLE. The presence of phenols, hydroxychavicol (HC) and chavibetol (CHV), was confirmed in F2 by nuclear magnetic resonance, high-performance liquid chromatography and mass spectroscopy. Further, the HC containing F2 subfraction was found to be ~8-fold more potent than the F2 subfraction that contained CHV, in human prostate cancer PC-3 cells as evaluated by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay. Removing CHV from F2 remarkably decreased the IC50 of this fraction, indicating that HC is perhaps the major bioactive constituent, which is present to an extent of 26.59% in BLE. These data provide evidence that HC is a potential candidate for prostate cancer management and warrants further preclinical evaluation.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Cell Proliferation; Chemical Fractionation; Chromatography, High Pressure Liquid; Eugenol; Humans; Immunohistochemistry; Inhibitory Concentration 50; Magnetic Resonance Spectroscopy; Male; Methanol; Mice; Mice, Inbred BALB C; Mice, Nude; Phytotherapy; Piper; Plant Extracts; Plant Leaves; Prostatic Neoplasms; Solvents; Xenograft Model Antitumor Assays

2013
Pipernonaline from Piper longum Linn. induces ROS-mediated apoptosis in human prostate cancer PC-3 cells.
    Biochemical and biophysical research communications, 2013, Jan-04, Volume: 430, Issue:1

    The antiproliferation effects of pipernonaline, a piperine derivative, were investigated on human prostate cancer PC-3 cells. It inhibited growth of androgen independent PC-3 and androgen dependent LNCaP prostate cells in a dose-dependent (30-90 μM) and time-dependent (24-48 h) manner. The growth inhibition of PC-3 cells was associated with sub-G(1) and G(0)/G(1) accumulation, confirmed by the down-regulation of CDK2, CDK4, cyclin D1 and cyclin E, which are correlated with G(1) phase of cell cycle. Pipernonaline up-regulated cleavage of procaspase-3/PARP, but did not change expression of proapoptotic bax and antiapoptotic bcl-2 proteins. Its caspase-3 activation was confirmed by the caspase-3 assay kit. In addition, pipernonaline caused the production of reactive oxygen species (ROS), increase of intracellular Ca(2+), and mitochondrial membrane depolarization, which these phenomena were reversed by N-acetylcysteine, a ROS scavenger. The results suggest that pipernonaline exhibits apoptotic properties through ROS production, which causes disruption of mitochondrial function and Ca(2+) homeostasis and leads to its downstream events including activation of caspase-3 and cleavage of PARP in PC-3 cells. This is the first report of pipernonaline toward the anticancer activity of prostate cancer cells, which provides a role for candidate agent as well as the molecular basis for human prostate cancer.

    Topics: Alkaloids; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Line, Tumor; Cell Proliferation; G1 Phase Cell Cycle Checkpoints; Humans; Male; Piper; Piperidines; Poly(ADP-ribose) Polymerases; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Resting Phase, Cell Cycle

2013
Piper cubeba targets multiple aspects of the androgen-signalling pathway. A potential phytotherapy against prostate cancer growth?
    Planta medica, 2008, Volume: 74, Issue:1

    Despite the high prevalence of prostate cancer (PC) in the Western world, there is a dearth of effective medication. Since the androgen-signalling pathway is very much involved in PC growth and development, we investigated the potential of Piper cubeba L. extract, P9605, in targeting multiple events simultaneously within this pathway. This may be more effective compared to an antiandrogen monotherapy. Our results indicated that P9605 inhibited proliferation in androgen-dependent LNCaP human prostate cancer cells by reducing DNA synthesis and inducing apoptosis. This antigrowth effect was less pronounced in androgen-independent PC-3 prostate cancer cell lines. P9605 potently inhibited 5 alpha-reductase II activity, which is responsible for converting testosterone to its active form, dihydrotestosterone (DHT), in the prostate. It also acted as an antagonist at recombinant wild-type androgen receptors (AR). P9605 suppressed cell growth and prostate-specific antigen (PSA) secretion stimulated by physiological concentrations of DHT in LNCaP cells. Interestingly, it down-regulated AR levels. In conclusion, our findings suggest that P9605 may potentially retard the growth of androgen-dependent PC via several mechanisms.

    Topics: Androgen Antagonists; Androgen Receptor Antagonists; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Dose-Response Relationship, Drug; Humans; Lignans; Male; Phytotherapy; Piper; Plant Extracts; Prostatic Neoplasms; Receptors, Androgen; Seeds; Signal Transduction

2008