nsc-348884 has been researched along with Neoplasms* in 3 studies
1 review(s) available for nsc-348884 and Neoplasms
Article | Year |
---|---|
Molecules that target nucleophosmin for cancer treatment: an update.
Nucleophosmin is a highly and ubiquitously expressed protein, mainly localized in nucleoli but able to shuttle between nucleus and cytoplasm. Nucleophosmin plays crucial roles in ribosome maturation and export, centrosome duplication, cell cycle progression, histone assembly and response to a variety of stress stimuli. Much interest in this protein has arisen in the past ten years, since the discovery of heterozygous mutations in the terminal exon of the NPM1 gene, which are the most frequent genetic alteration in acute myeloid leukemia. Nucleophosmin is also frequently overexpressed in solid tumours and, in many cases, its overexpression correlates with mitotic index and metastatization. Therefore it is considered as a promising target for the treatment of both haematologic and solid malignancies. NPM1 targeting molecules may suppress different functions of the protein, interfere with its subcellular localization, with its oligomerization properties or drive its degradation. In the recent years, several such molecules have been described and here we review what is currently known about them, their interaction with nucleophosmin and the mechanistic basis of their toxicity. Collectively, these molecules exemplify a number of different strategies that can be adopted to target nucleophosmin and we summarize them at the end of the review. Topics: Amino Acid Sequence; Antineoplastic Agents; Hematologic Neoplasms; Humans; Indoles; Molecular Structure; Molecular Targeted Therapy; Neoplasms; Nuclear Proteins; Nucleophosmin; Sequence Homology, Amino Acid | 2016 |
2 other study(ies) available for nsc-348884 and Neoplasms
Article | Year |
---|---|
Nucleophosmin Regulates Intracellular Oxidative Stress Homeostasis via Antioxidant PRDX6.
Reactive oxygen species (ROS) play both deleterious and beneficial roles in cancer cells. Nucleophosmin (NPM) is heavily implicated in cancers of diverse origins, being its gene over-expression in solid tumors or frequent mutations in hematological malignancies. However, the role and regulatory mechanism of NPM in oxidative stress are unclear. Here, we found that NPM regulated the expression of peroxiredoxin 6 (PRDX6), a member of thiol-specific antioxidant protein family, consequently affected the level and distribution of ROS. Our data indicated that NPM knockdown caused the increase of ROS and its relocation from cytoplasm to nucleoplasm. In contrast, overexpression or cytoplasmic localization of NPM upregulated PRDX6, and decreased ROS. In addition, NPM knockdown decreased peroxiredoxin family proteins, including PRDX1, PRDX4, and PRDX6. Co-immunoprecipitation further confirmed the interaction between PRDX6 and NPM. Moreover, NSC348884, an inhibitor specifically targeting NPM oligomerization, decreased PRDX6 and significantly upregulated ROS. These observations demonstrated that the expression and localization of NPM affected the homeostatic balance of oxidative stress in tumor cells via PRDX6 protein. The regulation axis of NPM/PRDX/ROS may provide a novel therapeutic target for cancer treatment. J. Cell. Biochem. 118: 4697-4707, 2017. © 2017 Wiley Periodicals, Inc. Topics: Antioxidants; Cell Line, Tumor; Humans; Indoles; Neoplasm Proteins; Neoplasms; Nuclear Proteins; Nucleophosmin; Oxidative Stress; Peroxiredoxin VI; Reactive Oxygen Species | 2017 |
NSC348884, a nucleophosmin inhibitor disrupts oligomer formation and induces apoptosis in human cancer cells.
Nucleophosmin (NPM), a multifunctional nucleolar phosphoprotein is dysregulated in human malignancies leading to anti-apoptosis and inhibition of differentiation. We evaluated the precise three-dimensional structure of NPM based on the highly conserved structure of Xenopus NO38 and its requirement to form dimers and pentamers via its N-terminal domain (residues, 1-107). We hypothesized that a small molecular inhibitor (SMI) that could disrupt the formation of dimers would inhibit aberrant NPM function(s) in cancer cells. Molecular modeling, pharmacophore design, in silico screening and interactive docking identified NSC348884 as a putative NPM SMI that disrupts a defined hydrophobic pocket required for oligomerization. NSC348884 inhibited cell proliferation at an IC(50) of 1.7-4.0 muM in distinct cancer cell lines and disrupted NPM oligomer formation by native polyacrylamide gel electrophoresis assay. Treatment of several different cancer cell types with NSC348884 upregulated p53 (increased Ser15 phosphorylation) and induced apoptosis in a dose-dependent manner that correlated with apoptotic markers: H2AX phosphorylation, poly(ADP-ribose) polymerase cleavage and Annexin V labeling. Further, NSC348884 synergized doxorubicin cytotoxicity on cancer cell viability. The data together show that NSC348884 is an SMI of NPM oligomer formation, upregulates p53, induces apoptosis and synergizes with chemotherapy. Hence, an SMI to NPM may be a useful approach to anticancer therapy. Topics: Amino Acid Sequence; Apoptosis; Cytotoxins; Dimerization; Doxorubicin; Drug Screening Assays, Antitumor; Drug Synergism; Gene Expression Regulation, Neoplastic; Genes, p53; Humans; Indoles; Models, Biological; Models, Molecular; Molecular Sequence Data; Neoplasms; Nuclear Proteins; Nucleophosmin; Sequence Homology, Nucleic Acid; Tumor Cells, Cultured; Up-Regulation | 2008 |