nsc-141537 has been researched along with Anorexia* in 3 studies
3 other study(ies) available for nsc-141537 and Anorexia
Article | Year |
---|---|
Anorectic responses to T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol correspond to plasma elevations of neurotransmitters 5-hydroxytryptamine and substance P.
Trichothecene mycotoxins commonly contaminate cereal grains and are often linked to human and animal food poisoning. The rapid onset of anorexia is a common hallmark of trichothecenes-induced toxicity. Although the neurotransmitters 5-hydroxytryptamine (5-HT) and substance P (SP) are known to regulate appetite, it remains unknown whether these two neurotransmitters are involved in type A trichothecenes-induced anorectic response. The goal of this study is to relate plasma 5-HT and SP to anorectic responses induced by type A trichothecenes T-2 toxin (T-2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS) and neosolaniol (NEO). These four toxins evoked robust anorectic response and secretion of plasma 5-HT and SP at 1 mg/kg bw. Following oral exposure, plasma 5-HT and SP were elevated and all peaked at 2 h for T-2, HT-2, DAS and NEO. Following intraperitoneal (IP) administration, plasma 5-HT and SP were peaked at 6 h, 6 h, 2 h, 2 h and 2 h, 6 h, 2 h, 2 h for T-2, HT-2, DAS and NEO, respectively. Elevations of plasma 5-HT and SP markedly corresponded to anorexia induction by T-2, HT-2, DAS and NEO. Altogether, the results presented herein indicated that 5-HT and SP play contributory roles in anorectic responses induced by T-2, HT-2, DAS and NEO. Topics: Animals; Anorexia; Appetite Depressants; Edible Grain; Female; Mice; Neurotransmitter Agents; Serotonin; Substance P; T-2 Toxin; Trichothecenes | 2018 |
Role of Peptide YY3-36 and Glucose-Dependent Insulinotropic Polypeptide in Anorexia Induction by Trichothecences T-2 Toxin, HT-2 Toxin, Diacetoxyscirpenol, and Neosolaniol.
Trichothecences, secondary metabolites produced by Fusarium, are serious health risks to humans and animals worldwide. Although type A trichothecence-induced food refusal has been observed, the mechanism underlying the anorexia caused by these compounds is not fully understood. In this study, we hypothesized that anorexia induced by type A trichothecenes, including T-2 toxin (T-2), HT-2 toxin (HT-2), diacetoxyscirpenol (DAS), and neosolaniol (NEO), in mice corresponds to the changes in the gut satiety hormones peptide YY3-36 (PYY3-36) and glucose-dependent insulinotropic polypeptide (GIP) in plasma. A well-characterized mouse food refusal model was used in this assay. Oral exposure to or intraperitoneal (ip) injection of 1 mg/kg bw T-2, HT-2, DAS, or NEO resulted in dramatically decreased food intake, and PYY3-36 and GIP concentrations were elevated accordingly. Specifically, the PYY3-36 and GIP concentrations peaked at 2 h following oral exposure to these 4 toxins individually, although the durations were not identical. After ip administration of T-2 or HT-2, PYY3-36 significantly increased within 6 h. However, no significant difference was found in the DAS and NEO groups. The GIP levels peaked within 2, 2, 0.5, and 0.5 h, respectively, and remained increased up to 6, 6, 2, and 6 h, respectively, following T-2, HT-2, DAS, or NEO ip exposure. The increase in GIP was greater than that of PYY3-36 after exposure to the 4 toxins using 2 administration routes. Together, these findings suggest that PYY3-36 and GIP play a role in T-2-, HT-2-, DAS-, and NEO-induced anorexia. Topics: Animals; Anorexia; Female; Gastric Inhibitory Polypeptide; Mice; Mycotoxins; Peptide Fragments; Peptide YY; T-2 Toxin; Trichothecenes | 2017 |
Gut satiety hormones cholecystokinin and glucagon-like Peptide-1
Topics: Animals; Anorexia; Appetite Regulation; Behavior, Animal; Cholecystokinin; Disease Models, Animal; Feeding Behavior; Female; Glucagon-Like Peptide 1; Mice; Peptide Fragments; Satiety Response; Signal Transduction; T-2 Toxin; Time Factors; Trichothecenes; Up-Regulation | 2017 |