nsc-106399 has been researched along with Neoplasms* in 2 studies
2 other study(ies) available for nsc-106399 and Neoplasms
Article | Year |
---|---|
Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.
Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23. Topics: Benzoquinones; Cucurbitaceae; DNA-Binding Proteins; Heat Shock Transcription Factors; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; MCF-7 Cells; Molecular Chaperones; Molecular Structure; Neoplasms; Transcription Factors; Triterpenes | 2015 |
Cucurbitacin-E inhibits multiple cancer cells proliferation through attenuation of Wnt/β-catenin signaling.
Recent studies suggest that the use of cucurbitacins could inhibit cancer cell progression. In the current study, the authors analyzed the effect of cucurbitacin-E (CuE) in cancer cells using A549, Hep3B, and SW480 cells. The authors found that CuE inhibited cell proliferation and modulated the expression of cell cycle regulators in these cells. Moreover, the authors found that CuE inhibited Wnt/β-catenin signaling activation through upregulation of tumor suppressor Menin. Indeed, ablation of Menin using small interfering RNA (siRNA) oligos attenuated the antiproliferative roles of CuE. Taken together, the results of this study provide a novel mechanism that may contribute to the antineoplastic effects of CuE in cancer cells. Topics: beta Catenin; Cell Line, Tumor; Cell Proliferation; Humans; Neoplasms; Triterpenes; Wnt Proteins; Wnt Signaling Pathway | 2014 |