ns-3623 and Disease-Models--Animal

ns-3623 has been researched along with Disease-Models--Animal* in 4 studies

Other Studies

4 other study(ies) available for ns-3623 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Antiarrhythmic effect of IKr activation in a cellular model of LQT3.
    Heart rhythm, 2009, Volume: 6, Issue:1

    Long QT syndrome type 3 (LQT3) is an inherited cardiac disorder caused by gain-of-function mutations in the cardiac voltage-gated sodium channel, Na(v)1.5. LQT3 is associated with the polymorphic ventricular tachycardia torsades de pointes (TdP), which can lead to syncope and sudden cardiac death. The sea anemone toxin ATX-II has been shown to inhibit the inactivation of Na(v)1.5, thereby closely mimicking the underlying cause of LQT3 in patients.. The hypothesis for this study was that activation of the I(Kr) current could counteract the proarrhythmic effects of ATX-II.. Two different activators of I(Kr), NS3623 and mallotoxin (MTX), were used in patch clamp studies of ventricular cardiac myocytes acutely isolated from guinea pig to test the effects of selective I(Kr) activation alone and in the presence of ATX-II. Action potentials were elicited at 1 Hz by current injection and the cells were kept at 32 degrees C to 35 degrees C.. NS3623 significantly shortened action potential duration at 90% repolarization (APD(90)) compared with controls in a dose-dependent manner. Furthermore, it reduced triangulation, which is potentially antiarrhythmic. Application of ATX-II (10 nM) was proarrhythmic, causing a profound increase of APD(90) as well as early afterdepolarizations and increased beat-to-beat variability. Two independent I(Kr) activators attenuated the proarrhythmic effects of ATX-II. NS3623 did not affect the late sodium current (I(NaL)) in the presence of ATX-II. Thus, the antiarrhythmic effect of NS3623 is likely to be caused by selective I(Kr) activation.. The present data show the antiarrhythmic potential of selective I(Kr) activation in a cellular model of the LQT3 syndrome.

    Topics: Action Potentials; Animals; Chloride Channels; Disease Models, Animal; Female; Guinea Pigs; Heart Ventricles; Ion Channel Gating; Long QT Syndrome; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Phenylurea Compounds; Potassium Channels; Sodium Channels; Tetrazoles

2009
Restoring repolarization in LQT3.
    Heart rhythm, 2009, Volume: 6, Issue:1

    Topics: Action Potentials; Animals; Disease Models, Animal; Guinea Pigs; Heart Ventricles; Ion Channel Gating; Long QT Syndrome; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Phenylurea Compounds; Potassium Channels; Sodium Channels; Tetrazoles

2009
Treatment with NS3623, a novel Cl-conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: a possible new therapeutic approach for sickle cell disease.
    Blood, 2001, Mar-01, Volume: 97, Issue:5

    The dehydration of sickle red blood cells (RBCs) through the Ca-activated K channel depends on the parallel movement of Cl ions. To study whether Cl-conductance block might prevent dehydration of sickle RBCs, a novel Cl-conductance inhibitor (NS3623) was characterized in vitro using RBCs from healthy donors and sickle cell patients and in vivo using normal mice and a transgenic mouse model of sickle cell disease (SAD mice). In vitro, NS3623 reversibly blocked human RBC Cl-conductance (g(Cl)) with an IC(50) value of 210 nmol/L and a maximal block of 95%. In vivo, NS3623 inhibited RBC g(Cl) after oral administration to normal mice (ED(50) = 25 mg/kg). Although g(Cl), at a single dose of 100 mg/kg, was still 70% inhibited 5 hours after dosing, the inhibition disappeared after 24 hours. Repeated administration of 100 mg/kg twice a day for 10 days caused no adverse effects; therefore, this regimen was chosen as the highest dosing for the SAD mice. SAD mice were treated for 3 weeks with 2 daily administrations of 10, 35, and 100 mg/kg NS3623, respectively. The hematocrit increased, and the mean corpuscular hemoglobin concentration decreased in all groups with a concomitant increase in the intracellular cation content. A loss of the densest red cell population was observed in conjunction with a shift from a high proportion of sickled to well-hydrated discoid erythrocytes, with some echinocytes present at the highest dosage. These data indicate feasibility for the potential use of Cl-conductance blockers to treat human sickle cell disease.

    Topics: Anemia, Sickle Cell; Animals; Chloride Channels; Dehydration; Disease Models, Animal; Dose-Response Relationship, Drug; Erythrocytes; Hematocrit; Hemoglobin, Sickle; Hemoglobins; Humans; Mice; Mice, Transgenic; Oxyhemoglobins; Phenylurea Compounds; Tetrazoles; Time Factors; Water

2001