ns-1643 and Long-QT-Syndrome

ns-1643 has been researched along with Long-QT-Syndrome* in 3 studies

Other Studies

3 other study(ies) available for ns-1643 and Long-QT-Syndrome

ArticleYear
NS1643 enhances ionic currents in a G604S-WT hERG co-expression system associated with long QT syndrome 2.
    Clinical and experimental pharmacology & physiology, 2017, Volume: 44, Issue:11

    Loss of function mutations in the human ether-a-go-go-related gene (hERG) cause long QT syndrome type 2 (LQT2). Most LQT2 patients are heterozygous mutation carriers in which the mutant hERG exerts potent dominant-negative effects. 1, 3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643) is known to enhance IKr in WT-hERG. We investigated its actions following lipofectamine-induced expression of both mutant G604S- and WT-hERG in the heterologous HEK293 expression system. Cells transfected with pcDNA3-G604S-hERG did not lead to any expression of detectable currents whether before or following NS1643 challenge. Cells transfected with both pcDNA3-WT-hERG and pcDNA3-G604S-hERG showed reduced hERG currents compared to those transfected with pcDNA3-G604S-hERG consistent with the reduced trafficking and formation of modified heteromeric WT-G604S channels reported on earlier occasions. Nevertheless, NS1643 then continued to produce concentration- and voltage-dependent increases in hERG current amplitude. It did not affect the voltage dependence of activation, recovery from inactivation and deactivation. However, NS1643 (30 μmol/L) slowed steady state inactivation and shifted the steady state half maximal activation voltage (V

    Topics: Action Potentials; Alleles; Cresols; Electrophysiological Phenomena; Ether-A-Go-Go Potassium Channels; Female; Gene Expression; HEK293 Cells; Heterozygote; Humans; Long QT Syndrome; Male; Mutation; Pedigree; Phenotype; Phenylurea Compounds

2017
Pharmacological activation of Kv11.1 in transgenic long QT-1 rabbits.
    Journal of cardiovascular pharmacology, 2011, Volume: 57, Issue:2

    Transgenic rabbits expressing pore mutants of K(V)7.1 display a long QT syndrome 1 (LQT1) phenotype. Recently, NS1643 has been described to increase I(Kr).We hypothesized that NS1643 would shorten the action potential duration (APD(90)) in LQT1 rabbits. Transgenic LQT1 rabbits were compared with littermate control (LMC) rabbits. In vivo electrocardiogram studies in sedated animals were performed at baseline and during 45 minutes of intravenous infusion of NS1643 or vehicle in a crossover design. Ex vivo monophasic action potentials were recorded from Langendorff-perfused hearts at baseline and during 45-minute perfusion with NS1643. Left ventricular refractory periods were assessed before and after NS1643 infusion. Genotype differences in APD accommodation were also addressed. In vivo NS1643 shortened the QTc significantly in LQT1 compared with vehicle. In Langendorff experiments, NS1643 significantly shortened the APD(90) in LQT1 and LMC [32.0 ± 4.3 milliseconds (ms); 21.0 ± 5.0 ms] and left ventricular refractory periods (23.7 ± 8.3; 22.6 ± 9.9 ms). NS1643 significantly decreased dp/dt (LQT1: 49% ± 3%; LMC: 63% ± 4%) and increased the incidence of arrhythmia. The time course of APD adaptation was impaired in LQT1 rabbits and unaffected by I(Kr) augmentation. In conclusion, K(V)11.1 channel activation shortens the cardiac APD in a rabbit model of inherited LQT1, but it comes with the risk of excessive shortening of APD.

    Topics: Action Potentials; Animals; Animals, Genetically Modified; Cresols; Cross-Over Studies; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Female; Long QT Syndrome; Phenylurea Compounds; Rabbits; Random Allocation

2011
Antiarrhythmic properties of a rapid delayed-rectifier current activator in rabbit models of acquired long QT syndrome.
    Cardiovascular research, 2008, Jul-01, Volume: 79, Issue:1

    Impaired repolarization in cardiac myocytes can lead to long QT syndrome (LQTS), with delayed repolarization and increased susceptibility to Torsades de Pointes (TdP) arrhythmias. Current pharmacological treatment of LQTS is often inadequate. This study sought to evaluate the antiarrhythmic effect of a novel compound (NS1643) that activates the rapid delayed-rectifier K+ current, I(Kr), in two rabbit models of acquired LQTS.. We used two clinically relevant in vivo rabbit models of TdP in which we infused NS1643 or vehicle: (i) three-week atrioventricular block with ventricular bradypacing; (ii) dofetilide-induced I(Kr) inhibition in methoxamine-sensitized rabbits. In addition, we studied effects on ionic currents in cardiomyocytes with I(Kr) suppressed by bradycardia remodelling or dofetilide exposure. Bradypaced rabbits developed QT interval prolongation, spontaneous ventricular ectopy, and TdP. Infusion of NS1643 completely suppressed arrhythmic activity and shortened the QT interval; vehicle had no effect. NS1643 also suppressed ventricular tachyarrhythmias caused by infusion of dofetilide to methoxamine-sensitized rabbits, and reversed dofetilide-induced QT prolongation. NS1643 increased I(Kr) in cardiomyocytes isolated from normal and bradycardia-remodelled rabbits by approximately 75% and 50%, respectively (P < 0.001 for each). Similarly, NS1643 restored I(Kr) suppressed by 5 nmol/L dofetilide (tail current 0.28 +/- 0.03 pA/pF pre-dofetilide, 0.20 +/- 0.01 pA/pF in the presence of dofetilide, 0.27 +/- 0.02 pA/pF after adding NS1643 to dofetilide-containing solution, P < 0.01).. Pharmacological activation of I(Kr) reverses acquired LQTS and TdP caused by bradycardic remodelling and I(Kr)-blocking drugs. I(Kr)-activating drug therapy could be a potentially interesting treatment approach for LQTS.

    Topics: Animals; Anti-Arrhythmia Agents; Atrioventricular Block; Bradycardia; Cresols; Delayed Rectifier Potassium Channels; Disease Models, Animal; Electrocardiography; Female; Long QT Syndrome; Myocytes, Cardiac; Patch-Clamp Techniques; Phenethylamines; Phenylurea Compounds; Rabbits; Sulfonamides; Torsades de Pointes

2008