np-118809 and Disease-Models--Animal

np-118809 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for np-118809 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Scaffold-based design and synthesis of potent N-type calcium channel blockers.
    Bioorganic & medicinal chemistry letters, 2009, Nov-15, Volume: 19, Issue:22

    The therapeutic agents flunarizine and lomerizine exhibit inhibitory activities against a variety of ion channels and neurotransmitter receptors. We have optimized their scaffolds to obtain more selective N-type calcium channel blockers. During this optimization, we discovered NP118809 and NP078585, two potent N-type calcium channel blockers which have good selectivity over L-type calcium channels. Upon intraperitoneal administration both compounds exhibit analgesic activity in a rodent model of inflammatory pain. NP118809 further exhibits a number of favorable preclinical characteristics as they relate to overall pharmacokinetics and minimal off-target activity including the hERG potassium channel.

    Topics: Analgesics; Animals; Binding Sites; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, N-Type; Calcium Channels, T-Type; Disease Models, Animal; Drug Design; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Structure-Activity Relationship

2009