norleu3-a(1-7) has been researched along with Cicatrix* in 2 studies
2 other study(ies) available for norleu3-a(1-7) and Cicatrix
Article | Year |
---|---|
NorLeu3A(1-7) Accelerates Clear Corneal Full Thickness Wound Healing.
We evaluated the effect of the renin angiotensin system (RAS) peptide NorLeu3-Angiotensin (1-7) (NLE) formulated in a viscoelastic gel (USB004) on the healing of full-thickness corneal injuries.. Dutch pigmented rabbits received conjunctival administration of 0.3% USB004, 0.03% USB004, or vehicle-control to healthy and full-thickness injured eyes administered once daily for 28 consecutive days. Safety was evaluated using IOP measurement, slit-lamp examination, and confocal microscopy. Evaluations for both efficacy studies included an oblique light examination, modified Seidel test (Seidel test with gentle ocular pressure) as well as during elevated IOP test, confocal microscopy imaging, and histologic analysis.. Application of 0.3% USB004, 0.03% USB004, and vehicle-control was safe in healthy and incised eyes. Further, application of 0.3% and 0.03% USB004 following full-thickness corneal incision resulted in a 2-fold acceleration of resolution of edema and inflammation, reduction in duration of wound leakage on a modified Seidel test (Seidel test with gentle ocular pressure) as well as during elevated IOP test, and healing with near normal architecture without evidence of fibrosis and angiogenesis when compared to vehicle-control animals.. Topical ocular application of 0.3% and 0.03% USB004 promotes full-thickness cornea wound healing without the evidence of fibrosis and angiogenesis. Further studies are warranted to determine the cornea-specific mechanism of action(s) that promotes regeneration leading to clear corneal healing. Topics: Administration, Ophthalmic; Angiotensin II; Animals; Cicatrix; Cornea; Corneal Injuries; Intraocular Pressure; Microscopy, Confocal; Microscopy, Electron, Scanning; Peptide Fragments; Rabbits; Slit Lamp; Wound Healing | 2016 |
Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue, NorLeu3-A(1-7).
Angiotensin peptides have been demonstrated to modulate cellular proliferation, angiogenesis, and dermal repair. In this report, the effects of an analogue of the active angiotensin peptide angiotensin(1-7), namely norLeu3-angiotensin(1-7) (NorLeu3-A(1-7)), on the healing of epithelial wounds are presented. Three models were used to evaluate the normal (rats) and delayed (diabetic mice) healing responses of full-thickness excision wounds and the healing responses of full-thickness incision wounds (rats). NorLeu3-A(1-7) was superior to the naturally occurring angiotensin peptide angiotensin(1-7) and to Regranex (Ortho McNeil, Somerville, N.J.) (a formulation of recombinant platelet-derived growth factor used clinically for the treatment of diabetic ulcers) in accelerating tissue repair. By day 9 (normal rats) and day 11 (diabetic mice), the differences in the rates of closure of full-thickness excision wounds between NorLeu3-A(1-7) and Regranex were statistically significant (n = 5 per group). Full healing was observed for 60 percent of the diabetic mice treated topically with NorLeu3-A(1-7) by day 18 after injury, at which time full healing of wounds on placebo-treated or Regranex-treated diabetic mice was not observed. In the rat incision model, accelerated healing and reduced gross appearance of scarification were observed. Administration of NorLeu3-A(1-7) reduced fibrosis and scarring in the healing wounds. This action was more pronounced with longer administration of the peptide after injury. In fact, if systemic administration of the peptide (NorLeu3-A(1-7)) was continued during the remodeling phase, then the formation of new adnexal structures at the center of full-thickness excision wounds was observed, with an increase in the appearance of small immature hair follicles at the sites of the excision wounds. The action of this peptide was blocked by the AT receptor antagonist d-Ala7-angiotensin(1-7), which suggests that this receptor is involved in the healing responses to exogenous NorLeu3-A(1-7). These data suggest that this novel angiotensin peptide has the potential to be of benefit in accelerating wound repair and reducing scar formation. Topics: Angiotensin I; Angiotensin II; Animals; Cicatrix; Female; Mice; Mice, Inbred NOD; Peptide Fragments; Rats; Rats, Sprague-Dawley; Time Factors; Wound Healing | 2003 |