norisoboldine and Colitis

norisoboldine has been researched along with Colitis* in 2 studies

Other Studies

2 other study(ies) available for norisoboldine and Colitis

ArticleYear
Application of a DSS colitis model in toxicologically assessing norisoboldine.
    Toxicology mechanisms and methods, 2020, Volume: 30, Issue:2

    In standard nonclinical drug safety evaluation studies, limitations exist in predicting the clinical risk of a drug based only on data from healthy animals. To obtain more comprehensive toxicological information on norisoboldine (NOR), we conducted an exploratory study using C57BL/6 mice in addition to healthy mice as models of dextran sodium sulfate (DSS) colitis to evaluate the safety of NOR. The healthy mice and DSS colitis mice were exposed to 30 or 90 mg NOR/kg body weight or water for 15 days. Compared with the model control group, 90 mg/kg of NOR aggravated the symptoms and colonic lesions of the DSS colitis mice and even caused death in two animals. No significant adverse effects were observed in the healthy mice. These different toxic reactions to NOR in the healthy and DSS colitis mice indicate that NOR toxicity varies by status among animals and suggests that the DSS colitis mouse model may be more susceptible, accurate and comprehensive in evaluating the safety of NOR. In conclusion, 90 mg/kg of NOR may be safe for healthy mice but not for DSS colitis mice. The DSS colitis mouse model, with many features similar to those of human colitis patients, may be a novel choice to counteract the deficiencies of using healthy mice to evaluate the safety of anti-inflammatory bowel disease (IBD) drugs, and further research is required.

    Topics: Alkaloids; Animals; Apoptosis; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Dose-Response Relationship, Drug; In Situ Nick-End Labeling; Lymphocytes; Male; Mice, Inbred C57BL; Survival Analysis

2020
Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome.
    Chinese journal of natural medicines, 2018, Volume: 16, Issue:3

    Although the etiology of inflammatory bowel disease is still uncertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1β production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-1β, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and α-naphthoflavone (α-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.

    Topics: Alkaloids; Animals; Colitis; Drugs, Chinese Herbal; Humans; Inflammasomes; Interleukin-1beta; Lindera; Male; Mice; Mice, Inbred BALB C; NF-kappa B; Receptors, Aryl Hydrocarbon; Trinitrobenzenesulfonic Acid

2018