norharman has been researched along with Morphine Abuse in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barrot, M; Faivre, F; Majchrzak, M; Massotte, D; Muller, MA; Sánchez-Catalán, MJ; Yalcin, I | 1 |
Asensio, VJ; Esteban, S; García-Sevilla, JA; Miralles, A; Moranta, D; Sastre-Coll, A | 1 |
2 other study(ies) available for norharman and Morphine Abuse
Article | Year |
---|---|
Response of the Tail of the Ventral Tegmental Area to Aversive Stimuli.
Topics: Animals; Antimanic Agents; Behavior, Animal; Carbolines; Conditioning, Classical; Disease Models, Animal; Lipopolysaccharides; Lithium Chloride; Male; Morphine Dependence; Naloxone; Narcotic Antagonists; Neuralgia; Neurotoxins; Olfactory Perception; Pain; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Substance Withdrawal Syndrome; Ventral Tegmental Area | 2017 |
High-affinity binding of beta-carbolines to imidazoline I2B receptors and MAO-A in rat tissues: norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain.
Topics: Animals; Benzofurans; Binding, Competitive; Brain; Carbolines; Cerebral Cortex; Dihydroxyphenylalanine; Dose-Response Relationship, Drug; Harmine; Hippocampus; Imidazoles; Imidazoline Receptors; Liver; Male; Monoamine Oxidase; Morphine; Morphine Dependence; Naloxone; Norepinephrine; Picolinic Acids; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Drug; Substance Withdrawal Syndrome; Thiazoles; Tritium; Tyrosine 3-Monooxygenase | 2005 |