norbinaltorphimine has been researched along with Pain* in 73 studies
73 other study(ies) available for norbinaltorphimine and Pain
Article | Year |
---|---|
14-3-3γ mediates the long-term inhibition of peripheral kappa opioid receptor antinociceptive signaling by norbinaltorphimine.
Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons. Topics: 14-3-3 Proteins; Analgesics; Animals; Cricetinae; Cricetulus; JNK Mitogen-Activated Protein Kinases; Naltrexone; Pain; Rats; Receptors, Opioid, kappa; RNA, Small Interfering | 2022 |
Pharmacological evaluation underlying the antinociceptive activity of two new hybrids NSAIDs tetrahydropyran derivatives.
The development of analgesic drugs is still a necessity due to the inefficiency of the current treatments for some pathological conditions and also due to the adverse effects produced by these drugs. The aim of this study was to deepen the pharmacological study of two new hybrids NSAIDs tetrahydropyran derivatives, regarding their antinociceptive effects on acute pain in mice. Male swiss mice were evaluated in the acetic acid-induced abdominal writhing, formalin, tail-flick, open-field, glutamate- and capsaicin-induced paw licking tests, and in vitro Cox inhibition assay, besides the acute toxicological evaluation. The compounds had an effect on the acetic acid-induced abdominal writhing, formalin (both phases), and tail-flick tests. In the study of the mechanism of action was observed reversion of the antinociceptive effect of the compounds from the previous administration of naloxone, L-NAME (L-nitro-arginine methyl ester), ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), glibenclamide, and nor-binaltorphimine, by the intrathecal and intraperitoneal routes. The prior administration of MK-801 suggests that the modulation of NMDA receptor contributes to the antinociceptive effect of compounds. In summary, hybrid compounds presented central antinociceptive effect, demonstrating participation of the NO-cGMP-K Topics: Adenosine Triphosphate; Analgesics; Analgesics, Opioid; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cyclic GMP; Cyclooxygenase Inhibitors; Dizocilpine Maleate; Formaldehyde; Glyburide; Humans; Male; Mice; Naloxone; Naltrexone; NG-Nitroarginine Methyl Ester; Pain; Pain Measurement; Potassium Channels; Prostaglandin-Endoperoxide Synthases; Receptors, N-Methyl-D-Aspartate; Signal Transduction | 2020 |
The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: a Role for CD4
In the present study, we characterize the antinociceptive effects produced by the chemokine CCL4 in mice. The intraplantar administration of very low doses of CCL4 (0.1-3 pg) produced bilateral antinociception assessed by the unilateral hot-plate test (UHP) without evoking chemotactic responses at the injection site. Moreover, the subcutaneous administration of CCL4 (3-100 pg/kg) also yielded bilateral antinociception in the UHP and the paw pressure test and reduced the number of spinal neurons that express Fos protein in response to noxious stimulation. The implication of peripheral CCR5 but not CCR1 in CCL4-evoked antinociception was deduced from the inhibition produced by systemic but not intrathecal, administration of the CCR5 antagonist DAPTA, and the inefficacy of the CCR1 antagonist J113863. Besides, the inhibition observed after subcutaneous but not intrathecal administration of naloxone demonstrated the involvement of peripheral opioids and the efficacy of naltrindole but not cyprodime or nor-binaltorphimine supported the participation of δ-opioid receptors. In accordance, plasma levels of met-enkephalin, but not β-endorphin, were augmented in response to CCL4. Likewise, CCL4-evoked antinociception was blocked by the administration of an anti-met-enk antibody. Leukocyte depletion experiments performed with cyclophosphamide, anti-Ly6G, or anti-CD3 antibodies indicated that the antinociceptive effect evoked by CCL4 depends on circulating T lymphocytes. Double immunofluorescence experiments showed a four times more frequent expression of met-enk in CD4 Topics: Analgesics; Animals; CD4-Positive T-Lymphocytes; Chemokine CCL4; Enkephalin, Methionine; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociception; Pain; Pain Measurement | 2019 |
Serotonin induces peripheral antinociception via the opioidergic system.
Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined.. The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE. The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 μg), naltrindole (60 μg) and nor-binaltorfimina (200 μg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 μg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng).. These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes. Topics: Analgesics; Animals; Cinnamates; Dinoprostone; Disease Models, Animal; Male; Mice; Morphine Derivatives; Naltrexone; Narcotic Antagonists; Opioid Peptides; Pain; Receptors, Opioid; Serotonin | 2018 |
Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.
The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders. Topics: Analgesics, Opioid; Animals; Capsaicin; Central Amygdaloid Nucleus; Dynorphins; Hypothalamus; Male; Medulla Oblongata; Morphine; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Stress, Physiological | 2018 |
Mu and kappa opioid receptors of the periaqueductal gray stimulate and inhibit thermogenesis, respectively, during psychological stress in rats.
Topics: Animals; Body Temperature; Male; Naltrexone; Narcotic Antagonists; Oxygen Consumption; Pain; Periaqueductal Gray; Rats; Rats, Wistar; Receptors, Opioid, kappa; Stress, Psychological; Thermogenesis | 2017 |
Opioid system mediated anti-nociceptive effect of agomelatine in mice.
This study was planned to examine the antinociceptive efficacy of agomelatine against acute mechanical, thermal, and chemical nociceptive stimuli, as well as to determine the opioid receptor subtypes mediating these effects.. Tail-clip, hot-plate, and acetic acid-induced writhing tests were performed to evaluate anti-nociceptive effect. Besides, possible effect of agomelatine on the motor coordination of animals was assessed with a Rota-rod test.. Agomelatine (40mg/kg and 60mg/kg) significantly prolonged the reaction time of mice in both the tail-clip and hot-plate tests, suggesting the antinociceptive activity is related to both spinal and supraspinal mechanisms. This drug also reduced the number of writhing behaviors indicating the presence of a peripherally mediated antinociceptive effect. Rota-rod testing displayed no notable effect on the motor activity of the animal supporting the conclusion that the observed antinociceptive effect is specific. The agomelatine-induced antinociceptive activity abrogated following pretreatment with naloxone (a non-selective opioid receptor antagonist, 5.48mg/kg, i.p.), which suggested the participation of opioid mechanisms to the antinociception. The possible contribution of μ, δ and ҡ subtypes of opioid receptors to the anti-nociceptive effect were evaluated using naloxonazine (7mg/kg, s.c.), naltrindole (0.99mg/kg, i.p.), and nor-binaltorphimine (1.03mg/kg, i.p.), respectively. Pretreatments using these antagonists abolished the antinociceptive activity of agomelatine in all of the nociceptive test paradigms used, which pointed out that μ, δ, and ҡ opioid receptors participated to the action of agomelatine on pain.. These results demonstrated the therapeutic potential of agomelatine in the treatment of pain disorders. Topics: Acetamides; Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Motor Activity; Naloxone; Naltrexone; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Rotarod Performance Test | 2016 |
High-dose pentazocine antagonizes the antinociception induced by high-dose morphine.
To investigate the effects of high doses of pentazocine on antinociception induced by a high dose of morphine and the role of the kappa-opioid receptors (KORs) in these effects in mice.. Sixty-six C57BL/6J mice were pretreated with a KOR antagonist, nor-binaltorphimine (nor-BNI) (10mg·kg(-1)), or a normal saline placebo. All the mice received a subcutaneous injection of morphine (10mg·kg(-1)) 120min later and different doses of pentazocine (3, 10, 30, 56, 100mg·kg(-1)) or a normal saline placebo. A tail pressure test, hot plate test and tail flick test were performed before and at 30, 60, 90 and 120min after the injection of morphine.. The tail pressure test, hot plate test and tail flick test showed that pentazocine at doses of 10 to 100mg·kg(-1), but not at 3mg·kg(-1), had significant antagonizing effects on the antinociception induced by high-dose morphine to mechanical and thermal pain, and nor-BNI did not affect antinociception in combination with pentazocine at 10 to 100mg·kg(-1) and morphine at 10mg·kg(-1).. High-doses of pentazocine antagonize the antinociception induced by a high-dose of morphine in a dose-dependent manner, and this antagonistic effect is not associated with the activation of KORs. Topics: Analgesics, Opioid; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred C57BL; Morphine; Naltrexone; Pain; Pentazocine; Receptors, Opioid, kappa | 2015 |
Pain-related depression of the mesolimbic dopamine system in rats: expression, blockade by analgesics, and role of endogenous κ-opioids.
Pain is often associated with depression of behavior and mood, and relief of pain-related depression is a common goal of treatment. This study tested the hypothesis that pain-related behavioral depression is mediated by activation of endogenous κ-opioid systems and subsequent depression of mesolimbic dopamine release. Adult male Sprague-Dawley rats were implanted with electrodes targeting the medial forebrain bundle (for behavior studies of intracranial self-stimulation (ICSS)) or with cannulae for microdialysis measures of nucleus accumbens dopamine (NAc DA). Changes in ICSS and NAc DA were examined after treatment with a visceral noxious stimulus (intraperitoneal injection of dilute lactic acid) or an exogenous κ-agonist (U69593). Additional studies examined the sensitivity of acid and U69593 effects to blockade by two analgesics (the nonsteroidal antiinflammatory drug ketoprofen and the μ-opioid agonist morphine) or by the κ-antagonist norbinaltorphimine (norBNI). The effects of acid were also examined on mRNA expression for prodynorphin (PDYN) and κ-opioid receptors (KORs) in mesocorticolimbic brain regions. Both acid and U69593 depressed ICSS and extracellular levels of NAc DA. Pain-related acid effects were blocked by ketoprofen and morphine but not by norBNI. The U69593 effects were blocked by norBNI but not by ketoprofen, and were only attenuated by morphine. Acid did not significantly alter PDYN or KOR in NAc, but it produced a delayed increase in PDYN in prefrontal cortex. These results support a key role for the mesolimbic DA system, but a more nuanced role for endogenous κ-opioid systems, in mediating acute pain-related behavioral depression in rats. Topics: Analgesics, Opioid; Animals; Benzeneacetamides; Depression; Disease Models, Animal; Dopamine; Gene Expression Regulation; Ketoprofen; Lactic Acid; Male; Medial Forebrain Bundle; Morphine; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Self Stimulation; Time Factors | 2014 |
Sustained pain-related depression of behavior: effects of intraplantar formalin and complete freund's adjuvant on intracranial self-stimulation (ICSS) and endogenous kappa opioid biomarkers in rats.
Intraplantar administration of complete Freund's adjuvant (CFA) and formalin are two noxious stimuli commonly used to produce sustained pain-related behaviors in rodents for research on neurobiology and treatment of pain. One clinically relevant manifestation of pain is depression of behavior and mood. This study compared effects of intraplantar CFA and formalin on depression of positively reinforced operant behavior in an assay of intracranial self-stimulation (ICSS) in rats. Effects of CFA and formalin on other physiological and behavioral measures, and opioid effects on formalin-induced depression of ICSS, were also examined.. There were four main findings. First, consistent with previous studies, both CFA and formalin produced similar paw swelling and mechanical hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. Third, formalin-induced depression of ICSS was reversed by morphine doses that did not significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be interpreted as an example of pain-related and analgesic-reversible depression of behavior. Finally, formalin-induced depression of ICSS was not associated with changes in central biomarkers for activation of endogenous kappa opioid systems, which have been implicated in depressive-like states in rodents, nor was it blocked by the kappa antagonist norbinaltorphimine.. These results suggest differential efficacy of sustained pain stimuli to depress brain reward function in rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage brain kappa opioid systems. Topics: Analgesics, Opioid; Animals; Body Weight; Conditioning, Operant; Disease Models, Animal; Formaldehyde; Freund's Adjuvant; Hyperalgesia; Inhibition, Psychological; Male; Morphine; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Self Stimulation | 2014 |
Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine and κ-opioid receptors in rat spinal cord nociceptive reflexes.
Antinociception induced by the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is linked to opioid receptors. We studied the subtype of receptors to which CPA action is related, as well as a possible enhancement of antinociception when CPA is coadministered with opioid receptor agonists. Spinal cord neuronal nociceptive responses of male Wistar rats with inflammation were recorded using the single motor unit technique. CPA antinociception was challenged with naloxone or norbinaltorphimine. The antinociceptive activity of fentanyl and U-50488H was studied alone and combined with CPA. Reversal of CPA antinociception was observed with norbinaltorphimine (82.9±13% of control) but not with low doses of naloxone (27±8% of control), indicating an involvement of κ-opioid but not µ-opioid receptors. Low doses of CPA did not modify fentanyl antinociception. However, a significant enhancement of the duration of antinociception was seen when U-50488H was coadministered with CPA. We conclude that antinociception mediated by CPA in the spinal cord is associated with activation of κ-opioid but not µ-opioid receptors in inflammation. In addition, coadministration of CPA and κ-opioid receptor agonists is followed by significantly longer antinociception, opening new perspectives in the treatment of chronic inflammatory pain. Topics: Adenosine; Animals; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Fentanyl; Inflammation; Male; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reflex; Spinal Cord | 2014 |
[Analgesic properties of morpholinoethylimidazobenzimidazole derivative RU-1205].
We have studied the analgesic activity of a morpholinoethylimidazobenzimidazole derivative (RU-1205) in comparison to butorphanol. It is established that the test compound exhibits a pronounced analgesic activity, which exceeded that ofbutorphanol six times in the hot-plate test and was comparable to the reference drug effect in the tail-flick and acetic acid-induced writhing tests. It is established that the analgesic action of RU-1205 is based on the kappa-opioidergic mechanism. Topics: Analgesics; Animals; Animals, Outbred Strains; Benzimidazoles; Butorphanol; Male; Mice; Morpholines; Naloxone; Naltrexone; Narcotic Antagonists; Nociception; Pain; Pain Measurement; Rats; Receptors, Opioid, kappa | 2013 |
Salvinorin A has antiinflammatory and antinociceptive effects in experimental models of colitis in mice mediated by KOR and CB1 receptors.
Salvinorin A (SA) has a potent inhibitory action on mouse gastrointestinal (GI) motility and ion transport, mediated primarily by kappa-opioid receptors (KOR). The aim of the present study was to characterize possible antiinflammatory and antinociceptive effects of SA in the GI tract of mice.. Colonic damage scores and myeloperoxidase activity were determined after intraperitoneal (i.p.), intracolonic (i.c.), and oral (p.o.) administration of SA using the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis in mice. Additionally, KOR, cannabinoid (CB)1, and CB2 western blot analysis of colon samples was performed. The antinociceptive effect of SA was examined based on the number of behavioral responses to i.c. instillation of mustard oil (MO).. The i.p. (3 mg/kg, twice daily) and p.o. (10 mg/kg, twice daily) administration of SA significantly attenuated TNBS and DSS colitis in mice. The effect of SA was blocked by KOR antagonist nor-binaltorphimine (10 mg/kg, i.p.). Western blot analysis showed no influence of SA on KOR, CB1, or CB2 levels. SA (3 mg/kg, i.p. and 10 mg/kg, i.c.) significantly decreased the number of pain responses after i.c. instillation of MO in the vehicle- and TNBS-treated mice. The antinociceptive action of SA was blocked by KOR and CB1 antagonists. The analgesic effect of i.c. SA was more potent in TNBS-treated mice compared to controls.. Our results suggest that the drugs based on the structure of SA have the potential to become valuable antiinflammatory or analgesic therapeutics for the treatment of GI diseases. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Blotting, Western; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Diterpenes, Clerodane; Gastrointestinal Motility; Male; Mice; Naltrexone; Pain; Peroxidase; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid, kappa; Salvia; Trinitrobenzenesulfonic Acid | 2012 |
Design and discovery of a selective small molecule κ opioid antagonist (2-methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine, PF-4455242).
By use of parallel chemistry coupled with physicochemical property design, a series of selective κ opioid antagonists have been discovered. The parallel chemistry strategy utilized key monomer building blocks to rapidly expand the desired SAR space. The potency and selectivity of the in vitro κ antagonism were confirmed in the tail-flick analgesia model. This model was used to build an exposure-response relationship between the κ K(i) and the free brain drug levels. This strategy identified 2-methyl-N-((2'-(pyrrolidin-1-ylsulfonyl)biphenyl-4-yl)methyl)propan-1-amine, PF-4455242, which entered phase 1 clinical testing and has demonstrated target engagement in healthy volunteers. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Area Under Curve; Biphenyl Compounds; Brain; Disease Models, Animal; Dogs; Drug Design; Drug Discovery; Haplorhini; Humans; Metabolic Clearance Rate; Mice; Microsomes, Liver; Models, Chemical; Molecular Structure; Morphine; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Structure-Activity Relationship; Sulfonamides | 2011 |
Delayed postoperative latent pain sensitization revealed by the systemic administration of opioid antagonists in mice.
The long-lasting post-surgical changes in nociceptive thresholds in mice, indicative of latent pain sensitization, were studied. The contribution of kappa opioid and N-methyl-d-aspartate (NMDA) receptors was assessed by the administration of nor-binaltorphimine or MK-801; dynorphin levels in the spinal cord were also determined. Animals underwent a plantar incision and/or a subcutaneous infusion of remifentanil (80μg/kg), and mechanical thresholds (von Frey) were evaluated at different times. On day 21, after complete recovery of mechanical thresholds and healing of the wound, one of the following drugs was administered subcutaneously: (-)-naloxone (1mg/kg), (+)-naloxone (1mg/kg), naloxone-methiodide (3mg/kg), or nor-binaltorphimine (5mg/kg). Another group received subcutaneous MK-801 (0.15mg/kg) before nor-binaltorphimine administration. Dynorphin on day 21 was determined in the spinal cord by immunoassay. In mice receiving remifentanil during surgery, the administration of (-)-naloxone or nor-binaltorphimine induced significant hyperalgesia even 5months after manipulation. Nociceptive thresholds remained unaltered after (+)-naloxone or naloxone-methiodide. On day 21 after manipulation, the administration of MK-801 prevented nor-binaltorphimine-induced hyperalgesia. No changes in dynorphin levels were observed before or after opioid antagonist administration. In conclusion, surgery produced latent pain sensitization evidenced by opioid antagonist-precipitated hyperalgesia. The effect was stereospecific, centrally originated, and mediated by kappa opioid receptors. The blockade of nor-binaltorphimine-induced hyperalgesia by MK-801, suggests that NMDA receptors are also involved. Our results show for the first time that surgery induces latent, long-lasting changes in the processing of nociceptive information that can be induced by non-nociceptive stimuli such as the administration of opioid antagonists. Topics: Animals; Dizocilpine Maleate; Dynorphins; Hyperalgesia; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Threshold; Piperidines; Postoperative Complications; Reaction Time; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, kappa; Remifentanil; Spinal Cord | 2011 |
Ketanserin potentiates morphine-induced antinociception mediated by kappa-receptor activation.
How can we treat patients with reduced morphine doses without loosing the pain killing effect or morphine antinociceptive effects (MAE)? To address this question, we hypothesized that serotonin (5-HT2) receptor antagonism could enhance MAE mediated by kappa-opioid receptors. We pretreated mice with ketanserin, a 5-HT2 receptor antagonist, and measured the morphine dose required to observe analgesia. The morphine dose effective in 50% of animals (ED(50)) was reduced from 4.7 to 1.3mg/kg, and the morphine dose effective in 100% of animals (ED(max)) from 13.7 to 2.5mg/kg. Ketanserin has a similar enhancer effect when morphine, which has a dual role via mu and kappa receptors, was substituted by the antinociceptive spiradoline, a selective κ-opioid agonist. At a morphine dose of 3.5mg/kg, 30% of the mice showed antinociceptive behaviour, rising to 100% when ketanserin was co-administered and then reduced to 20% in the presence of nor-binaltorphimine, a kappa-opioid receptor antagonist. Our data strongly suggests a serotonergic inhibition of the kappa-opioid component of MAE and the possibility that this serotonergic inhibition could be reversed through 5-HT2 receptor antagonism. Topics: Adrenergic alpha-1 Receptor Antagonists; Analgesics; Animals; Dose-Response Relationship, Drug; Drug Synergism; Ketanserin; Male; Mice; Mice, Inbred Strains; Morphine; Naltrexone; Pain; Pain Measurement; Pain Threshold; Prazosin; Pyrrolidines; Receptors, Adrenergic, alpha-1; Receptors, Opioid, kappa; Receptors, Serotonin, 5-HT2; Serotonin Antagonists | 2011 |
Combining functional magnetic resonance imaging with mouse genomics: new options in pain research.
This functional magnetic imaging study investigated the functional implications of genetic modification and pharmacological intervention on cerebral processing of heat-induced nociception in mice. Comparing dynorphin-overexpressing dream(-/-) with wild-type mice, smaller activated cortical and limbic brain structure sizes could be observed. Moreover, significantly reduced blood oxygenation level-dependent signal amplitudes were found in pain-related brain structures: sensory input, thalamic regions, sensory cortex, limbic system, basal ganglia, hypothalamus and periaqueductal grey. Administration of the specific kappa-opioid-receptor antagonist nor-binaltorphimine to dream(-/-) mice reversed this reduction to wild-type level in the same brain structures. These results show that blood oxygenation level-dependent functional magnetic imaging in the pain system of (transgenic) mice is feasible. Genetic modifications and pharmacological interventions modify brain responses in a structure-specific manner. Topics: Animals; Biomedical Research; Brain Mapping; Disease Models, Animal; Genomics; Hot Temperature; Image Processing, Computer-Assisted; Kv Channel-Interacting Proteins; Magnetic Resonance Imaging; Male; Mice; Mice, Knockout; Naltrexone; Narcotic Antagonists; Oxygen; Pain; Physical Stimulation; Repressor Proteins | 2010 |
A prolonged protein kinase C-mediated, opioid-related antinociceptive effect of st John's Wort in mice.
The antinociceptive profile of St. John's Wort (SJW) was investigated in mice in a condition of acute thermal and chemical pain, together with the mechanism that might underlie this effect. A dried extract of SJW induced a prolonged antinociception that persisted for 120 minutes after administration. The thermal antinociception was prevented by naloxone and by the protein kinase C (PKC) activator PMA, whereas the chemical antinociception was prevented by PMA, remaining naloxone insensitive. A chloroform (CHL) and a methanol (MET) fraction, obtained to investigate the involvement of the SJW main components, hyperforin and hypericin/flavonoid, respectively, increased pain threshold with a time course comparable to the dried extract. The CHL antinociception was prevented by naloxone, whereas the MET antinociception was antagonized by PMA. Purified hyperforin and hypericin showed an antinociceptive efficacy comparable to CHL and MET, respectively. Conversely, flavonoids were devoid of any effect. The administration of yohimbine and atropine did not modify SJW, CHL and MET antinociception. These results indicate that both CHL and MET fractions mediate the SJW-induced antinociception. In particular, the presence of hypericin was fundamental to induce both thermal and chemical antinociception through the inhibition of the PKC activity, whereas hyperforin selectively produced a thermal opioid antinociception.. This article presents evidence of a persistent thermal and chemical antinociception of SJW that is mainly mediated by PKC-inhibiting mechanisms. These findings identify important targets for a longer-acting activation of endogenous pain systems and should potentially help clinicians who seek safe, tolerable, and prolonged treatments for pain relief. Topics: Acetic Acid; Analgesics; Analgesics, Opioid; Animals; Anthracenes; Chromatography, High Pressure Liquid; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Administration Schedule; Drug Compounding; Hypericum; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Pain Threshold; Perylene; Phorbol Esters; Phytotherapy; Protein Kinase C; Quercetin; Somatostatin; Spectrometry, Mass, Electrospray Ionization; Statistics, Nonparametric; Time Factors | 2010 |
Antinociceptive effects of galanin in the central nucleus of amygdala of rats, an involvement of opioid receptors.
The central nucleus of amygdala (CeA) is a very important brain structure involved in multiple physiological functions, especially in pain modulation. There are high densities of galanin and galanin receptors found in the CeA. The present study was performed to explore the antinociceptive effects of galanin in the CeA of rats, and possible involvements of opioid receptors in the galanin-induced antinociception. Intra-CeA injection of galanin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations in rats. Interestingly, the amtinociceptive effect induced by intra-CeA injection of galanin was blocked by intra-CeA injection of naloxone, a common opioid receptor antagonist, indicating an involvement of opioid receptors in the galanin-induced antinociception in the CeA of rats. Moreover, intra-CeA injection of either selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) or delta-opioid receptor antagonist naltrindole, but not kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI), significantly attenuated the galanin-induced increases in HWLs in the CeA of rats. Taken together, the results demonstrate that galanin induces antinociceptive effects in the CeA of rats, and both mu- and delta-opioid receptors are involved in the galanin-induced antinociception. Topics: Amygdala; Animals; Galanin; Hindlimb; Hot Temperature; Male; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Time Factors | 2010 |
Effects of kappa opioids in an assay of pain-depressed intracranial self-stimulation in rats.
Selective, centrally acting kappa opioid agonists produce antinociception in a wide range of preclinical assays, but these compounds perform poorly as analgesics in humans. This discrepancy may be related to the behavioral depressant effects of kappa agonists. Kappa antagonists do not typically produce antinociception, but they produce antidepressant-like effects in some preclinical assays.. The objective of this study was to test the hypothesis that the kappa agonist U69,593 and the kappa antagonist norbinaltorphimine would produce pronociceptive and antinociceptive effects, respectively, in an assay of pain-depressed behavior.. Effects of U69,593 (0.056-0.56 mg/kg), norbinaltorphimine (10-32 mg/kg), and morphine (3.2 mg/kg) were evaluated on the stimulation of a stretching response and the depression of intracranial self-stimulation (ICSS) of the medial forebrain bundle produced in rats by a common noxious stimulus (intraperitoneal administration of dilute lactic acid).. U69,593 produced a dose-dependent blockade of acid-stimulated stretching but only exacerbated acid-induced depression of ICSS. Thus, U69,593 produced antinociception in the assay of pain-stimulated behavior but pronociceptive effects in the assay of pain-depressed behavior. Norbinaltorphimine did not alter acid-stimulated stretching or acid-induced depression of ICSS. The mu opioid agonist morphine blocked both acid-stimulated stretching and acid-induced depression of ICSS.. These results support the hypothesis that prodepressant effects of kappa agonists may limit their clinical utility as analgesics. These results do not support the use of kappa antagonists to treat depressant effects of pain. These findings illustrate the potential value of using complementary assays of pain-stimulated and pain-depressed behaviors for preclinical evaluation of candidate analgesics. Topics: Analgesics; Analgesics, Opioid; Animals; Benzeneacetamides; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Lactic Acid; Male; Medial Forebrain Bundle; Morphine; Naltrexone; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reinforcement, Psychology; Self Stimulation | 2010 |
Involvement of the kappa-opioid receptor in nitrous oxide-induced analgesia in mice.
Nitrous oxide (N(2)O)-induced analgesia is thought to be mediated by endogenous opioids. We previously showed that the mu-opioid receptor is not required for the analgesic action of N(2)O in mice using a gene knockout approach. In this study, we examined the effect of kappa- (KOP)- or delta-opioid receptor (DOP)-selective antagonists on N(2)O-induced analgesia. The analgesic effect of N(2)O was evaluated using a writhing test. Male C57BL/6 mice aged 7-8 weeks were assigned to control, N(2)O, KOP agonist, and DOP agonist groups. According to the group assignment, mice were pretreated with a KOP antagonist, nor-binaltorphimine (nor-BNI), a DOP antagonist, naltrindole hydrochloride (NTI), a KOP agonist U50488, and a DOP agonist SNC80. Mice in the control, KOP agonist, and DOP agonist groups were exposed to 25% oxygen/75% nitrogen for 30 min, and mice in the N(2)O group were exposed to 25% oxygen/75% N(2)O for 30 min. Nor-BNI [10 mg kg(-1), subcutaneously (s.c.)] significantly suppressed the analgesic effect of N(2)O and U50488. In contrast, NTI (10 mg kg(-1) s.c.) did not significantly affect the analgesic action of N(2)O, but almost completely inhibited the analgesic effect of SNC80. These results suggest that KOP plays an important role in the analgesic effect of N(2)O in mice. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics, Non-Narcotic; Animals; Benzamides; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Nitrous Oxide; Pain; Piperazines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Treatment Outcome | 2010 |
Consequences of opioid receptor mutation on actions of univalent and bivalent kappa and delta ligands.
During the past decade, substantial evidence has documented that opioid receptor heterodimers form in cell lines expressing one or more opioid receptors. More recent studies have begun to investigate whether heterodimer formation also occurs in vivo.. We have used opioid receptor knockout mice to determine whether the in vivo intrathecal (i.t.) pharmacological potency of delta, kappa, and bivalent kappa/delta ligands is altered in the absence of the KOR-1 and/or DOR-1 genes.. We observe that both NorBNI (a kappa antagonist) and KDN-21 (a kappa/delta bivalent antagonist) specifically inhibit DPDPE but not deltorphin II i.t potency in wild-type mice but that following mutation of KOR-1, the ability of either compound to reduce DPDPE potency is lost. In contrast, knockout of KOR-1 unexpectedly slightly reduces the potency of deltorphin II (delta2) but not DPDPE (delta1). Finally, two compounds with kappa agonist activity, 6'-GNTI (a putative kappa/delta heterodimer selective agonist) and KDAN-18 (kappa agonist/delta antagonist bivalent ligand) show reduced potency in DOR-1 KO mice.. These results show, genetically, that bivalent ligands with kappa agonist activity require delta receptors for maximal potency in vivo, which is consistent with the presence of opioid heterodimer/oligomer complexes in vivo, and also highlight the complexity of delta drug action even when complementary pharmacologic and genetic approaches are used. Topics: Amides; Animals; Dose-Response Relationship, Drug; Enkephalin, D-Penicillamine (2,5)-; Guanidines; Ligands; Male; Mice; Mice, Knockout; Naltrexone; Oligopeptides; Pain; Protein Multimerization; Receptors, Opioid, delta; Receptors, Opioid, kappa | 2010 |
Effectiveness of analogs of the kappa opioid receptor antagonist (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDTic) to reduce U50,488-induced diure
The kappa opioid receptor (KOR) antagonist, JDTic, was reported to prevent stress-induced reinstatement of cocaine-maintained responding and to have antidepressant-like effects.. Our objectives were to determine whether analogs of JDTic retained KOR antagonist activity and whether an orally effective analog prevented footshock-induced cocaine reinstatement.. RTI-194 (i.g. 1-30 mg/kg, s.c. 0.3-10 mg/kg, and i.p. 30 mg/kg), RTI-212 (s.c. 0.3-10 mg/kg and i.p. 30 mg/kg), and RTI-230 (i.g. 3-30 mg/kg and i.p. 1-30 mg/kg) were evaluated for their ability to block diuresis induced by 10-mg/kg U50,488 in rats. RTI-194 was additionally evaluated i.g. (3-100 mg/kg) for its ability to prevent footshock-induced reinstatement of responding previously reinforced with 0.5-mg/kg/inf cocaine.. RTI-194 significantly (p < 0.05) attenuated U50,488-induced diuresis when given i.g., s.c., and i.p. RTI-194s effectiveness increased 1 week following administration. RTI-212 was ineffective. RTI-230 was ineffective when given i.g., but blocked diuresis at 24 h and 8 days (1, 10, and 30 mg/kg), 15 days (10 and 30 mg/kg), 22 and 29 days (30 mg/kg) following i.p. administration. Footshock reinstated responding in vehicle-but not RTI-194 (30 and 100 mg/kg)-treated rats.. RTI-194 and RTI-230 are effective KOR antagonists, and RTI-194 is now included with JDTic as the only reported compounds capable of antagonizing the KOR following oral administration. The failure of stress to reinstate cocaine seeking in rats treated with RTI-194 is consistent with results reported with JDTic, although it had less efficacy in lowering response levels than JDTic, suggesting a diminished overall effectiveness relative to it. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cocaine-Related Disorders; Diuresis; Dose-Response Relationship, Drug; Male; Naltrexone; Pain; Piperidines; Rats; Rats, Long-Evans; Receptors, Opioid, kappa; Self Administration; Tetrahydroisoquinolines | 2010 |
The effects of acute restraint stress on nociceptive responses evoked by the injection of formalin into the temporomandibular joint of female rats.
The temporomandibular joint (TMJ) formalin test was used to evaluate the effects of acute restraint stress on the nociceptive behavioral responses of female rats during proestrus and estrus phases of the estrous cycle. Rats were subjected to one session of restraint stress (15, 30 min or 1 h). They were then either immediately killed to allow the collection of blood for hormonal radioimmunoassay determinations or subjected to TMJ formalin test to evaluate nociception. All stress protocols significantly raised the plasma concentrations of corticosterone. The performance of rats subjected to 15 and 30 min of restraint stress was similar to that of control rats, whereas rats that were stressed for 1 h showed a decrease in nociceptive responses, during both proestrus and estrus phases. The stress-induced analgesia (SIA) was greater in the proestrus phase. To evaluate the role of kappa-opioid receptors, the selective receptor kappa-opioid antagonist nor-binaltorphimine (nor-BNI; 200 microg or saline) was injected into the TMJ 24 h prior to the 1 h stress period and the TMJ formalin test. The local administration of nor-BNI partially reversed the SIA during the proestrus phase. These findings suggest that (1) acute stress for 1 h can produce analgesia both during proestrus and estrus phases; this effect is greater during the proestrus phase and (2) kappa-opioid receptor activation is involved in the SIA observed in the proestrus phase. Topics: Acute Disease; Animals; Behavior, Animal; Estrus; Female; Formaldehyde; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Measurement; Proestrus; Rats; Rats, Wistar; Receptors, Opioid; Restraint, Physical; Stress, Physiological; Temporomandibular Joint; Temporomandibular Joint Disorders | 2010 |
Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia.
This investigation determined whether the activation of the kappa opioid receptor (KOR) in the spinal cord produces estrogen-dependent, sex-specific modulation of acute and inflammation-induced persistent nociception. We demonstrate for the first time that KOR antinociception and gene expression are enhanced by exogenous or endogenous estrogen in the female. The lack of KOR antinociception and KOR gene expression are not altered by the hormonal status (testosterone or estrogen) in males. Cannulae were implanted intrathecally in male, gonadectomized male (GDX), intact and ovariectomized female (OVX) Sprague-Dawley rats. Estradiol was injected subcutaneously, 48h before testing (GDX+E and OVX+E). Intrathecal injection of U50,488H, a selective KOR agonist, dose dependently increased heat-evoked tail flick latencies (TFLs) in proestrous and OVX+E groups, but not in male, GDX, GDX+E, OVX, and diestrous groups. Further, estrogen dose-dependently enhanced the effect of U50,488H in OVX rats. KOR selective antagonist, nor-binaltorphimine (Nor-BNI), blocked the antinociceptive effect of U50,488H. U50,488H reversed the carrageenan-induced thermal hyperalgesia in OVX+E rats, but not in male or OVX rats. However, U50,488H treatment did not alter mechanical thresholds in any group, with or without inflammation. KOR gene expression was enhanced in proestrous and OVX+E groups as compared to any other group. We conclude that selective activation of KOR in the spinal cord produces sex-specific, stimulus- and estrogen-dependent attenuation of acute and inflammatory pain in the rat via estrogen-induced upregulation of the KOR gene expression in the spinal cord. These findings may further implicate estrogen dependence of KOR effects in learning, epilepsy, stress response, addiction etc. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Area Under Curve; Dose-Response Relationship, Drug; Estradiol; Estrous Cycle; Female; Inflammation; Injections, Spinal; Lumbosacral Region; Male; Naltrexone; Orchiectomy; Ovariectomy; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reverse Transcriptase Polymerase Chain Reaction; Sex Characteristics; Spinal Cord; Testosterone | 2010 |
The antinociceptive properties of reboxetine in acute pain.
The antinociceptive effects of the selective noradrenaline reuptake inhibitor antidepressant reboxetine and its interaction with various opioid and noradrenaline receptor subtypes were evaluated. Reboxetine (i.p.) induced a weak dose-dependent antinociceptive effect in acute pain, using the hotplate model. The reboxetine-induced antinociception was significantly inhibited by the opioid receptor antagonists naloxone, nor-BNI, naltrindole and b-FNA, implying a non-selective role for the opioid receptors in the reboxetine's antinociceptive effect. The adrenergic antagonists yohimbine and phentolamine attenuated to some extent the reboxetine-induced antinociception, implying a minor adrenergic mechanism of antinociception. The addition of opioid or alpha2 agonists, did not potentiate the antinociception effect of reboxetine. Thus, it seems that reboxetine possesses a weak antinociceptive effect, mediated by non-selective opioid receptors and influenced somewhat by noradrenaline alpha2 receptors. These results suggest that reboxetine as monotherapy does not have sufficient efficacy in the management of acute pain. However, further research is needed in order to establish its possible use alone or in combination with other antidepressants or analgesics in the amelioration of chronic pain disorders. Topics: Adrenergic Antagonists; Analgesics; Animals; Antidepressive Agents; Clonidine; Disease Models, Animal; Drug Interactions; Male; Mice; Mice, Inbred ICR; Morphine; Morpholines; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Reboxetine; Receptors, Opioid, mu | 2009 |
Activation of kappa opioid receptors decreases synaptic transmission and inhibits long-term potentiation in the basolateral amygdala of the mouse.
The amygdala plays an important role in the processing of chronic pain and pain memory formation. Particularly, it is involved in the emotional and affective components of the pain circuitry. The role of kappa opioid receptors in these pain conditions is only partly known. The present study investigates the effect of kappa receptor activation on synaptic transmission and synaptic plasticity in the amygdala.. Electrophysiological in vitro experiments were carried out in brain slices of male C57BL/6JOlaHsd mice. The effect of the kappa opioid receptor agonist U50,488H (5 microM) and the selective kappa opioid receptor antagonist nor-BNI (3 microM) on field potential (FP) amplitude and the induction of long-term potentiation (LTP) in the basolateral amygdala (BLA) was examined.. High frequency stimulation (HFS) of afferents in the lateral amygdala with two trains of 100 pulses at 50 Hz increased the FP amplitudes to 119+/-2% (mean+/-SEM; n=6) in the BLA. U50,488H decreased synaptic transmission (baseline: 100+/-0.5%; U50,488H: 86.3+/-2.4%; n=6) and blocked the induction of LTP (U50,488H: 100+/-4.1%; HFS: 102.6+/-7%; n=6). The effect on synaptic transmission and on LTP was completely reversed or prevented by application of nor-BNI, which itself had no effect on synaptic transmission or the induction of LTP.. Kappa opioid receptor activation decreases synaptic transmission and inhibits the induction of LTP in the BLA of the mouse. These findings may be associated with the effects of kappa opioid agonists in chronic pain and pain memory formation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amygdala; Analgesics, Non-Narcotic; Animals; Chronic Disease; Electric Stimulation; Electrophysiology; Emotions; Extinction, Psychological; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; Naltrexone; Pain; Receptors, Opioid, kappa; Synaptic Transmission | 2009 |
Intramuscular administration of morphine reduces mustard-oil-induced craniofacial-muscle pain behavior in lightly anesthetized rats.
The present study investigated the role of peripheral opioid receptors in mustard oil-induced nociceptive behavior and inflammation in the masseter muscles of lightly anesthetized rats. Experiments were carried out on male Sprague-Dawley rats weighing between 300 and 400 g. After initial anesthesia with sodium pentobarbital (40 mg/kg, i.p.), one femoral vein was cannulated and connected to an infusion pump for the intravenous infusion of sodium pentobarbital. The rate of infusion was adjusted to provide a constant level of anesthesia. Mustard oil (MO, 30 microl) was injected into the mid-region of the left masseter muscle via a 30-gauge needle. Intramuscularly-administered morphine significantly reduced shaking behavior but not MO-induced inflammation. Intramuscular pretreatment with naloxone, an opioid receptor antagonist, reversed antinociception produced by intramuscularly-administered morphine, while intracisternal administration of naloxone did not affect the antinociception of peripheral morphine. Pretreatment with d-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a mu opioid receptor antagonist, but not naltrindole, a delta opioid receptor antagonist, nor norbinaltorphimine (nor-BNI), a kappa opioid receptor antagonist, reversed intramuscularly-administered morphine-induced antinociception. These results indicate that intramuscularly-administered morphine produces antinociception in craniofacial muscle nociception and that this intramuscularly-administered morphine-induced antinociception is mediated by a peripheral mu opioid receptor. Our observations further support the clinical approach of administering opioids in the periphery for the treatment of craniofacial muscle nociception. Topics: Analgesics; Anesthesia, General; Animals; Inflammation; Injections; Injections, Intramuscular; Male; Masseter Muscle; Morphine; Mustard Plant; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Plant Oils; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Single-Blind Method; Somatostatin | 2008 |
Opioid receptors are involved in the sedative and antinociceptive effects of hesperidin as well as in its potentiation with benzodiazepines.
Previous reports from our laboratory described the sedative activity of hesperidin (hesperetin-7-rhamnoglucoside). This property is greatly increased when the glycoside is injected jointly with diazepam and this interaction has been shown to be synergistic. In the present work the generality of the synergistic phenomenon is proved, since potentiation also occurs with several other benzodiazepines, namely alprazolam, bromazepam, midazolam and flunitrazepam. In order to advance in the study of the mechanism of action of hesperidin, the possible participation of several brain receptors, which are implicated in the control of numerous behavioral and physiological functions, was explored by investigating the effects of a variety of their antagonists on hesperidin actions. The results showed that the 5-HT2 receptor and the alpha1-adrenoceptor seem unlikely to be involved in the behavioral effects of hesperidin. Naltrexone, a nonselective antagonist of opioid receptors, totally blocked hesperidin effects on locomotion, and partially antagonized hesperidin-induced decreased exploration in the hole board test. Nor-binaltorphimine, a selective kappa opioid receptor antagonist, was able to partially block hesperidin effects on locomotor activity. Furthermore, hesperidin-induced antinociception was partially blocked by naltrexone, and potentiated by co-administration with alprazolam. Hence, the participation of the opioid system in the sedative, antinociceptive and potentianting effects of hesperidin with benzodiazepines in mice is highly probable. Our results suggest a possible beneficial use of the association of hesperidin with benzodiazepines, not only to improve human sedative therapy, but also in the management of pain. Topics: Acetic Acid; Alprazolam; Analgesics; Animals; Behavior, Animal; Benzodiazepines; Dose-Response Relationship, Drug; Drug Synergism; Flunitrazepam; Hesperidin; Hypnotics and Sedatives; Injections, Intraperitoneal; Male; Mice; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Receptors, Opioid | 2008 |
The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies.
Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for mu-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a highly effective peptidic mu-opioid receptor agonist.. Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [(35)S]GTP gamma S binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord.. After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration-response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [(35)S]GTP gamma S binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%-60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by mu-opioid receptor selective dose of naltrexone (P < 0.05), but not by delta- and kappa-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05).. Endomorphins are partial agonists for G protein activation at spinal and thalamic mu-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins' antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus. Topics: Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Partial Agonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Sulfur Radioisotopes; Thalamus; Time Factors | 2008 |
Naloxone acts as a potent analgesic in transgenic mouse models of sickle cell anemia.
Sickle cell anemia is a common genetic disorder in African Americans. Opioid analgesics are traditionally the treatment for the severe pain associated with this disease. Here we reveal that the opioid antagonist naloxone possesses potent analgesic activity in two transgenic mouse models of sickle cell anemia (NY1DD and hBERK1) and not in their respective controls (ICR-CD1 and C57BL/6J) when administered by three parenteral routes [intracerebroventricular (i.c.v.), intrathecal, and subcutaneous]. In the NY1DD mice, naloxone (i.c.v.) possessed approximately 300-fold greater potency than morphine (i.c.v.). Other opioid antagonists (naltrexone, norbinaltorphimine, and naltrindole) were substantially less effective in producing analgesia. Naloxone and morphine were synergistic in NY1DD mice, suggesting different receptor systems. Microarray analysis suggested naloxone-induced down-regulation of the CC chemokine receptor (CCR)5 in NY1DD mice but not in control mice. Pretreatment of control mice with CC chemokine ligand 5 [CCL5 (RANTES)] enabled naloxone to produce analgesia similar to that observed in NY1DD mice. Mu opioid receptor knockout mice treated similarly also displayed analgesia. That the effect of CCL5 was specifically related to CCR5 and/or CCR1 activation was demonstrated by antagonism of analgesia with the chemokine antagonist methionylated RANTES. Similar antagonism of naloxone-induced analgesia also was observed when NY1DD mice were pretreated with methionylated RANTES. These results indicate that CCR5/CCR1 receptors are directly or indirectly involved in analgesia produced by naloxone. The present study suggests that naloxone may be clinically useful in the treatment of pain associated with sickle cell disease and other disorders involving inflammation. Topics: Analgesics; Analgesics, Opioid; Anemia, Sickle Cell; Animals; Chemokine CCL5; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Drug Synergism; Injections, Intraventricular; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Transgenic; Morphine; Naloxone; Pain; Pain Measurement; Receptors, CCR5 | 2007 |
Involvement of kappa opioid receptors in formalin-induced inhibition of analgesic tolerance to morphine in mice.
This study examined the role of kappa opioid receptors (KOR) in the mechanism underlying tolerance to the analgesic effects of morphine induced by chronic pain. The analgesic effect of morphine (10 mg kg(-1)), estimated by the tail-flick test in mice, gradually decreased during repeated daily morphine treatment. A significant decrease in the analgesic effect of morphine was seen on the fifth day of repeated morphine treatment compared with the first day. Chronic pain was induced by subcutaneous administration of 2% formalin into the dorsal part of the left hind paw, which significantly inhibited development of tolerance to morphine analgesia. The effect of formalin-induced pain on inhibition of morphine tolerance was reversed by the KOR antagonist nor-binaltorphimine. Furthermore, an antisense oligodeoxynucleotide, but not a missense oligodeoxynucleotide, against KOR completely suppressed the inhibitory effect of formalin-induced pain on morphine tolerance. Naltrindole, an antagonist of delta opioid receptor, did not affect chronic-pain-induced tolerance to morphine. Our findings show that the inhibitory effect of chronic pain on analgesic tolerance to morphine is mediated by KOR rather than delta opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Chronic Disease; Drug Tolerance; Formaldehyde; Male; Mice; Morphine; Naltrexone; Oligonucleotides, Antisense; Pain; Pain Measurement; Pain Threshold; Receptors, Opioid, delta; Receptors, Opioid, kappa; Tail | 2007 |
Involvements of mu- and kappa-opioid receptors in morphine-induced antinociception in the nucleus accumbens of rats.
It is well known that there are three types of opioid receptors, mu- (MOR), delta- (DOR), and kappa-opioid receptor (KOR) in the central nervous system. The present study investigated the involvement of opioid receptors in morphine-induced antinociception in the nucleus accumbens (NAc) of rats. The hindpaw withdrawal latencies to thermal and mechanical stimulation increased markedly after intra-NAc administration of morphine. The antinociceptive effects induced by morphine were dose-dependently inhibited by intra-NAc administration of the non-selective opioid receptor antagonist naloxone. Furthermore, the morphine-induced antinociception was significantly attenuated by subsequent intra-NAc injection of the MOR antagonist beta-funaltrexamine or the KOR antagonist nor-binaltorphimine, but not the DOR antagonist naltrindole. The results indicate that MOR and KOR, but not DOR are involved in the morphine-induced antinociception in the NAc of rats. Topics: Analgesics, Opioid; Animals; Male; Morphine; Naloxone; Naltrexone; Nucleus Accumbens; Pain; Physical Stimulation; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2006 |
Characterization of the antinociceptive effects of oxycodone in diabetic mice.
We investigated the antinociceptive efficacy of systemic and centrally injected oxycodone on thermal hyperalgesia in streptozotocin-induced diabetic mice. The antinociceptive response was assessed by recording the latency in the tail-flick test using the radiant heat from a 50-W projection bulb on the tail. The tail-flick latency in diabetic mice was significantly shorter than that in non-diabetic mice. Oral (p.o.) and i.t., but not i.c.v., administration of oxycodone prolonged the tail-flick latency in diabetic mice to a level that was considerably longer than the baseline latency in non-diabetic mice. However, morphine did not significantly inhibit the tail-flick response in diabetic mice. The antinociceptive effect of either p.o. or i.t. oxycodone in non-diabetic mice, but not in diabetic mice, was antagonized by pretreatment with a selective mu-opioid receptor antagonist, beta-funaltrexamine. In non-diabetic mice, pretreatment with a selective kappa-opioid receptor antagonist, nor-binaltorphimine, had no effect on the peak antinociceptive effect of either p.o. or i.t. oxycodone at 30 min after administration, however, it slightly but significantly reduced oxycodone-induced antinociception at 60 and 90 min after administration. On the other hand, pretreatment with nor-binaltorphimine practically abolished the antinociceptive effects of both p.o.- and i.t.-administered oxycodone in diabetic mice. Naltrindole, a selective delta-opioid receptor antagonist, had no effects on the antinociceptive effect of oxycodone in either non-diabetic or diabetic mice. These results suggest that the antinociceptive effects of oxycodone may be mediated by spinal kappa-opioid receptors in diabetic mice, whereas it may interact primarily with supraspinal and spinal mu-opioid receptors in non-diabetic mice. Topics: Analgesics, Opioid; Animals; Area Under Curve; Diabetes Mellitus, Experimental; Injections, Intraventricular; Injections, Spinal; Injections, Subcutaneous; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Oxycodone; Pain; Pain Measurement; Streptozocin | 2006 |
Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state.
Recent clinical studies have demonstrated that when morphine is used to control pain in cancer patients, psychological dependence is not a major concern. The present study was undertaken to ascertain the modulation of psychological dependence on morphine under a chronic pain-like state in rats. The prototypical mu-opioid receptor agonist morphine (8 mg/kg, i.p.) induced a dose-dependent place preference. In the present study, we found that an inflammatory pain-like state following formalin injection significantly suppressed the morphine-induced rewarding effect. This effect was almost reversed by s.c. pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI, 5 mg/kg). Furthermore, the morphine-induced increase in dopamine (DA) turnover in the limbic forebrain was significantly inhibited by treatment with formalin. This inhibition was also suppressed by pretreatment with nor-BNI. In addition, in vivo microdialysis studies clearly showed that the morphine-induced increase in the extracellular levels of DA and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, in the nucleus accumbens (N.Acc.) was significantly decreased in rats that had been pretreated with formalin. This effect was in turn reversed by the microinjection of a specific dynorphin A antibody into the N.Acc. These findings suggest that the inflammatory pain-like state induced by formalin injection may have caused a sustained activation of the kappa-opioidergic system within the N.Acc., resulting in suppression of the morphine-induced rewarding effect in rats. The present study provides further evidence of the clinical usefulness of morphine in patients suffering from severe pain. Topics: Animals; Brain Chemistry; Conditioning, Operant; Dopamine; Dynorphins; Edema; Foot; Formaldehyde; Inflammation; Limbic System; Male; Microdialysis; Microinjections; Morphine; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reward | 2005 |
Peripheral effect of a kappa opioid receptor antagonist on nociception evoked by formalin injected in TMJ of pregnant rats.
The effect of sex hormones on orofacial pain modulation is poorly understood. Therefore, this study aimed to investigate the effect of hormonal changes as a result of pregnancy, as well as that of the kappa (kappa) opioid receptor antagonist on female rats' sensitivity to the temporomandibular joint (TMJ) formalin test. Initially, female rats at estrus and pregnant females on day 19 of pregnancy received a 50 microl formalin (1.5%) injection in the right TMJ. The pregnant females showed a reduction in nociceptive responses to the TMJ formalin test when compared with those at estrus. Then, the selective kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI), was co-administered with the formalin. Next, additional groups received the kappa (200 microg) receptor antagonist or 0.9% NaCl 24 hours prior to the periarticular injection of formalin. Co-administration of nor-BNI with formalin into the TMJ region had no significant effect. The pre-injection of selective kappa-opioid receptor antagonist, nor-BNI, significantly enhanced the nociceptive behavioral responses in pregnant females. When applied in the contralateral TMJ, nor-BNI did not affect the magnitude of the nociceptive response induced by formalin. It can be concluded that: 1) The increase of the sex hormone levels, as result of pregnancy, induces a reduction of nociceptive behavioral responses to the TMJ formalin test; 2) the peripheral kappa opioid receptor activation, by endogenous opioid agonists release, is involved in the antinociception to TMJ formalin test, induced by pregnancy. Topics: Animals; Female; Formaldehyde; Naltrexone; Pain; Pregnancy; Pregnancy, Animal; Rats; Rats, Wistar; Receptors, Opioid, kappa; Temporomandibular Joint | 2005 |
Antinociceptive effect of oxycodone in diabetic mice.
The effect of oxycodone on thermal hyperalgesia in streptozotocin-induced diabetic mice was examined. The antinociceptive response was assessed by recording the latency in the tail-flick test using the radiant heat from a 50-W projection bulb on the tail. The tail-flick latency in diabetic mice was significantly shorter than that in non-diabetic mice. When diabetic mice were treated with oxycodone (5 mg/kg, s.c.), the tail-flick latency in diabetic mice was prolonged to the level considerably longer than the baseline latencies of non-diabetic mice. However, s.c. administration of morphine (5 mg/kg) did not produce a significant inhibition of the tail-flick response in diabetic mice. Oxycodone, at doses of 1.25-5.0 mg/kg administered s.c., produced a dose-dependent increase in the tail-flick latencies in both diabetic and non-diabetic mice. The antinociceptive effect of oxycodone was antagonized by pretreatment with a selective delta-opioid receptor antagonist, beta-funaltrexamine (20 mg/kg, s.c.), in both non-diabetic and diabetic mice. In non-diabetic mice, pretreatment with a selective kappa-opioid receptor antagonist, nor-binaltorphimine (20 mg/kg, s.c.) had no effect on the peak antinociceptive effect of oxycodone observed 30 min after administration, however, it slightly but significantly reduced oxycodone-induced antinociception observed 60 and 90 min after administration. On the other hand, pretreatment with nor-binaltorphimine practically abolished the peak (30 min) and persistent (60 and 90 min) antinociceptive effects of oxycodone in diabetic mice. Naltrindole (35 mg/kg, s.c.), a selective delta-opioid receptor antagonist, had no effects on the antinociceptive effect of oxycodone in both non-diabetic and diabetic mice. These results suggest that the antinociceptive effects of oxycodone may be mediated by mu- and kappa-opioid receptors in diabetic mice, whereas it may interact primarily with mu-opioid receptors in non-diabetic mice. Topics: Analgesics, Opioid; Animals; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Narcotic Antagonists; Oxycodone; Pain; Pain Measurement; Time Factors | 2005 |
Nonopioidergic mechanism mediating morphine-induced antianalgesia in the mouse spinal cord.
Intrathecal (i.t.) pretreatment with a low dose (0.3 nmol) of morphine causes an attenuation of i.t. morphine-produced analgesia; the phenomenon has been defined as morphine-induced antianalgesia. The opioid-produced analgesia was measured with the tail-flick (TF) test in male CD-1 mice. Intrathecal pretreatment with low dose (0.3 nmol) of morphine time dependently attenuated i.t. morphine-produced (3.0 nmol) TF inhibition and reached a maximal effect at 45 min. Intrathecal pretreatment with morphine (0.009-0.3 nmol) for 45 min also dose dependently attenuated morphine-produced TF inhibition. The i.t. morphine-induced antianalgesia was dose dependently blocked by the nonselective mu-opioid receptor antagonist (-)-naloxone and by its nonopioid enantiomer (+)-naloxone, but not by endomorphin-2-sensitive mu-opioid receptor antagonist 3-methoxynaltrexone. Blockade of delta-opioid receptors, kappa-opioid receptors, and N-methyl-D-aspartate (NMDA) receptors by i.t. pretreatment with naltrindole, nor-binaltorphimine, and (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), respectively, did not affect the i.t. morphine-induced antianalgesia. Intrathecal pretreatment with antiserum against dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, or substance P also did not affect the i.t. morphine-induced antianalgesia. The i.t. morphine pretreatment also attenuated the TF inhibition produced by opioid muagonist [D-Ala2, N-Me-Phe4,Gly-ol5]-enkephalin, delta-agonist deltorphin II, and kappa-agonist U50,488H. It is concluded that low doses (0.009-0.3 nmol) of morphine given i.t. activate an antianalgesic system to attenuate opioid mu-, delta-, and kappa-agonist-produced analgesia. The morphine-induced antianalgesia is not mediated by the stimulation of opioid mu-, delta-, or kappa-receptors or NMDA receptors. Neuropeptides such as dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, and substance P are not involved in this low-dose morphine-induced antianalgesia. Topics: Analgesia; Animals; beta-Endorphin; Dizocilpine Maleate; Drug Interactions; Drug Tolerance; Dynorphins; Enkephalins; Male; Mice; Morphine; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Substance P | 2004 |
Supraspinal and spinal cord opioid receptors are responsible for antinociception following intrathecal morphine injections.
The clinical practice of spinal morphine administration for pain relief is based on observations in animals that opioid receptors exist in the spinal cord and intrathecal injections of opioids in those species (mostly rats) lead to antinociceptive effects. Clinicians are well aware that administration of spinal opioids is associated with side-effects, such as nausea and respiratory depression, that indicate supraspinal spread of the drug administered. Those observations call into question how much of the observed pain relief is due to action of the drug in the brain. This study investigated the spinal cord actions of morphine given intrathecally to rats in a model that allows investigation of drug-receptor interaction at the spinal cord level. Experiments were performed on male Wistar rats with chronically implanted lumbar subarachnoid catheters.. Nociceptive thresholds were measured in rats given morphine intrathecally alone and in combination with intrathecal injections of selective opioid receptor antagonists: beta-funaltrexamine (mu), naltrindole (delta) and nor-binaltorphimine (kappa).. Intrathecal morphine caused dose-related antinociceptive effects that were reversed totally by naloxone. Intrathecal beta-funaltrexamine and naltrindole did not reverse the effects of intrathecal morphine. However, intrathecal nor-binaltorphimine did reverse the electrical current threshold effects of morphine but not tail flick latency.. Antinociception following intrathecal morphine involves spinal and supraspinal opioid receptors. The tail flick effect described in rat experiments involves actions at opioid receptors in the brain that override any action that may be caused by combination of morphine with mu-opioid receptors in the spinal cord. Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Injections, Spinal; Male; Models, Animal; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Threshold; Random Allocation; Rats; Rats, Wistar; Reaction Time; Receptors, Opioid; Spinal Cord; Tail | 2004 |
The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat.
Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund's adjuvant-induced arthritic and nonarthritic rats. The paw-pressure test was used to assess the antinociceptive effects of Delta9-THC versus those of morphine, and opioid and cannabinoid receptor-selective antagonists were used to characterize the involved receptors. Cerebrospinal fluid was collected after Delta9-THC injection (i.p.) for the measurement of endogenous opioid peptides. Our results indicate that morphine or Delta9-THC is equally potent and efficacious in both nonarthritic and arthritic rats. Delta9-THC-induced antinociception is attenuated by the kappa opioid receptor antagonist, nor-binaltorphimine, in arthritic rats only. Delta9-THC induces increased immunoreactive dynorphin A (idyn A) levels in nonarthritic rats while decreasing idyn A in arthritic rats. We hypothesize that the elevated idyn A level in arthritic rats contributes to hyperalgesia by interaction with N-methyl-D-aspartate receptors, and that Delta9-THC induces antinociception by decreasing idyn A release. Topics: Animals; Arthritis, Experimental; Cannabinoid Receptor Antagonists; Dose-Response Relationship, Drug; Dronabinol; Dynorphins; Enkephalin, Leucine; Enkephalin, Methionine; Freund's Adjuvant; Injections, Intradermal; Injections, Intraperitoneal; Male; Morphine; Mycobacterium; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Opioid; Rimonabant | 2004 |
Sialorphin, a natural inhibitor of rat membrane-bound neutral endopeptidase that displays analgesic activity.
Sialorphin is an exocrine and endocrine signaling mediator, which has been identified by a genomic approach. It is synthesized predominantly in the submandibular gland and prostate of adult rats in response to androgen steroids and is released locally and systemically in response to stress. We now demonstrate that the cell surface molecule to which sialorphin binds in vivo in the rat kidney is the membrane-anchored neutral endopeptidase (neprilysin; NEP, EC 3.4.24.11). NEP plays an important role in nervous and peripheral tissues, as it turns off several peptide-signaling events at the cell surface. We show that sialorphin prevents spinal and renal NEP from breaking down its two physiologically relevant substrates, substance P and Met-enkephalin in vitro. Sialorphin inhibited the breakdown of substance P with an IC50 of 0.4-1 microM and behaved as a competitive inhibitor. In vivo, i.v. sialorphin elicited potent antinociceptive responses in two behavioral rat models of injury-induced acute and tonic pain, the pin-pain test and formalin test. The analgesia induced by 100-200 mcicrog/kg doses of sialorphin required the activation of mu- and delta-opioid receptors, consistent with the involvement of endogenous opioid receptors in enkephalinergic transmission. We conclude that sialorphin protects endogenous enkephalins released after nociceptive stimuli by inhibiting NEP in vivo. Sialorphin is a natural systemically active regulator of NEP activity. Furthermore, our study provides evidence that it is a physiological modulator of pain perception after injury and might be the progenitor of a new class of therapeutic molecules. Topics: Amino Acid Sequence; Analgesics; Animals; Enkephalin, Methionine; Formaldehyde; Glycopeptides; Kidney; Leucine; Male; Membrane Proteins; Molecular Sequence Data; Naltrexone; Neprilysin; Pain; Pain Measurement; Prostate; Protease Inhibitors; Protein Precursors; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Salivary Proteins and Peptides; Spinal Cord; Submandibular Gland; Substance P; Thiorphan; Wounds and Injuries | 2003 |
Antinociceptive properties of oxymorphazole in the mouse.
Oxymorphazole (17-methyl-6,7-dehydro-3,14-dihydroxy-4,5 alpha-epoxy-6,7:3',4'-pyrazolomorphinan), a hydrophilic opioid, given intracerebroventricularly (2.5-50 nmol) or intrathecally (0.3-5 nmol) dose-dependently produced tail-flick inhibition in male CD-1 mice. However, oxymorphazole given subcutaneously even at high doses (10-80 mg/kg) produced weak tail-flick inhibition. Oxymorphazole given intraperitoneally (0.1 to 10 mg/kg) dose-dependently inhibited abdominal constriction response induced by intraperitoneally injection of 0.6% acetic acid. Oxymorphazole given intracerebroventricularly (25 nmol) or intrathecally (5 nmol) induced tail-flick inhibition was blocked by pretreatment with the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Orn-Thr-Pen-Thr-NH2, but not kappa-opioid receptor antagonist nor-binaltrophimine. The delta-opioid receptor antagonist, naltrindole, blocked the tail-flick inhibition induced by oxymorphazole given intrathecally but not intracerebroventricularly. The inhibition of the abdominal constriction response by oxymorphazole given intraperitoneally was blocked by intraperitoneally pretreatment with naloxone, but not naltrindole or nor-binaltrophimine. Thus, oxymorphazole given systemically produces antinociception only with the abdominal constriction test, but not the tail-flick test, suggesting that it produces the antinociception at the peripheral sites when administered systemically. The oxymorphazole-induced antinociception is mainly mediated by the stimulation of mu-opioid receptors when given either centrally or systemically and also the delta-opioid receptors when given intrathecally. The lack of central antinociceptive effect of oxymorphazole given systemically may have interesting clinical implications. Topics: Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Injections, Spinal; Male; Mice; Morpholines; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Somatostatin; Time Factors | 2003 |
Involvement of oxytocin in spinal antinociception in rats with inflammation.
The present study was conducted on rats with inflammation induced by subcutaneous injection of carrageenan into the left hindpaw. Intrathecal administration of oxytocin produced dose-dependent increases in the hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats with inflammation. The antinociceptive effect of oxytocin was blocked by intrathecal administration of atosiban, a selective oxytocin antagonist, indicating that oxytocin receptor mediates oxytocin-induced antinociception in the spinal cord. The oxytocin-induced antinociceptive effect was attenuated by intrathecal administration of the opioid antagonist naloxone, suggesting an involvement of the endogenous opioid system in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Furthermore, the antinociceptive effect of oxytocin was attenuated by intrathecal injections of the mu-receptor antagonist beta-funaltrexamine and the kappa-receptor antagonist nor-binaltorphimine, but not by the delta-receptor antagonist naltrindole, illustrating that mu- and kappa-receptors, but not delta-receptor, are involved in oxytocin-induced antinociception in the spinal cord of rats with inflammation. Moreover, intrathecal administration of atosiban alone induced a hyperalgesia in rats with inflammation, indicating that endogenous oxytocin is involved in the transmission and regulation of nociceptive information in the spinal cord of rats with inflammation. The present study showed that both exogenous and endogenous oxytocin displayed antinociception in the spinal cord in rats with inflammation, and mu- and kappa-receptors were involved in oxytocin-induced antinociception. Topics: Analgesics; Animals; Carrageenan; Hot Temperature; Inflammation; Injections, Spinal; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oxytocin; Pain; Pain Measurement; Physical Stimulation; Rats; Rats, Wistar; Spinal Cord; Vasotocin | 2003 |
Kappa-opioid receptor selectivity for ischemic neuroprotection with BRL 52537 in rats.
Kappa-opioid receptors (KOR) have been implicated in neuroprotection from ischemic neuronal injury, but less work has been performed with transient focal cerebral ischemia to determine the role of KOR during reperfusion. We tested the effects of a selective and specific KOR agonist, BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl)methylpiperidine], and the standard KOR antagonist, nor-binaltorphimine dihydrochloride [nor-BNI; 17,17'-(dicyclopropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetrol], on functional and histological outcome after transient focal ischemia in the rat. By use of the intraluminal filament technique, halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion confirmed by laser Doppler flowmetry. In a blinded, randomized fashion, rats were treated with 1). saline (vehicle) 15 min before reperfusion followed by saline at reperfusion for 22 h, 2). saline 15 min before reperfusion followed by BRL 52537 (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, 3). saline 15 min before reperfusion followed by nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, or 4) nor-BNI (1 mg/kg) 15 min before reperfusion followed by BRL 52537 (1 mgx kg(-1)x h(-1)) and nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h. Infarct volume (percentage of ipsilateral structure) analyzed at 4 days of reperfusion was significantly attenuated in saline/BRL 52537 rats (n = 8; cortex, 10.2% +/- 4.3%; caudoputamen [CP], 23.8% +/- 6.7%) (mean +/- SEM) compared with saline/saline treatment (n = 8; cortex, 28.6% +/- 4.9%; CP, 53.3% +/- 5.8%). Addition of the specific KOR antagonist nor-BNI to BRL 52537 completely prevented the neuroprotection (n = 7; cortex, 28.6% +/- 5.3%; CP, 40.9% +/- 6.2%) conferred by BRL 52537. BRL 52537 did not produce postischemic hypothermia. These data demonstrate that KORs may provide a therapeutic target during early reperfusion after ischemic stroke.. The neuroprotective effect of selective kappa-opioid agonists in transient focal ischemia is via a selective action at the kappa-opioid receptors. Topics: Animals; Behavior, Animal; Cerebral Cortex; Cranial Nerves; Functional Laterality; Gait; Hemodynamics; Ischemic Attack, Transient; Laser-Doppler Flowmetry; Male; Middle Cerebral Artery; Muscle Tonus; Naltrexone; Neuroprotective Agents; Pain; Piperidines; Putamen; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Weight Loss | 2003 |
Involvement of endogenous opioid systems in nociceptin-induced spinal antinociception in rats.
The present study investigates the involvement of opioid receptors in the antinociceptive effects of nociceptin in the spinal cord of the rat. Intrathecal administrations of 5 and 10 nmol of nociceptin significantly increase the withdraw response latencies to noxious thermal and mechanical stimulations. This nociceptin-induced antinociceptive effect is significantly attenuated by intrathecal injection of (Nphe(1))nociceptin(1-13)-NH(2), a selective antagonist of the nociceptin receptor (opioid receptor-like receptor ORL1), indicating an ORL1 receptor-mediated mechanism. This antinociceptive effect is also significantly attenuated by intrathecal injections of naloxone (a nonselective opioid receptor antagonist), naltrindole (a selective delta-opioid receptor antagonist), and beta-funaltrexamine (a selective mu-opioid receptor antagonist) in a dose-dependent manner, but not by the selective kappa-opioid receptor antagonist norbinaltorphimine. Since it is unlikely that nociceptin acts by direct binding to opioid receptors, these results suggest a possible interaction between the nociceptin/ORL1 and opioid systems in the dorsal horn of the rat spinal cord. Topics: Animals; Endorphins; Hindlimb; Hot Temperature; Injections, Spinal; Male; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptors; Opioid Peptides; Pain; Pain Measurement; Peptide Fragments; Physical Stimulation; Rats; Rats, Sprague-Dawley; Spinal Cord | 2002 |
Lack of the nociceptin receptor does not affect acute or chronic nociception in mice.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation. Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Male; Mice; Mice, Knockout; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Oligopeptides; Opioid Peptides; Pain; Receptors, Opioid; Time Factors; Vas Deferens | 2002 |
Dynorphin-independent spinal cannabinoid antinociception.
Spinal antinociception produced by delta 9-tetrahydro-cannabinol (Delta(9)-THC) and other cannabinoid agonists has been suggested to be mediated by the release of dynorphin acting at the kappa opioid receptor. Alternatively, as cannabinoid receptors are distributed appropriately in the pain transmission pathway, cannabinoid agonists might act directly at the spinal level to inhibit nociception, without requiring dynorphin release. Here, these possibilities were explored using mice with a deletion of the gene encoding prodynorphin. Antinociceptive dose-response curves were constructed for spinal Delta(9)-THC and WIN 55,212-2 in prodynorphin knock-out mice and in wild-type littermates. WIN 55,212-2 and Delta(9)-THC were equipotent in the wild-type and prodynorphin knock-out mice. Spinal pretreatment with a kappa opioid receptor antagonist, nor-binaltorphimine (nor-BNI), did not alter the dose-response curves for either WIN 55,212-2 or Delta(9)-THC in prodynorphin knock-out and wild-type mice. However, the same dose of nor-BNI used blocked U50,488H-induced antinociception in both wild-type and prodynorphin knock-out mice, confirming kappa opioid receptor activity. Pretreatment with SR141716A, a cannabinoid receptor antagonist blocked the antinociceptive actions of both WIN 55,212-2 and Delta(9)-THC. These data support the conclusion that antinociception produced by spinal cannabinoids are likely to be mediated directly through activation of cannabinoid receptors without the requirement for dynorphin release or activation of kappa opioid receptors. Topics: Analgesics; Analgesics, Non-Narcotic; Animals; Benzoxazines; Dose-Response Relationship, Drug; Dronabinol; Dynorphins; Injections, Spinal; Male; Mice; Mice, Knockout; Morpholines; Naltrexone; Naphthalenes; Pain; Pain Measurement; Reference Values; Reproducibility of Results; Sensitivity and Specificity; Single-Blind Method; Species Specificity; Spinal Cord | 2002 |
Antinociceptive effect produced by intracerebroventricularly administered dynorphin A is potentiated by p-hydroxymercuribenzoate or phosphoramidon in the mouse formalin test.
The antinociceptive effects of intracerebroventricularly (i.c.v.) administered dynorphin A, an endogenous agonist for kappa-opioid receptors, in combination with various protease inhibitors were examined using the mouse formalin test in order to clarify the nature of the proteases involved in the degradation of dynorphin A in the mouse brain. When administered i.c.v. 15 min before the injection of 2% formalin solution into the dorsal surface of a hindpaw, 1-4 nmol dynorphin A produced a dose-dependent reduction of the nociceptive behavioral response consisting of licking and biting of the injected paw during both the first (0-5 min) and second (10-30 min) phases. When co-administered with p-hydroxymercuribenzoate (PHMB), a cysteine protease inhibitor, dynorphin A at the subthreshold dose of 0.5 nmol significantly produced an antinociceptive effect during the second phase. This effect was significantly antagonized by nor-binaltorphimine, a selective kappa-opioid receptor antagonist, but not by naltrindole, a selective delta-opioid receptor antagonist. At the same dose of 0.5 nmol, dynorphin A in combination with phosphoramidon, an endopeptidase 24.11 inhibitor, produced a significant antinociceptive effect during both phases. The antinociceptive effect was significantly antagonized by naltrindole, but not by nor-binaltorphimine. Phenylmethanesulfonyl fluoride (PMSF), a serine protease inhibitor, bestatin, a general aminopeptidase inhibitor, and captopril, an angiotensin-converting enzyme inhibitor, were all inactive. The degradation of dynorphin A by mouse brain extracts in vitro was significantly inhibited only by the cysteine protease inhibitors PHMB and N-ethylmaleimide, but not by PMSF, phosphoramidon, bestatin or captopril. The present results indicate that cysteine proteases as well as endopeptidase 24.11 are involved in two steps in the degradation of dynorphin A in the mouse brain, and that phosphoramidon inhibits the degradation of intermediary delta-opioid receptor active fragments enkephalins which are formed from dynorphin A. Topics: Animals; Brain; Cell Extracts; Drug Interactions; Dynorphins; Glycopeptides; Hydroxymercuribenzoates; Injections, Intraventricular; Mice; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Measurement; Protease Inhibitors; Rats | 2001 |
The role of minoxidil on endogenous opioid peptides in the spinal cord: a putative co-agonist relationship between K-ATP openers and opioids.
ATP-gated K(+) channel openers produce antinociception that is attenuated by opioid receptor antagonists, indicating K-ATP openers produce antinociception, in part, via the release of endogenous opioid peptides. Utilizing the spinal perfusion method, male Sprague-Dawley rats were administered minoxidil intrathecally (i.t.) at doses ranging from 12.5 to 200 microg/rat for 3 min, tested for antinociception using the tail-flick test, and perfused with artificial cerebrospinal fluid (aCSF) to collect endogenous opioid peptides. Endogenous opioid peptide levels were measured by radioimmunoassay. Naltrindole, a delta-opioid receptor antagonist, at 4 mg/kg, subcutaneously (s.c.), blocked minoxidil-induced antinociception. beta-Funaltrexamine, a mu-opioid receptor antagonist, at 100 microg/rat, partially blocked minoxidil, whereas the kappa-opioid receptor antagonist nor-binaltorphimine, at a dose of 100 microg/rat, did not attenuate minoxidil. Although antagonists of the mu- and delta-opioid receptor attenuated minoxidil-induced antinociception, there was no increase in beta-endorphin, an endogenous ligand with affinity for both micro- and delta-opioid receptors or [Leu(5)]enkephalin, an endogenous ligand with affinity for delta-opioid receptors. Topics: Adenosine Triphosphate; Animals; Dose-Response Relationship, Drug; Male; Minoxidil; Naltrexone; Narcotic Antagonists; Nociceptors; Opioid Peptides; Pain; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Spinal Cord; Vasodilator Agents | 2001 |
Effects of endomorphin-2 on arterial blood pressure and pain threshold in spontaneously hypertensive rats and modification of these effects by beta-funaltrexamine and nor-binaltorphimine.
The effects of intracerebroventricular (icv) administration of endomorphin-2 (E2) on arterial blood pressure and pain threshold in spontaneously hypertensive rats (SHR) and modification of these effects by K [OP2] and mu [OP3] opioid receptors antagonists were investigated. Endomorphin-2 administrated icv in doses of 8, 16 and 32 mcg produced dose-dependent analgesic and hypotensive effect. In SHR decrease in blood pressure amounted 2.667, 4.0 and 6.534 kPa, respectively. Pain threshold increased by 1.7, 3.6 and 8.9 (g x 10). In Wistar Kyoto (WKY) strain, being the normotensive controls, E2 in doses of 8 and 16 mcg decrease in blood pressure was less pronounced and amounted 1.200 and 1.467 kPa, respectively, whereas the pain threshold increased by 7.2 and 10.4 (g x 10), respectively. Both E2 effects were antagonized by equimolar icv doses of beta-funaltrexamine (beta-FNA). Equimolar doses of nor-binaltorphimine (nor-BNI) attenuated analgesic action of E2, but were without hypotensive action produced by E2. A strong correlation between drop in blood pressure and increase in pain threshold observed in the SHR and WKY strains after icv administration of E2, indicate close interaction between systems responsible for pain perception and blood pressure control. Topics: Analgesics, Opioid; Analysis of Variance; Animals; Blood Pressure; Disease Models, Animal; Drug Interactions; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Threshold; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 2001 |
Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
Two highly selective mu-opioid receptor agonists, endomorphin-1 and endomorphin-2, have been identified and postulated to be endogenous ligands for mu-opioid receptors. Intrathecal (i.t.) administration of endomorphin-1 and endomorphin-2 at doses from 0.039 to 5 nmol dose-dependently produced antinociception with the paw-withdrawal test. The paw-withdrawal inhibition rapidly reached its peak at 1 min, rapidly declined and returned to the pre-injection levels in 20 min. The inhibition of the paw-withdrawal responses to endomorphin-1 and endomorphin-2 at a dose of 5 nmol observed at 1 and 5 min after injection was blocked by pretreatment with a non-selective opioid receptor antagonist naloxone (1 mg/kg, s.c.). The antinociceptive effect of endomorphin-2 was more sensitive to the mu (1)-opioid receptor antagonist, naloxonazine than that of endomorphin-1. The endomorphin-2-induced paw-withdrawal inhibition at both 1 and 5 min after injection was blocked by pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine (10 mg/kg, s.c.) or the delta(2)-opioid receptor antagonist naltriben (0.6 mg/kg, s.c.) but not the delta(1)-opioid receptor antagonist 7-benzylidine naltrexone (BNTX) (0.6 mg/kg s.c.). In contrast, the paw-withdrawal inhibition induced by endomorphin-1 observed at both 1 and 5 min after injection was not blocked by naloxonazine (35 mg/kg, s.c.), nor-binaltorphimine (10 mg/kg, s.c.), naltriben (0.6 mg/kg, s.c.) or BNTX (0.6 mg/kg s.c.). The endomorphin-2-induced paw-withdrawal inhibition was blocked by the pretreatment with an antiserum against dynorphin A-(1-17) or [Met(5)]enkephalin, but not by antiserum against dynorphin B-(1-13). Pretreatment with these antisera did not affect the endomorphin-1-induced paw-withdrawal inhibition. Our results indicate that endomorphin-2 given i.t. produces its antinociceptive effects via the stimulation of mu (1)-opioid receptors (naloxonazine-sensitive site) in the spinal cord. The antinociception induced by endomophin-2 contains additional components, which are mediated by the release of dynorphin A-(1-17) and [Met(5)]enkephalin which subsequently act on kappa-opioid receptors and delta(2)-opioid receptors to produce antinociception. Topics: Analgesics; Animals; Benzylidene Compounds; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Methionine; Immune Sera; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Time Factors | 2001 |
Selective mu and delta, but not kappa, opiate receptor antagonists inhibit the habituation of novelty-induced hypoalgesia in the rat.
There is now extensive evidence demonstrating that exposure to novel stimuli induces hypoalgesia and that this effect habituates over repeated exposure to the stimuli. Moreover, it has been shown that administration of the nonselective opiate receptor antagonist naloxone can attenuate the rate of habituation of novelty-induced hypoalgesia.. The present experiments were conducted to determine the relative influence of different opiate receptor subtypes in the attenuation of the habituation of novelty-induced hypoalgesia.. In experiments 1-3, different groups of male, Wistar rats (275-300 g) were administered vehicle, 0. 5, 1.0 or 2.0-nmol doses of the mu-selective antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7)-amide (CTOP), the delta-receptor selective antagonist naltrindole, or the kappa-selective antagonist nor-binaltorphimine (nor-BNI). In experiment 4, animals were administered vehicle, 5, 25 or 75-nmol doses of nor-BNI. All injections were delivered to the right lateral ventricle 30 min prior to exposure to a novel hot-plate apparatus (48.5 degrees C), once a day for eight consecutive days.. Paw-lick latencies in vehicle-treated animals were long during the initial exposures and declined over repeated tests, suggesting the habituation of novelty-induced hypoalgesia. The rate of habituation was significantly attenuated by administration of 1.0-nmol and 2.0-nmol doses of CTOP, by a 2.0-nmol dose of naltrindole, but was unaffected by all doses of nor-BNI.. These results support the involvement of the mu and delta, but not the kappa, opiate receptor subtypes in the habituation of novelty-induced hypoalgesia. Topics: Animals; Dose-Response Relationship, Drug; Habituation, Psychophysiologic; Male; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Rats; Rats, Wistar; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 2000 |
Differential involvement of opioid receptors in stress-induced antinociception caused by repeated exposure to forced walking stress in mice.
We examined the effects of repeated exposure to forced walking stress for 6 h once a day for 0, 6 and 9 consecutive days on formalin-induced paw licking in mice. In each observation period, stress-induced antinociception (SIA) was observed only in the late phase (from 10 to 30 min), but not in the early phase (from 0 to 10 min) of formalin-induced paw licking in mice. Moreover, it was hard to develop tolerance even by daily exposure to stress for 6 days, although SIA for 9 days decreased compared with those for 0 and 6 days. Naloxone (10 mg/kg), an opioid-receptor antagonist, was effective in reducing the SIA induced by forced walking stress for 6 days and/or 9 days, but not for 0 days. Furthermore, the experiments with selective opioid-receptor antagonists, beta-funaltrexamine (mu) naltrindol (delta), or nor-binaltorphimine (kappa) demonstrated that SIA induced by forced walking stress for 9 successive days may be mediated through opioid delta- and kappa-receptors. Finally, although SIA seemed to be a unitary phenomenon, the present results strengthened the idea that SIA is induced by exposure to forced walking stress with characteristics dependent on the duration of exposure. Topics: Animals; Formaldehyde; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Receptors, Opioid; Stress, Physiological; Walking | 2000 |
Role of the kappa-opioid system in the attenuation of the morphine-induced place preference under chronic pain.
We previously reported that the morphine-induced place preference was attenuated under inflammation produced by the unilateral injection of 2.5 % formalin (50 microl) into the hind paw of rats. In the present study, to elucidate the mechanism of this attenuation, the effects of pretreatment with delta- and kappa-opioid receptor antagonists, naltrindole (NTI) and nor-binaltorphimine (nor-BNI), on the development of the morphine-induced place preference under inflammation were examined in rats. Nor-BNI, but not NTI, eliminated the suppression of the morphine-induced place preference in inflamed groups. These results suggest that endogenous kappa-opioid systems may be activated in the presence of chronic inflammatory nociception; as a result, the development of morphine's rewarding effect may be suppressed under inflammation. Topics: Animals; Chronic Disease; Conditioning, Psychological; Formaldehyde; Hindlimb; Inflammation; Male; Morphine; Naltrexone; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Reward; Time Factors | 1999 |
Analgesia-producing mechanism of processed Aconiti tuber: role of dynorphin, an endogenous kappa-opioid ligand, in the rodent spinal cord.
The analgesia-producing mechanism of processed Aconiti tuber was examined using rodents whose nociceptive threshold was decreased by loading repeated cold stress (RCS). The antinociceptive effect of processed Aconiti tuber (0.3 g/kg, p.o.) in RCS-loaded mice was antagonized by pretreatment with a kappa-opioid antagonist, nor-binaltorphimine (10 mg/kg, s.c.), and was abolished by an intrathecal injection of anti-dynorphin antiserum (5 microg). The Aconiti tuber-induced antinociception was inhibited by both dexamethasone (0.4 mg/kg, i.p.) and a dopamine D2 antagonist, sulpiride (10 mg/kg, i.p.), in RCS-loaded mice, and it was eliminated by both an electric lesion of the hypothalamic arcuate nucleus (HARN) and a highly selective dopamine D2 antagonist, eticlopride (0.05 microg), administered into the HARN in RCS-loaded rats. These results suggest that the analgesic effect of processed Aconiti tuber was produced via the stimulation of kappa-opioid receptors by dynorphin released in the spinal cord. It was also shown that dopamine D2 receptors in the HARN were involved in the expression of the analgesic activity of processed Aconiti tuber. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Administration, Topical; Analgesics; Animals; Arcuate Nucleus of Hypothalamus; Cold Temperature; Dexamethasone; Dopamine Antagonists; Drugs, Chinese Herbal; Dynorphins; Glucocorticoids; Hypothalamus; Immune Sera; Ligands; Male; Mice; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Salicylamides; Spinal Cord; Sulpiride | 1999 |
Paradoxical effects of intracerebroventricular low-dose opioid antagonists in SHR with chronic pain.
The aim of our study was to investigate the effect of intracerebroventricular (i.c.v.) administration of very low doses of opioid antagonists on the pain threshold, arterial blood pressure and body temperature of spontaneously hypertensive rats (SHR) with chronic pain. We found that low doses of i.c.v. administered naloxone hydrochloride (0.3 microg) or naloxone methiodide (0.4 microg) produce paradoxical hypoalgesia. Similar results were not observed following i.c.v. administration of nor-binaltorphimine (0.6 microg). A paradoxical increase in the severity of hypertension followed i.c.v. opioid antagonist administration. This suggests an involvement of the opioid system in the mechanisms of blood pressure control. The paradoxical results obtained both for pain threshold and blood pressure after low doses of some opioid antagonists seem to confirm the role played by opioid autoreceptors in these effects. Existence of autoreceptors is suggested. Results obtained following i.c.v. administration of nor-binaltorphimine also suggest a role for the kappa autoreceptor (OP2) in the regulatory mechanisms of thermoregulation. Topics: Analgesia; Animals; Arteries; Blood Pressure; Body Temperature; Body Weight; Brain; Chronic Disease; Hypertension; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Threshold; Quaternary Ammonium Compounds; Rats; Rats, Inbred SHR; Rats, Inbred WKY | 1999 |
Cannabinoid modulation of dynorphin A: correlation to cannabinoid-induced antinociception.
Intrathecal administration of anandamide, delta9-tetrahydrocannabinol (THC) and (-)-3-[2-hydroxy-4-(1,1-dimethyheptyl)ptyl)phenyl]-4-(3-hydr oxypropyl)-cicloexan-1-ol (CP55,940) induced spinal antinociception accompanied by differential kappa-opioid receptor involvement and dynorphin A peptide release. Antinociception using the tail-flick test was induced by the classical cannabinoid THC and was blocked totally by 17,17'-bis(cyclopropylmethyl)-6',6,7,7'-tetrahydro-4,5,4'5'-diepoxy++ +-6,6'-(imino)[7,7'-bimorphinan]-3,3',14,14'-tetrol (norbinaltorphimine) indicating a significant and critical kappa-opioid receptor component. The endogenous cannabinoid, anandamide and the non-classical bicyclic cannabinoid, CP55,940, induced non-nor-BNI-sensitive effects. The N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazo le-carboxamide (SR141716A)-mediated attenuation of spinal antinociception imparted by the various cannabinoids indicates cannabinoid CB1 receptor involvement. THC-induced an enhancement of immunoreactive dynorphin A release which coincided with the onset, but not duration antinociception. The release of dynorphin A was also attenuated by SR141716A suggesting it is cannabinoid CB1 receptor-mediated. These data indicate a critical role for dynorphin A release in the initiation of the antinociceptive effects of the cannabinoids at the spinal level. Topics: Analgesics; Animals; Cannabinoids; Cyclohexanols; Dimethyl Sulfoxide; Dronabinol; Dynorphins; Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Measurement; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant | 1999 |
Antinociceptive properties of FR140423 mediated through spinal delta-, but not mu- and kappa-, opioid receptors.
We investigated the antinociceptive effect of FR140423, 3-(difluoromethyl)-1-(4-methoxyphenyl)-5-[4-(methylsulfinyl)phenyl] pyrazole, in the tail-pinch test in mice, and evaluated the mechanism of action using various opioid receptor antagonists. P.o. and i.t. injection of FR140423 exerted dose-dependent antinociceptive activities with ED50 values of 21 mg/kg and 3.1 microg/mouse, respectively. However, i.c.v. injection of FR140423 did not show an antinociceptive effect. The antinociceptive effects of FR140423 were completely abolished by naloxone and naltrindole but not by naloxonazine, beta-funaltrexamine and nor-binaltorphimine. FR140423 did not affect any opioid receptor binding in mouse spinal membranes at concentrations up to 100 microM in vitro. Naloxone-induced jumping and diarrhea tests for morphine-like physical dependence of FR140423 gave negative results. These results suggest that FR140423 can induce antinociception by acting on the spinal but not the supraspinal site, and that spinal delta-opioid systems indirectly play a role in the antinociception produced by FR140423 in mice. Topics: Administration, Oral; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Binding, Competitive; Diarrhea; Injections, Intraventricular; Injections, Spinal; Male; Membranes; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Pyrazoles; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Sulfoxides | 1999 |
ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
The ATP-gated K(+) channel openers - diazoxide, levcromakalim and morphine - enhance K(+) efflux by opening ATP-gated K(+) channels, thereby inducing cell hyperpolarization. Hyperpolarization decreases intracellular Ca(2+) levels, which leads to a decrease in neurotransmitter release contributing to the antinociceptive effects of the drugs. Previous findings implicate the release of endogenous opioids as the mediator of the antinociceptive effects of ATP-gated K(+) channel openers. Diazoxide and levcromakalim, administered intracerebroventricularly (i.c.v.), produced dose-dependent antinociception as determined by the tail-flick method ¿ED(50) 44 microg/mouse [95% confidence limits (CLs) from 28 to 68 microg/mouse] for diazoxide¿. Glyburide (10 microg/mouse), an ATP-gated K(+) channel antagonist, attenuated the effects of diazoxide, levcromakalim and morphine. Diazoxide- and levcromakalim-induced antinociception were both antagonized by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide), a mu-opioid receptor selective antagonist, and ICI 174,864 (N, N-diallyl-Tyr-Aib-Aib-Phe-Leu), a delta-opioid receptor antagonist, but were differentially attenuated by the kappa-opioid receptor antagonist, nor-Binaltorphimine. Combinations of inactive doses of the K(+) channel openers and opioid receptor agonists produced significant antinociceptive enhancement. Diazoxide (2 microg/mouse) shifted morphine's dose-response curve 47-fold, while levcromakalim (0.1 microg/mouse) shifted the curve 27-fold. The dose-response curve of kappa-opioid receptor agonist U50,488H (trans-(+/-)-3, 4 Dichloro-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane sulfonate) was shifted 106-fold by diazoxide in a parallel manner, while levcromakalim administration increased the potency of U50,488H by 15-fold. Diazoxide shifted the dose-response curve of the delta-opioid receptor agonist, DPDPE [(D-Pen(2,5))-enkephalin], leftward in a non-parallel manner, while DPDPE was 6-fold more potent when combined with levcromakalim. We hypothesize that endogenous opioids mediate ATP-gated K(+) channel opener-induced antinociception and enhancement of opioids. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenosine Triphosphate; Analgesics; Animals; Cromakalim; Diazoxide; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Glyburide; Injections, Intraventricular; Ion Channel Gating; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Narcotic Antagonists; Nociceptors; Opioid Peptides; Pain; Potassium Channels; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 1999 |
Evidence that spinal endogenous opioidergic systems control the expression of chronic pain-related behaviors in spinally injured rats.
We have previously reported that ischemic spinal cord injury in rats leads to chronic pain-related behaviors. Thus, rats exhibited aversive reactions to innocuous mechanical stimuli (mechanical allodynia) applied to a body area at or rostral to the dermatomes innervated by the injured spinal segments. The responses of the rats to cold are also markedly enhanced (cold allodynia). Interestingly, more than 50% of spinally injured rats did not develop these abnormal pain-related behaviors after spinal cord injury. In the present study, we showed that the extent of injury is similar between allodynic and non-allodynic rats. Furthermore, intrathecal (i.t.) naloxone, a broad-spectrum opioid receptor antagonist, reversibly provoked mechanical and cold allodynia-like responses in spinally injured rats that did not develop such behaviors spontaneously. However, naloxone did not elicit such reactions in normal rats and did not alter the tail-flick latency in normal or spinally injured rats. Furthermore, i.t. D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or naltridole, selective antagonists of mu and delta opioid receptors, respectively, also triggered pain-related behaviors similarly to naloxone. Although norbinaltorphimine (nor-BIN), a selective kappa-receptor antagonist, also elicited such responses, the time course of the effect makes it unlikely that spinal kappa-receptors were involved. These results suggested that the expression of abnormal pain-related behaviors in some spinally injured rats is tonically suppressed by the spinal opioidergic system. Interindividual differences that lead to lack or dysfunction of such inhibition may underly the appearence of pain-related behavior in some, but not all, spinally injured rats. It is suggested that such inhibition is exerted through spinal mu and delta, but not kappa, opioid receptors. The endogenous opioidergic control appears to be only active against abnormal painrelated behaviors in spinally injured rats. Our results are relevant for the clinical observation that only a subgroup of patients with nerve injury suffers from neuropathic pain. Topics: Animals; Behavior, Animal; Chronic Disease; Cold Temperature; Female; Hyperalgesia; Injections, Spinal; Naltrexone; Narcotic Antagonists; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Self Mutilation; Somatostatin; Spinal Cord Injuries; Stress, Mechanical | 1998 |
Opioids modulate the calcitonin gene-related peptide8-37-mediated hindpaw withdrawal latency increase in thermally injured rats.
The present study was performed to explore the modulatory potential of different endogenous opioid systems on transmission of presumed nociceptive information at the spinal cord level in thermally injured rats. Thermal injury was performed by dipping the left paw into water 60 degrees C for 20 s. This induced a significant bilateral decrease in hindpaw withdrawal latency HWL to pressure. Intrathecal administration of 10 nmol of CGRP8-37 induced a significant bilateral increase in HWL in the thermally injured group and in the intact controls. The effect of different opioid receptor antagonists on the increased latency to withdrawal response induced by intrathecal injection of 10 nmol of CGRP8-37 was explored in the thermally injured rats. The effect was reversed by intrathecal injection of 40 and 80 nmol of: b-funaltrexamine (mu opioid receptor antagonist) and naltrindole (delta opioid receptor antagonist), but not by norbinaltorphimine (kappa opioid receptor antagonist). The results of the present study show that intrathecal CGRP8-37 increases hindpaw withdrawal latency in thermally injured rats, an effect reduced by a mu as well as by a delta opioid receptor antagonist. Topics: Animals; Brain Chemistry; Burns; Calcitonin Gene-Related Peptide; Hindlimb; Injections, Spinal; Male; Mitogens; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Peptide Fragments; Pressure; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reflex | 1998 |
Intrathecal administration of p-hydroxymercuribenzoate or phosphoramidon/bestatin-combined induces antinociceptive effects through different opioid mechanisms.
The antinociceptive effect of intrathecally (i.t.) administered protease inhibitors was tested against capsaicin (800 ng) injected into the dorsal surface of a hindpaw. Both p-hydroxymercuribenzoate (2-8 nmol), a cysteine protease inhibitor, and phosphoramidon (1-4 nmol), an endopeptidase 24.11 inhibitor in the presence of bestatin (0.25 nmol) an aminopeptidase inhibitor, administered i.t. 60 min prior to the injection of capsaicin produced a dose-dependent reduction of the capsaicin-induced paw licking and biting response. p-Hydroxymercuribenzoate (4 nmol)-induced antinociception was significantly antagonized by nor-binaltorphimine, a selective kappa-opioid receptor antagonist, but not by naltrindole, a selective delta-opioid receptor antagonist. On the other hand, phosphoramidon (4 nmol) /bestatin-induced antinociception was significantly antagonized by naltrindole, but not by nor-binaltorphimine. The results indicate that the antinociceptive effect of p-hydroxymercuribenzoate may be due to the inhibition of a cysteine protease degrading endogenous dynorphins whereas phosphoramidon in the presence of bestatin blocks the degradation of enkephalins. Topics: Animals; Capsaicin; Dose-Response Relationship, Drug; Drug Combinations; Glycopeptides; Hindlimb; Hydroxymercuribenzoates; Injections, Spinal; Leucine; Male; Mice; Mice, Inbred Strains; Naltrexone; Narcotic Antagonists; Pain; Protease Inhibitors; Receptors, Opioid; Time Factors | 1998 |
Reversal by kappa-agonists of peritoneal irritation-induced ileus and visceral pain in rats.
Peritoneal irritation in rats induced by i.p. administration of acetic acid produces abdominal contractions reflecting visceral pain, and gastrointestinal ileus characterized by inhibition of gastric emptying and small intestine transit. In this study, gastric emptying (GE) and intestinal transit, calculated by the geometric center (GC) method, were estimated using a test meal labeled with 51Cr-EDTA. Visceral pain was assessed by counting abdominal contractions. Acetic acid produced abdominal contractions (80.8 +/- 3.3) and inhibition of GE (-54%) and GC (-63%) during the test-period. The kappa-opioid receptor agonists, CI-977 (+/-)-U-50,488H, (+/-)-bremazocine, PD-117,302, (-)-cyclazocine, and U-69,583, reversed abdominal contractions and inhibitions of gastrointestinal transit in a dose-related manner. The mu-opioid receptor agonists and potent analgesics, morphine and fentanyl did not restore normal gastric emptying and intestinal transit. These data suggest that selective kappa-opioid receptor agonists might be used to treat abdominal pain associated with motility and transit impairment during postoperative ileus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetic Acid; Analgesics; Animals; Benzofurans; Benzomorphans; Cyclazocine; Fentanyl; Gastric Emptying; Intestinal Pseudo-Obstruction; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Peritoneum; Pyrroles; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Thiophenes | 1997 |
Dynorphin-(1-8) inhibits the release of substance P-like immunoreactivity in the spinal cord of rats following a noxious mechanical stimulus.
This study was conducted to determine the effect of the opioid peptide dynorphin-(1-8) on the release of substance P-like immunoreactivity in the dorsal horn during mechanical activation of peripheral nociceptors. A push-pull cannula was used to perfuse the dorsal horn of decerebrate/spinal transected rats before, during and following the application of a noxious mechanical stimulus to the ipsilateral hindpaw and lower limb. The collected perfusates were assayed for substance P-like immunoreactivity using radioimmunoassay. Dynorphin-(1-8) applied to the spinal cord at a concentration of 1 microM reduced the basal release of substance P-like immunoreactivity by 28 +/- 11% and prevented the mechanically evoked release of substance P-like immunoreactivity. This effect of dynorphin-(1-8) was reversed by 2 microM of the selective kappa-opioid receptor antagonist nor-binaltorphimine. Moreover, blockade of the kappa-opioid receptors by nor-binaltorphimine resulted in a 33 +/- 5% increase in the basal release of substance P-like immunoreactivity. These data show that activation of nor-binaltorphimine-sensitive sites by dynorphin-(1-8) results in inhibition of the release of substance P-like immunoreactivity in the dorsal horn of the rat. Topics: Animals; Decerebrate State; Dynorphins; Hindlimb; Male; Naltrexone; Pain; Peptide Fragments; Physical Stimulation; Radioimmunoassay; Rats; Rats, Wistar; Receptors, Opioid, kappa; Spinal Cord; Substance P | 1997 |
Involvement of delta 1-opioid receptors in the antinociceptive effects of mexiletine in mice.
The mechanisms of the antinociceptive effect of mexiletine were assessed by administering selective mu-, delta- and kappa-opioid receptor antagonists in diabetic and non-diabetic mice. Intraperitoneal administration of mexiletine, at doses of 10 and 30 mg/kg, produced dose-dependent antinociception in the tail-pinch test in both non-diabetic and diabetic mice. The antinociceptive effect of mexiletine in diabetic mice was significantly greater than that in non-diabetic mice. The antinociceptive effect of mexiletine did not result from the activation of mu- or kappa-opioid receptors in either non-diabetic or diabetic mice, since treatment with either beta-funaltrexamine, a selective mu- opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist, was ineffective in blocking mexiletine-induced antinociception. The antinociceptive effect of mexiletine was significantly antagonized by naltrindole, a selective delta-opioid receptor antagonist, in both non-diabetic and diabetic mice. Furthermore, the antinociceptive effect of mexiletine was significantly reduced in both non-diabetic and diabetic mice following pretreatment with 7-benzylidenenaltrexone, a selective delta 1-opioid receptor antagonist, but not with naltriben, a selective delta 2-opioid receptor antagonist. These result suggest that delta 1-opioid receptor-mediated mechanisms may be involved in the antinociceptive effect of mexiletine. Topics: Animals; Diabetic Neuropathies; Male; Mexiletine; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Pain; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reference Values | 1995 |
Peripheral kappa-opioid receptors mediate the antinociceptive effect of fedotozine (correction of fetodozine) on the duodenal pain reflex inrat.
Fedotozine has been shown to act on gastrointestinal sensitivity through peripheral kappa-opioid receptors. The present study investigated the action of fedotozine and reference compounds, morphine and (+/-)-U-50,488H, on duodenal pain in anesthetized rats. The noxious stimulus was produced by duodenal distension (100 mm Hg; 30 s). Fedotozine (1-5 mg/kg i.v.) produced a dose-dependent inhibition of the cardiovascular reflex induced by duodenal distension (ED50 = 1.87 mg/kg) but had no effect at doses up to 300 micrograms/rat by either intracerebroventricular (i.c.v.) or intrathecal routes (i.t.). The mu-opioid receptor agonist, morphine, was active by both i.v. (ED50 = 0.62 mg/kg) and i.c.v. routes (ED50 = 2.17 micrograms/rat) as was the kappa-opioid receptor agonist, (+/-)-U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1- pyrrolidinyl]cyclohexyl)benzeneacetamide) (ED50 = 0.25 mg/kg and 149 micrograms/rat for i.v. and i.c.v. routes, respectively). The selective kappa-opioid receptor antagonist, nor-binaltorphimine (10 mg/kg s.c.), abolished the response to fedotozine (5 mg/kg i.v.) and (+/-)-U-50,488H (2 mg/kg i.v.) but not that to morphine (1 mg/kg i.v.). In contrast, naloxone (30 micrograms/kg i.v.) blocked the response to morphine (1 mg/kg i.v.) but not that to fedotozine (5 mg/kg i.v.) or (+/-)-U-50,488H (2 mg/kg i.v.). It is concluded that the antinociceptive effects of fedotozine on duodenal pain are mediated by peripheral kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzyl Compounds; Blood Pressure; Dose-Response Relationship, Drug; Duodenum; Injections, Intravenous; Injections, Intraventricular; Male; Morphine; Naloxone; Naltrexone; Pain; Propylamines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reflex | 1994 |
Evidence that nor-binaltorphimine can function as an antagonist at multiple opioid receptor subtypes.
This study examined the influence of acute and repeated administration of the kappa-opioid receptor antagonist, nor-binaltorphimine, upon opioid-induced antinociception as measured by the tail-pressure test. A single intracerebroventricular (i.c.v.) injection of nor-binaltorphimine (30 micrograms) administered 1, 10 or 30 days prior to algesiometric testing prevented the analgesic effect of the kappa-opioid receptor agonist, (5 alpha, 7 alpha, 8 beta)-(-)-N- methyl-N-(7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl)benzenacet amide (U69593). The analgesic effect of the mu-opioid receptor agonist, [D-Ala2,N-methyl-Phe4,Gly5-ol]enkephalin (DAMGO), and the delta-opioid receptor agonist, [D-Pen2,D-Pen5]enkephalin (DPDPE), was not modified. In contrast, when nor-binaltorphimine was administered repeatedly (twice daily i.c.v. administration of 30 micrograms nor-binaltorphimine for 10 days), the analgesic effect of DAMGO, DPDPE as well as U69593 was abolished. In the case of mu- and delta-opioid receptor agonists, this abolition was apparent when testing occurred 1 or 2, but not 5 days after termination of nor-binaltorphimine treatment. This treatment regimen also resulted in a long-lasting antagonism (e.g. 20 days) of U69593-induced analgesia. These data show that, depending on the treatment regimen employed, nor-binaltorphimine can function as a selective kappa-opioid receptor antagonist, or as an antagonist at multiple opioid receptor subtypes. Further, they demonstrate that nor-binaltorphimine functions as a long-lasting kappa-opioid receptor antagonist in vivo. Topics: Amino Acid Sequence; Analgesics; Animals; Benzeneacetamides; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Injections, Intraventricular; Male; Molecular Sequence Data; Naltrexone; Narcotic Antagonists; Pain; Pain Threshold; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Somatostatin | 1994 |
Role of vagal afferents in the antinociception produced by morphine and U-50,488H in the colonic pain reflex in rats.
The mechanisms underlying the antinociception induced by morphine or U-50,488H (trans-(+-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]- cyclohexyl)benzeneacetamide) against painful colonic distension were examined in anaesthetized rats. The respective ED50 values for morphine and U-50,488H were 0.34 and 0.35 mg/kg for the i.v. route, and 1.68 and 167 micrograms/rat for the i.c.v. route. Morphine was active by the intrathecal route (ED50 = 7.8 micrograms) whereas U-50,488H had no effect at doses up to 100 micrograms/rat. The morphine response was selectively antagonized by naloxone (30 micrograms/kg i.v.) whereas that of U-50,488H was blocked by nor-binaltorphimine (10 mg/kg s.c.). Bilateral vagotomy abolished the response to morphine at 0.35 mg/kg i.v. and reduced by 41.3% that to 1 mg/kg morphine, but had no effect on that to U-50,488H or i.c.v. morphine (10 micrograms/rat). It is concluded that peripheral mu- and kappa-opioid receptors may produce antinociception for colonic pain and that vagal integrity is required for mu-opioid but not kappa-opioid peripheral antinociception. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Blood Pressure; Colon; Injections, Intraventricular; Injections, Spinal; Male; Morphine; Naloxone; Naltrexone; Neurons, Afferent; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reflex; Vagotomy; Vagus Nerve | 1994 |
Antinociceptive activity of intrathecal ketorolac is blocked by the kappa-opioid receptor antagonist, nor-binaltorphimine.
Systemic and intrathecally administered ketorolac produced antinociception in the p-phenylquinone test, but not in the tail-flick or hot-plate tests. Antagonists of the subtypes of opioid receptors were used to evaluate the interaction of ketorolac with these receptors. Intrathecally administered kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride blocked the antinociceptive effects of systemic ketorolac and intrathecally administered ketorolac. Naloxone and ICI 174,864 failed to block the effects of ketorolac. Activation of nor-binaltorphimine-sensitive receptors appears to be an integral element in the mechanism of antinociception of ketorolac at the spinal level. Ketorolac did not precipitate withdrawal jumping in morphine-tolerant mice demonstrating that ketorolac does not act as a mixed agonist-antagonist at the opioid receptor. We suggest that neuraxial placement of ketorolac may prove useful in the clinical setting for the management of acute pain in humans. Topics: Analgesics; Animals; Drug Interactions; Drug Tolerance; Injections, Spinal; Ketorolac; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Pain; Receptors, Opioid, kappa; Tolmetin | 1993 |
Involvement of spinal kappa opioid receptors in a type of footshock induced analgesia in mice.
We have studied the effects of several opioid antagonists on a type of footshock stress-induced analgesia (FSIA) measured by the tail-flick test in male mice. Naloxone injected either subcutaneously (0.1-10 mg/kg) or intrathecally (1-20 micrograms) antagonized FSIA at higher doses than those that blocked a similar degree of analgesia induced by morphine. Intracerebroventricular (i.c.v.) naloxone (1-20 micrograms) did not modify the FSIA while antagonizing the i.c.v. morphine-induced analgesia. As a consequence, the antagonism of the FSIA by naloxone probably occurs at the level of the spinal cord and through receptors different than mu. The delta selective antagonist naltrindole (0.1-3 mg/kg s.c.) did not antagonize the analgesic effects of the stress. Nor-binaltorphimine, a kappa selective antagonist, blocked the FSIA when administered systemically (1-4 mg/kg i.p.) or locally (0.1-1 microgram i.t.). These results strongly suggest that spinal kappa opioid receptors are responsible for this type of endogenous analgesia. Topics: Analgesia; Animals; Cerebral Ventricles; Electroshock; Injections, Intraventricular; Injections, Spinal; Male; Mice; Mice, Inbred Strains; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Receptors, Opioid, kappa; Spinal Cord; Stress, Psychological | 1993 |
Effects of naltrindole and nor-binaltorphimine treatment on antinociception induced by sub-acute selective mu opioid receptor blockade.
When administered repeatedly, in conjunction with hot plate testing, naloxone and naltrexone have the paradoxical effect of producing antinociception in rats and mice. Recently, we have found that the sub-acute selective blockade of mu opioid receptors leads to the development of antinociception and an augmentation of kappa receptor-mediated antinociception. In this study, acute delta/kappa antagonist treatment produced a significant decrease in paw lick latency in rats displaying antinociception induced by sub-acute mu blockade, however, the response level of these animals was still significantly above the baseline. In addition, rats receiving sub-acute combined mu and delta antagonist treatment took longer to develop an antinociceptive response than those treated with a mu antagonist alone. Sub-acute selective blockade of kappa or delta opioid receptors had no overall effect on paw lick latency during the course of 5 days of hot plate testing. The results indicate that delta receptor activity may play a role in the antinociception induced by sub-acute mu blockade. However, while delta antagonist treatment effected the expression, it did not completely attenuate the antinociception induced by sub-acute mu blockade suggesting that there is still a significant non-opioid component to this analgesic response. The results of a final experiment, in which acute delta antagonist treatment had no effect on antinociception induced by repeated systemic injections of naloxone, supported this hypothesis. Topics: Animals; Indoles; Male; Morphinans; Naltrexone; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sensitivity and Specificity | 1992 |
Analgesic and aversive effects of naloxone in BALB/c mice.
Opioid antagonists have been shown to produce dose-dependent analgesia in the formalin test in BALB/c mice. In light of this paradoxical finding, the motivational-affective property of naloxone was examined in BALB/c mice. Naloxone produced a conditioned place aversion at doses which were also found to produce analgesia in the formalin test (1 and 10 mg/kg). In addition, the analgesia produced by 1 mg/kg naloxone was completely abolished in mice pretreated with nor-binaltorphimine, a highly selective kappa-opioid antagonist. Norbinaltorphimine on its own, however, had no effect. These results suggest that the analgesic actions of naloxone may be due to an interaction with kappa receptors. Topics: Analgesia; Animals; Choice Behavior; Dose-Response Relationship, Drug; Formaldehyde; Mice; Mice, Inbred BALB C; Naloxone; Naltrexone; Pain | 1992 |
Role of mu and kappa opioid receptors in conditional fear-induced analgesia: the antagonistic actions of nor-binaltorphimine and the cyclic somatostatin octapeptide, Cys2Tyr3Orn5Pen7-amide.
When rats are returned to an environment in which they previously received electric shock they show a reduction in sensitivity to painful stimuli. This conditional fear-induced analgesia was measured using the formalin test. The octapeptide Cys2Tyr3Orn5Pen7-amide (CTOP; 0, 10, 40 and 160 ng/rat) dose-dependently reversed conditional analgesia when administered i.c.v. The 40-ng dose partially attenuated fear-induced analgesia, whereas the 160-ng dose reversed it completely. Using similar procedures, CTOP was tested for its ability to reverse the analgesia produced by i.c.v. administered [D-Ala2,-NMPhe4, Glyol5]-enkephalin, [D-Pen2,D-Pen5]-enkephalin and U50488H, which are highly selective opioid agonists at mu, delta and kappa receptors, respectively. At 40 ng/rat, CTOP reversed the analgesia produced by the mu selective ligand but not that produced by the delta ligand or the kappa ligand. At 80 ng CTOP antagonized the analgesia produced both by both enkephalin analogs but not U50488H. Nor-binaltorphimine (0, 1, 3, 10 and 30 micrograms/rat) had no effect on conditional analgesia. However, the 10- and 30-micrograms doses could reverse completely the analgesia produced by U50488H. Therefore, it appears that mu and delta, but not kappa receptors, are involved in this opioid form of stress-induced analgesia. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Fear; Female; Formaldehyde; Naltrexone; Pain; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 1989 |