norbinaltorphimine and Dyskinesia--Drug-Induced

norbinaltorphimine has been researched along with Dyskinesia--Drug-Induced* in 2 studies

Other Studies

2 other study(ies) available for norbinaltorphimine and Dyskinesia--Drug-Induced

ArticleYear
Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats.
    Journal of neuropathology and experimental neurology, 2005, Volume: 64, Issue:11

    Although oral administration of L-Dopa remains the best therapy for Parkinson disease, its long-term administration causes the appearance of abnormal involuntary movements such as dyskinesia. Although persistent striatal induction of some genes has already been associated with such pathologic profiles in hemiparkinsonian rats, molecular and cellular mechanisms underlying such long-term adaptations remain to be elucidated. In this study, using a rat model of L-Dopa-induced dyskinesia, we report that activity regulated cytoskeletal (Arc)-associated protein is strongly upregulated in the lesioned striatum and that the extent of its induction further varies according to the occurrence or absence of locomotor sensitization. Moreover, Arc is preferentially induced, along with FosB, nur77, and homer-1a, in striatonigral neurons, which express mRNA encoding the precursor of dynorphin. Given the likely importance of Arc in the regulation of cytoskeleton during synaptic plasticity, its upregulation supports the hypothesis that a relationship exists between cytoskeletal modifications and the longlasting action of chronically administrated L-Dopa.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic Agents; AIDS-Related Complex; Amphetamine; Analgesics, Non-Narcotic; Animals; Antiparkinson Agents; Behavior, Animal; Carrier Proteins; Central Nervous System Stimulants; Corpus Striatum; Disease Models, Animal; Drug Interactions; Dynorphins; Dyskinesia, Drug-Induced; Functional Laterality; Homer Scaffolding Proteins; Immunohistochemistry; In Situ Hybridization; Levodopa; Male; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oxidopamine; Protein Precursors; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Stereotyped Behavior; Substantia Nigra; Time Factors; Tyrosine 3-Monooxygenase; Up-Regulation

2005
Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia.
    Neuroscience, 2002, Volume: 112, Issue:4

    Chronic neuroleptic treatment leads to the development of tardive dyskinesia in 20-30% of patients. While the pathogenesis of tardive dyskinesia remains elusive, altered opioid peptide function in striatal projection pathways of the basal ganglia has been implicated. Using a rodent model of vacuous chewing movements induced by chronic neuroleptic administration, we investigated regional involvement of opioid transmission in tardive dyskinesia. We examined the role of dynorphin in the direct striatonigral pathway by infusing nor-binaltorphimine, a selective kappa opioid receptor antagonist, into the substantia nigra pars reticulata. As well, infusions of naloxone (a non-specific opioid receptor antagonist), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; a mu opioid receptor antagonist) or naltrindole (a delta opioid receptor antagonist) into the globus pallidus were used to establish the contribution of the striatopallidal pathway. Chronic fluphenazine treatment (25 mg/kg i.m. every 3 weeks for 18 weeks) resulted in a robust increase in vacuous chewing movements. Infusion of nor-binaltorphimine (5.0 nmol) into the substantia nigra pars reticulata significantly attenuated vacuous chewing movements. Infusion of naloxone (0.5 and 2.0 nmol) into the globus pallidus also significantly attenuated vacuous chewing. Infusion of naltrindole into the globus pallidus blocked vacuous chewing at all doses administered (0.5, 1.0, 2.0 nmol) while CTOP was only effective at the two higher doses. From these results we suggest that increases in dynorphin in the direct striatonigral pathway and enkephalin in the indirect striatopallidal pathway following chronic neuroleptic administration are both likely to contribute to tardive dyskinesia.

    Topics: Animals; Dose-Response Relationship, Drug; Dynorphins; Dyskinesia, Drug-Induced; Fluphenazine; Globus Pallidus; Male; Mastication; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Somatostatin; Substantia Nigra

2002