norbinaltorphimine and Chronic-Pain

norbinaltorphimine has been researched along with Chronic-Pain* in 4 studies

Other Studies

4 other study(ies) available for norbinaltorphimine and Chronic-Pain

ArticleYear
Blockade of kappa opioid receptors reduces mechanical hyperalgesia and anxiety-like behavior in a rat model of trigeminal neuropathic pain.
    Behavioural brain research, 2022, 01-24, Volume: 417

    It has been shown that kappa opioid receptor (KOR) antagonists, such as nor-binaltorphimine (nor-BNI), have antinociceptive effects in some pain models that affect the trigeminal system. Also, its anxiolytic-like effect has been extensively demonstrated in the literature. The present study aimed to investigate the systemic, local, and central effect of nor-BNI on trigeminal neuropathic pain using the infraorbital nerve constriction model (CCI-ION), as well as to evaluate its effect on anxiety-like behavior associated with this model. Animals received nor-BNI systemically; in the trigeminal ganglion (TG); in the subarachnoid space to target the spinal trigeminal nucleus caudalis (Sp5C) or in the central amygdala (CeA) 14 days after CCI-ION surgery. Systemic administration of nor-BNI caused a significant reduction of facial mechanical hyperalgesia and promoted an anxiolytic-like effect, which was detected in the elevated plus-maze and the light-dark transition tests. When administered in the TG or CeA, the KOR antagonist was able to reduce facial mechanical hyperalgesia induced by CCI-ION, but without changing the anxiety-like behavior. Moreover, no change was observed on nociception and anxiety-like behavior after nor-BNI injection into the Sp5C. The present study demonstrated antinociceptive and anxiolytic-like effects of nor-BNI in a model of trigeminal neuropathic pain. The antinociceptive effect seems to be dissociated from the anxiolytic-like effect, at both the sites involved and at the dose need to achieve the effect. In conclusion, the kappa opioid system may represent a promising target to be explored for the control of trigeminal pain and associated anxiety. However, further studies are necessary to better elucidate its functioning and modulatory role in chronic trigeminal pain states.

    Topics: Animals; Anxiety; Central Amygdaloid Nucleus; Chronic Pain; Disease Models, Animal; Hyperalgesia; Male; Naltrexone; Nociception; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Trigeminal Neuralgia

2022
Naloxone-induced analgesia mediated by central kappa opioid system in chronic inflammatory pain.
    Brain research, 2021, 07-01, Volume: 1762

    Opioids, which are widely used for the treatment of chronic pain, have an analgesic effect by mainly activating mu-opioid receptor (MOR). Paradoxically, a high dose of naloxone, non-selective opioid receptor antagonist, is also known to induce analgesia, but the underlying mechanism remains unclear. Since kappa-opioid receptor (KOR) and dynorphin (KOR ligand) have been implicated in the naloxone-induced analgesia, we aimed to elucidate its mechanism by focusing on the kappa-opioid system in the brain under inflammatory pain condition. Systemic administration of naloxone (10 mg/kg, i.p.) decreased spontaneous pain behaviors only in complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model but not in the formalin-induced acute pain model. Immunohistochemistry analysis in the CFA model revealed both a significant decrease in MOR expression and an increase in prodynorphin density in the central nucleus of theamygdala (CeA) and nucleus accumbens (NAc) but not in other brain areas. Systemic administration of KOR antagonist (norbinaltorphimine, nor-BNI 10 mg/kg) also decreased spontaneous pain behaviors in the CFA model. Furthermore, microinjection of both naloxone and nor-BNI into NAc and CeA significantly reduced spontaneous chronic pain behavior. Taken together, our results suggest that naloxone-induced analgesia may be mediated by blocking facilitated kappa-opioid systems in the NAc and CeA.

    Topics: Analgesia; Analgesics, Opioid; Animals; Chronic Pain; Inflammation Mediators; Male; Mice; Mice, Inbred C57BL; Microinjections; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid, kappa

2021
Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain.
    Pain, 2019, Volume: 160, Issue:4

    Chronic pain is associated with neuroplastic changes in the amygdala that may promote hyper-responsiveness to mechanical and thermal stimuli (allodynia and hyperalgesia) and/or enhance emotional and affective consequences of pain. Stress promotes dynorphin-mediated signaling at the kappa opioid receptor (KOR) in the amygdala and mechanical hypersensitivity in rodent models of functional pain. Here, we tested the hypothesis that KOR circuits in the central nucleus of the amygdala (CeA) undergo neuroplasticity in chronic neuropathic pain resulting in increased sensory and affective pain responses. After spinal nerve ligation (SNL) injury in rats, pretreatment with a long-acting KOR antagonist, nor-binaltorphimine (nor-BNI), subcutaneously or through microinjection into the right CeA, prevented conditioned place preference (CPP) to intravenous gabapentin, suggesting that nor-BNI eliminated the aversiveness of ongoing pain. By contrast, systemic or intra-CeA administration of nor-BNI had no effect on tactile allodynia in SNL animals. Using whole-cell patch-clamp electrophysiology, we found that nor-BNI decreased synaptically evoked spiking of CeA neurons in brain slices from SNL but not sham rats. This effect was mediated through increased inhibitory postsynaptic currents, suggesting tonic disinhibition of CeA output neurons due to increased KOR activity as a possible mechanism promoting ongoing aversive aspects of neuropathic pain. Interestingly, this mechanism is not involved in SNL-induced mechanical allodynia. Kappa opioid receptor antagonists may therefore represent novel therapies for neuropathic pain by targeting aversive aspects of ongoing pain while preserving protective functions of acute pain.

    Topics: Animals; Central Amygdaloid Nucleus; Chronic Pain; Disease Models, Animal; Hyperalgesia; In Vitro Techniques; Male; Membrane Potentials; Naltrexone; Narcotic Antagonists; Neural Inhibition; Neuralgia; Neurons; Pain Threshold; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; Synaptic Transmission

2019
Kappa opioid signaling in the right central amygdala causes hind paw specific loss of diffuse noxious inhibitory controls in experimental neuropathic pain.
    Pain, 2019, Volume: 160, Issue:7

    Diffuse noxious inhibitory controls (DNICs) is a pain-inhibits-pain phenomenon demonstrated in humans and animals. Diffuse noxious inhibitory control is diminished in many chronic pain states, including neuropathic pain. The efficiency of DNIC has been suggested to prospectively predict both the likelihood of pain chronification and treatment response. Little is known as to why DNIC is dysfunctional in neuropathic pain. Here, we evaluated DNIC in the rat L5/L6 spinal nerve ligation (SNL) model of chronic pain using both behavioral and electrophysiological outcomes. For behavior, nociceptive thresholds were determined using response to noxious paw pressure on both hind paws as the test stimulus before, and after, injection of a conditioning stimulus of capsaicin into the left forepaw. Functionally, the spike firing of spinal wide-dynamic-range neuronal activity was evaluated before and during noxious ear pinch, while stimulating the ipsilateral paw with von Frey hairs of increased bending force. In both assays, the DNIC response was significantly diminished in the ipsilateral (ie, injured) paw of SNL animals. However, behavioral loss of DNIC was not observed on the contralateral (ie, uninjured) paw. Systemic application of nor-binaltorphimine, a kappa opioid antagonist, did not ameliorate SNL-induced hyperalgesia but reversed loss of the behavioral DNIC response. Microinjection of nor-binaltorphimine into the right central amygdala (RCeA) of SNL rats did not affect baseline thresholds but restored DNIC both behaviorally and electrophysiologically. Cumulatively, these data suggest that net enhanced descending facilitations may be mediated by kappa opioid receptor signaling from the right central amygdala to promote diminished DNIC after neuropathy.

    Topics: Amygdala; Animals; Chronic Pain; Diffuse Noxious Inhibitory Control; Electrophysiological Phenomena; Functional Laterality; Hindlimb; Hyperalgesia; Ligation; Male; Naltrexone; Neuralgia; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; Spinal Nerves

2019