norbinaltorphimine and Alcoholism

norbinaltorphimine has been researched along with Alcoholism* in 7 studies

Other Studies

7 other study(ies) available for norbinaltorphimine and Alcoholism

ArticleYear
Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis.
    Neuropharmacology, 2018, 09-15, Volume: 140

    There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.

    Topics: Alcoholism; Animals; Conditioning, Operant; Dynorphins; Ethanol; Gene Expression Regulation; Male; Maze Learning; Naltrexone; Rats; Receptors, Opioid, kappa; RNA, Messenger; Self Administration; Septal Nuclei; Substance Withdrawal Syndrome; Up-Regulation; Vocalization, Animal

2018
Protracted withdrawal from ethanol and enhanced responsiveness stress: regulation via the dynorphin/kappa opioid receptor system.
    Alcohol (Fayetteville, N.Y.), 2013, Volume: 47, Issue:5

    Although recent work suggests that the dynorphin/kappa opioid receptor (DYN/KOR) system may be a key mediator in the stress-related effects of alcohol, the regulation of long-term changes associated with protracted withdrawal from ethanol via the DYN/KOR system has yet to be explored. The objective of the present study was to determine the role of the DYN/KOR system in the regulation of anxiety-related behaviors during an extended period of abstinence from ethanol in animals with a history of ethanol dependence. Male Wistar rats (n = 94) were fed an ethanol or control liquid diet for 25-30 days. Six weeks after its removal, rats were exposed to 20 min of immobilization, and the ability of the KOR antagonist nor-binaltorphimine (nor-BNI) (0-20 mg/kg, intraperitoneal [i.p.]) to attenuate the enhanced responsiveness to stress observed in rats chronically exposed to ethanol was investigated using the elevated plus maze. In addition, the ability of U50,488 (0-10 mg/kg, i.p.) to prime anxiety-like behavior during protracted withdrawal was also examined. Rats with a history of ethanol dependence showed a significant decrease in open-arm exploration after exposure to restraint, indicating an anxiety-like state, compared to similarly treated controls, an effect that was blocked by nor-BNI. nor-BNI also selectively decreased center time and open-arm approaches in ethanol-exposed rats. The highest dose of U50,488 decreased open-arm exploration and the total number of arm entries in ethanol-exposed and control rats. Although lower doses of U50,488 did not affect open-arm exploration in either group, the 0.1 mg/kg dose selectively decreased motor activity in the ethanol-exposed rats when compared to similarly pretreated controls. These findings further support the hypothesis that behaviors associated with withdrawal from ethanol are in part regulated by the DYN/KOR system, and suggest that these effects may be long lasting in nature.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcoholism; Analgesics, Non-Narcotic; Animals; Anxiety; Dose-Response Relationship, Drug; Dynorphins; Ethanol; Male; Maze Learning; Motor Activity; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, kappa; Stress, Psychological; Substance Withdrawal Syndrome

2013
Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.
    Pharmacology, biochemistry, and behavior, 2012, Volume: 100, Issue:3

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug.

    Topics: Alcohol Deterrents; Alcohol Drinking; Alcoholism; Animals; Animals, Newborn; Appetitive Behavior; Behavior, Animal; Conditioning, Psychological; Dose-Response Relationship, Drug; Exploratory Behavior; Female; Male; Maternal Deprivation; Motor Activity; Naltrexone; Narcotic Antagonists; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reinforcement, Psychology; Severity of Illness Index

2012
κ opioid regulation of anxiety-like behavior during acute ethanol withdrawal.
    Pharmacology, biochemistry, and behavior, 2012, Volume: 102, Issue:1

    Withdrawal is one of the defining characteristics of alcohol dependence, and is often characterized by impaired physiological function and enhanced negative affect. Recent evidence suggests that the dynorphin (DYN)/kappa opioid receptor (KOR) system may be a key mediator in the negative affect often associated with drugs of abuse. The objective of the present experiments was to determine the role of the DYN/KOR system in the regulation of anxiety-related behavior during acute withdrawal from ethanol. Rats were fed an ethanol liquid diet and following removal, the ability of the KOR antagonist nor-BNI to attenuate the increased anxiogenic-like response characteristic of ethanol withdrawal was investigated using the elevated plus maze. A comparison study was also conducted examining anxiety-related behavior following direct activation of KORs via injections of the KOR agonist U50,488. Rats experiencing ethanol withdrawal showed a significant decrease in open arm exploration compared to controls, an effect that was blocked by nor-BNI. Similar decreases in open arm exploration were observed following injections with the KOR agonist, U50,488, an effect also reversed by pretreatment with nor-BNI. These results suggest that similar mechanisms are involved in the regulation of ethanol withdrawal- and KOR agonist-induced changes in behavior. Given the potential role of enhanced negative affect in persistent ethanol drinking, understanding the role of the DYN/KOR system in regulating anxiety associated with withdrawal may be critical in understanding the factors associated with the nature of alcohol dependence.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcoholism; Animals; Anxiety; Behavior, Animal; Ethanol; Male; Naltrexone; Rats; Rats, Wistar; Receptors, Opioid, kappa; Substance Withdrawal Syndrome

2012
Systemic κ-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats.
    Addiction biology, 2011, Volume: 16, Issue:1

    Altered dynorphin opioid peptide systems contribute to increased ethanol self-administration during withdrawal following chronic alcohol exposure. We previously identified that the κ-opioid receptor antagonist nor-binaltorphimine (nor-BNI) selectively reduced ethanol self-administration in dependent animals. The purpose of this study was twofold: (1) determine whether peripherally administered nor-BNI could reduce dependence-induced ethanol self-administration and (2) confirm the selective κ-opioid effects of nor-BNI by administering it 24 hours prior to ethanol self-administration sessions occurring during acute withdrawal. Nor-BNI decreased ethanol self-administration in ethanol-dependent animals, with no effect in nondependent animals. Thus, the κ-opioid/dynorphin system is a viable pharmacotherapeutic target for the treatment of alcoholism.

    Topics: Administration, Inhalation; Alcohol Deterrents; Alcoholism; Animals; Dose-Response Relationship, Drug; Dynorphins; Ethanol; Injections, Subcutaneous; Male; Naltrexone; Narcotic Antagonists; Premedication; Rats; Rats, Wistar; Receptors, Opioid, kappa; Self Administration; Substance Withdrawal Syndrome

2011
Synthesis and pharmacological evaluation of 6-naltrexamine analogs for alcohol cessation.
    Bioorganic & medicinal chemistry, 2009, Sep-15, Volume: 17, Issue:18

    A series of substituted aryl amide derivatives of 6-naltrexamine, 3 designed to be metabolically stable were synthesized and used to characterize the structural requirements for their potency to binding and functional activity of human mu (mu), delta (delta) and kappa (kappa) opioid and nociceptin (NOP) receptors. Binding assays showed that 4-10 had subnanomolar K(i) values for mu and kappa opioid receptors. Functional assays for stimulation of [(35)S]GTPgammaS binding showed that several compounds acted as partial or inverse agonists and antagonists of the mu and delta, kappa opioid or NOP receptors. The compounds showed considerable stability in the presence of rat, mouse or human liver preparations and NADPH. The inhibitory activity on the functional activity of human cytochrome P450s was examined to determine any potential inhibition by 4-9. Only modest inhibition of CYP3A4, CYP2C9 and CYP2C19 was observed for a few of the analogs. As a representative example, radiolabeled 6 was examined in vivo and showed reasonable brain penetration. The inhibition of ethanol self-administration in rats trained to self-administer a 10% (w/v) ethanol solution, utilizing operant techniques showed 5-8 to have very potent efficacy (ED(50) values 19-50 microg/kg).

    Topics: Alcohol Deterrents; Alcoholism; Animals; Humans; Liver; Male; Mice; Naltrexone; Nociceptin Receptor; Protein Binding; Rats; Rats, Wistar; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Structure-Activity Relationship

2009
Pharmacological evidence for a motivational role of kappa-opioid systems in ethanol dependence.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2008, Volume: 33, Issue:3

    The purpose of this study was to test the hypothesis that activation of the dynorphin/kappa (kappa)-opioid system has a role in the increased consumption of ethanol in dependent animals. The effects of three opioid receptor antagonists with different effects on opioid receptors, naltrexone, nalmefene, and nor-binaltorphimine (nor-BNI), were compared in their ability to decrease ethanol self-administration in nondependent and ethanol-dependent male Wistar rats. Nalmefene and naltrexone are both opioid receptor ligands with comparable molecular weights and pharmacokinetic profiles, but differing specificity for the three opioid receptor subtypes at low doses, while nor-BNI is a selective kappa-opioid receptor antagonist. Dependence was induced in half the animals by subjecting them to a 4-week intermittent vapor exposure period in which animals were exposed to ethanol vapor for 14 h per day. Subsequent to dependence induction, nalmefene, naltrexone, and nor-BNI were tested for their ability to modulate self-administration of ethanol in vapor-exposed and control rats. The results indicated that both nalmefene and naltrexone induced a significant dose-dependent decrease in the number of lever presses for ethanol in both groups of animals. However, in ethanol-dependent animals, nalmefene was significantly more effective in suppressing ethanol intake than naltrexone. Nor-BNI selectively attenuated ethanol-dependent self-administration while leaving nondependent ethanol self-administration intact. Because naltrexone is primarily selective for the mu-opioid receptor, and nalmefene is primarily selective for the mu- and kappa-opioid receptor subtypes, the fact that nalmefene demonstrates more suppression in dependent animals suggests that opioid systems distinct from the mu-regulated portion may be involved in the increased drinking seen during withdrawal in dependent animals. The results with nor-BNI confirm that kappa-opioid receptor antagonism selectively decreases dependence-induced ethanol self-administration, which supports the hypothesis that dynorphin/kappa-opioid systems are dysregulated in dependence and contribute to the increased drinking seen during acute withdrawal in dependent rats.

    Topics: Administration, Inhalation; Alcoholism; Animals; Central Nervous System Depressants; Conditioning, Operant; Data Interpretation, Statistical; Dynorphins; Ethanol; Injections, Intraventricular; Male; Motivation; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Self Administration; Substance Withdrawal Syndrome

2008