nnz-2566 and Brain-Injuries

nnz-2566 has been researched along with Brain-Injuries* in 2 studies

Other Studies

2 other study(ies) available for nnz-2566 and Brain-Injuries

ArticleYear
NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury.
    Journal of neurotrauma, 2009, Volume: 26, Issue:1

    Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.

    Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Apoptosis Regulatory Proteins; Astrocytes; Brain; Brain Injuries; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Gliosis; Injections, Intravenous; Microglia; Movement Disorders; Nerve Degeneration; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; Recovery of Function; Treatment Outcome

2009
NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats.
    Journal of neuroinflammation, 2009, Aug-05, Volume: 6

    Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats.. NNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10 mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of inflammatory cytokine IL-1beta.. NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1beta, TNF-alpha, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1beta, TNF-alpha and IFN-gamma in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels.. Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain.

    Topics: Animals; Anti-Inflammatory Agents; Brain Injuries; Cytokines; Disease Models, Animal; Down-Regulation; Encephalitis; Gene Expression Regulation; Head Injuries, Penetrating; Inflammation Mediators; Male; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; RNA, Messenger; Treatment Outcome

2009