nnc-55-0396 and Disease-Models--Animal

nnc-55-0396 has been researched along with Disease-Models--Animal* in 9 studies

Other Studies

9 other study(ies) available for nnc-55-0396 and Disease-Models--Animal

ArticleYear
The interaction between P2X7Rs and T-type calcium ion channels in penicillin-induced epileptiform activity.
    Neuropharmacology, 2019, 05-01, Volume: 149

    Limited information exists on the link between purinergic class P2X7 receptors (P2X7Rs) and calcium ion channels in epilepsy; no data has been reported regarding the interaction between P2X7Rs and T-type calcium ion channels in epilepsy. Thus, this study is an evaluation of the role that T-type calcium ion channels play in the effect of P2X7Rs on penicillin-induced epileptiform activity. In the first set of experiments, P2X7R agonist BzATP (at 25-, 50-, 100- and 200-μg doses), P2X7R antagonist A-438079 (at 5-, 10-, 20- and 40-μg doses) and T-type calcium ion channel antagonist, NNC-550396 were administered for electrophysiological analyses 30 min after penicillin injection (2.5 μl, 500 IU). In the second set of experiments, the effective doses of these substances were used for biochemical analyses. Malondialdehyde (MDA), advanced oxidation protein product (AOPP), glutathione (GSH), glutathione reductase (GR), glutathione peroxide (GPx), catalase (CAT) and superoxide dismutase (SOD) levels were measured in the cerebrum, cerebellum and brainstem of rats. BzATP (100 μg, icv) increased the mean frequency of epileptiform activity, whereas A-438079 (40 μg, icv) and NNC-550396 (30 μg, ic) reduced it. Both A-438079 and NNC-550396 reversed BzATP's proconvulsant action. BzATP increased lipid peroxidation and protein oxidation; it also altered other antioxidant enzymes measured in this study, which were all then reversed via A-438079 and NNC-550396, at least in the cerebrum. The electrophysiological and biochemical analysis of present study suggest that P2X7Rs and its interaction with T-type calcium ion channels play an important role in the experimental model of epilepsy.

    Topics: Adenosine Triphosphate; Animals; Antioxidants; Benzimidazoles; Brain Stem; Calcium Channels, T-Type; Cerebellum; Cerebrum; Cyclopropanes; Disease Models, Animal; Epilepsy; Naphthalenes; Penicillins; Purinergic P2X Receptor Agonists; Purinergic P2X Receptor Antagonists; Pyridines; Rats; Rats, Wistar; Receptors, Purinergic P2X7; Tetrazoles

2019
Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis.
    Journal of neuroscience research, 2015, Volume: 93, Issue:2

    Hydrogen sulfide (H(2)S), formed by multiple enzymes, including cystathionine-γ-lyase (CSE), targets Ca(v)3.2 T-type Ca(2+) channels (T channels) and transient receptor potential ankyrin-1 (TRPA1), facilitating somatic pain. Pancreatitis-related pain also appears to involve activation of T channels by H(2)S formed by the upregulated CSE. Therefore, this study investigates the roles of the Ca(v)3.2 isoform and/or TRPA1 in pancreatic nociception in the absence and presence of pancreatitis. In anesthetized mice, AP18, a TRPA1 inhibitor, abolished the Fos expression in the spinal dorsal horn caused by injection of a TRPA1 agonist into the pancreatic duct. As did mibefradil, a T-channel inhibitor, in our previous report, AP18 prevented the Fos expression following ductal NaHS, an H(2)S donor. In the mice with cerulein-induced acute pancreatitis, the referred hyperalgesia was suppressed by NNC 55-0396 (NNC), a selective T-channel inhibitor; zinc chloride; or ascorbic acid, known to inhibit Ca(v)3.2 selectively among three T-channel isoforms; and knockdown of Ca(v)3.2. In contrast, AP18 and knockdown of TRPA1 had no significant effect on the cerulein-induced referred hyperalgesia, although they significantly potentiated the antihyperalgesic effect of NNC at a subeffective dose. TRPA1 but not Ca(v)3.2 in the dorsal root ganglia was downregulated at a protein level in mice with cerulein-induced pancreatitis. The data indicate that TRPA1 and Ca(v)3.2 mediate the exogenous H(2)S-induced pancreatic nociception in naïve mice and suggest that, in the mice with pancreatitis, Ca(v)3.2 targeted by H(2)S primarily participates in the pancreatic pain, whereas TRPA1 is downregulated and plays a secondary role in pancreatic nociceptive signaling.

    Topics: Analysis of Variance; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Ceruletide; Cyclopropanes; Disease Models, Animal; Hydrogen Sulfide; Hyperalgesia; Isothiocyanates; Male; Mice; Naphthalenes; Oligodeoxyribonucleotides, Antisense; Pancreatitis; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Transient Receptor Potential Channels; TRPA1 Cation Channel; Visceral Pain

2015
NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction.
    Journal of molecular medicine (Berlin, Germany), 2015, Volume: 93, Issue:5

    Mitochondrial respiration is required for hypoxia-inducible factor (HIF)-1α stabilization, which is important for tumor cell survival, proliferation, and angiogenesis. Herein, small molecules that inhibit HIF-1α protein stability by targeting mitochondrial energy production were screened using the Library of Pharmacologically Active Compounds and cell growth assay in galactose or glucose medium. NNC 55-0396, a T-type Ca(2+) channel inhibitor, was selected as a hit from among 1,280 small molecules. NNC 55-0396 suppressed mitochondrial reactive oxygen species-mediated HIF-1α expression as well as stabilization by inhibiting protein synthesis in a dose-dependent manner. NNC 55-0396 inhibited tumor-induced angiogenesis in vitro and in vivo by suppressing HIF-1α stability. Moreover, NNC 55-0396 significantly suppressed glioblastoma tumor growth in a xenograft model. Thus, NNC 55-0396, a small molecule targeting T-type Ca(2+) channel, was identified by the systemic cell-based assay and was shown to have antiangiogenic activity via the suppression of HIF-1α signal transduction. These results provide new insights into the biological network between ion channel and HIF-1α signal transduction.. HIF-1α overexpression has been demonstrated in hypoxic cancer cells. NNC 55-0396, a T-type Ca(2+) channel inhibitor, inhibited HIF-1α expression via both proteasomal degradation and protein synthesis pathways. T-type Ca(2+) channel inhibitors block angiogenesis by suppressing HIF-1α stability and synthesis. NNC 55-0396 could be a potential therapeutic drug candidate for cancer treatment.

    Topics: Angiogenesis Inhibitors; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Cell Line; Cyclopropanes; Disease Models, Animal; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Mitochondria; Naphthalenes; Neoplasms; Neovascularization, Pathologic; Proteasome Endopeptidase Complex; Protein Biosynthesis; Protein Stability; Proteolysis; Signal Transduction; Tumor Burden; Xenograft Model Antitumor Assays

2015
Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel.
    Acta physiologica (Oxford, England), 2013, Volume: 207, Issue:4

    Using mice deficient in the CaV 3.1 T-type Ca(2+) channel, the aim of the present study was to elucidate the molecular identity of non-L-type channels involved in vascular tone regulation in mesenteric arteries and arterioles.. We used immunofluorescence microscopy to localize CaV 3.1 channels, patch clamp electrophysiology to test the effects of a putative T-type channel blocker NNC 55-0396 on whole-cell Ca(2+) currents, pressure myography and Ca(2+) imaging to test diameter and Ca(2+) responses of the applied vasoconstrictors, and Q-PCR to check mRNA expression levels of several Ca(2+) handling proteins in wild-type and CaV 3.1(-/-) mice.. Our data indicated that CaV 3.1 channels are important for the maintenance of myogenic tone at low pressures (40-80 mm Hg), whereas they are not involved in high-voltage-activated Ca(2+) currents, Ca(2+) entry or vasoconstriction to high KCl in mesenteric arteries and arterioles. Furthermore, we show that NNC 55-0396 is not a specific T-type channel inhibitor, as it potently blocks L-type and non-L-type high-voltage-activated Ca(2+) currents in mouse mesenteric vascular smooth muscle cell.. Our data using mice deficient in the CaV 3.1 T-type channel represent new evidence for the involvement of non-L-type channels in arteriolar tone regulation. We showed that CaV 3.1 channels are important for the myogenic tone at low arterial pressure, which is potentially relevant under resting conditions in vivo. Moreover, CaV 3.1 channels are not involved in Ca(2+) entry and vasoconstriction to large depolarization with, for example, high KCl. Finally, we caution against using NNC 55-0396 as a specific T-type channel blocker in native cells expressing high-voltage-activated Ca(2+) channels.

    Topics: Animals; Benzimidazoles; Calcium; Calcium Channel Blockers; Calcium Channels, T-Type; Cyclopropanes; Disease Models, Animal; Hypotension; Male; Mesenteric Arteries; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle Tonus; Muscle, Smooth, Vascular; Naphthalenes; Patch-Clamp Techniques; Vasoconstriction

2013
Involvement of the endogenous hydrogen sulfide/Ca(v) 3.2 T-type Ca2+ channel pathway in cystitis-related bladder pain in mice.
    British journal of pharmacology, 2012, Volume: 167, Issue:4

    Hydrogen sulfide (H(2) S), generated by enzymes such as cystathionine-γ-lyase (CSE) from L-cysteine, facilitates pain signals by activating the Ca(v) 3.2 T-type Ca(2+) channels. Here, we assessed the involvement of the CSE/H(2) S/Ca(v) 3.2 pathway in cystitis-related bladder pain.. Cystitis was induced by i.p. administration of cyclophosphamide in mice. Bladder pain-like nociceptive behaviour was observed and referred hyperalgesia was evaluated using von Frey filaments. Phosphorylation of ERK in the spinal dorsal horn was determined immunohistochemically following intravesical administration of NaHS, an H(2) S donor.. Cyclophosphamide caused cystitis-related symptoms including increased bladder weight, accompanied by nociceptive changes (bladder pain-like nociceptive behaviour and referred hyperalgesia). Pretreatment with DL-propargylglycine, an inhibitor of CSE, abolished the nociceptive changes and partly prevented the increased bladder weight. CSE protein in the bladder was markedly up-regulated during development of cystitis. Mibefradil or NNC 55-0396, blockers of T-type Ca(2+) channels, administered after the symptoms of cystitis appeared, reversed the nociceptive changes. Further, silencing of Ca(v) 3.2 protein by repeated intrathecal administration of mouse Ca(v) 3.2-targeting antisense oligodeoxynucleotides also significantly attenuated the nociceptive changes, but not the increased bladder weight. Finally, the number of cells staining positive for phospho-ERK was increased in the superficial layer of the L6 spinal cord after intravesical administration of NaHS, an effect inhibited by NNC 55-0396.. Endogenous H(2) S, generated by up-regulated CSE, caused bladder pain and referred hyperalgesia through the activation of Ca(v) 3.2 channels, one of the T-type Ca(2+) channels, in mice with cyclophosphamide-induced cystitis.

    Topics: Acetanilides; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Cyclophosphamide; Cyclopropanes; Cystathionine gamma-Lyase; Cystitis; Disease Models, Animal; Female; Ganglia, Spinal; Hydrogen Sulfide; Mibefradil; Mice; Naphthalenes; Organ Size; Pain; Purines; Transient Receptor Potential Channels; TRPA1 Cation Channel; Urinary Bladder; Verapamil

2012
The Ca(v)3.1 T-type calcium channel is required for neointimal formation in response to vascular injury in mice.
    Cardiovascular research, 2012, Dec-01, Volume: 96, Issue:3

    Restenosis is an undesirable consequence following percutaneous vascular interventions. However, the current strategy for preventing restenosis is inadequate. The aim of this study was to investigate the role of low-voltage gated T-type calcium channels in regulating vascular smooth muscle cell (VSMC) proliferation during neointimal formation.. Wire injury of mice carotid arteries resulted in neointimal formation in the wild-type and Ca(v)3.2(-/-) but not Ca(v)3.1(-/-) mice, indicating a critical role of Ca(v)3.1 in neointimal formation. In addition, we found a significant increase of Ca(v)3.1 mRNA and protein in injured arteries. Ca(v)3.1 knockout or knockdown (shCa(v)3.1) reduced VSMC proliferation. Since T-channels are expressed predominantly in the G(1) and S phases in VSMCs, we examined whether an abnormal G(1)/S transition was the cause of the reduced cell proliferation in shCa(v)3.1 VSMCs. We found a disrupted expression of cyclin E in shCa(v)3.1 VSMCs, and calmodulin agonist CALP1 partially rescued the defective cell proliferation. Furthermore, we demonstrated that infusion of NNC55-0396, a selective T-channel blocker, inhibited neointimal formation in wild-type mice.. Ca(v)3.1 is required for VSMC proliferation during neointimal formation, and blocking of Ca(v)3.1 may be beneficial for preventing restenosis.

    Topics: Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Calmodulin; Carotid Arteries; Carotid Artery Injuries; Cell Cycle Checkpoints; Cell Proliferation; Cells, Cultured; Cyclin E; Cyclopropanes; Disease Models, Animal; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Naphthalenes; Neointima; Oligopeptides; RNA Interference; RNA, Messenger; Time Factors; Transfection; Vascular System Injuries

2012
Comparison of mibefradil and derivative NNC 55-0396 effects on behavior, cytochrome P450 activity, and tremor in mouse models of essential tremor.
    European journal of pharmacology, 2011, May-20, Volume: 659, Issue:1

    NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride], is a mibefradil derivative that retains potent in vitro T-type calcium channel antagonist efficacy. We compared the two compounds for behavioral toxicity, effects on cytochrome P450 activity, and efficacy against tremor in the γ-aminobutyric acid type A (GABAA) receptor subunit α1-null mouse, and the harmaline tremor model of essential tremor in wild-type mice. NNC 55-0396 was better tolerated than mibefradil in the horizontal wire test of sedation/motor function, with 3/6 failing at 300 and 30mg/kg respectively. To assess for a potential interaction with harmaline, mice were given the drugs, followed by harmaline or vehicle, and tested 30min later in the inverted wire grid test. Mibefradil exacerbated, whereas NNC 55-0396 ameliorated harmaline-induced test deficits. In mouse liver microsomes, NNC 55-0396 was a less potent inhibitor of harmaline O-demethylation than mibefradil (Ki: 0.95 and 0.29μM respectively), and also less potent at inhibiting testosterone 6-β-hydroxylation (Ki: 0.71 and 0.12μM respectively). In the GABAA α1-null model, NNC 55-0396 but not mibefradil, (each at 20mg/kg), suppressed tremor while NNC 55-0396 at 12.5mg/kg suppressed harmaline-induced tremor by half by 20-100min, whereas mibefradil at the same dose did not significantly affect tremor. In contrast to mibefradil, NNC 55-0396 is well tolerated and suppresses tremor, and exerts less cytochrome P450 inhibition. These results suggest potential clinical utility for NNC 55-0396 or similar derivatives as a T-type calcium antagonist.

    Topics: Animals; Behavior, Animal; Benzimidazoles; Cyclopropanes; Cytochrome P-450 Enzyme System; Disease Models, Animal; Essential Tremor; Gene Deletion; Harmaline; Hydroxylation; Methylation; Mibefradil; Mice; Naphthalenes; Receptors, GABA-A; Structure-Activity Relationship; Testosterone

2011
Modulation of subthalamic T-type Ca(2+) channels remedies locomotor deficits in a rat model of Parkinson disease.
    The Journal of clinical investigation, 2011, Volume: 121, Issue:8

    An increase in neuronal burst activities in the subthalamic nucleus (STN) is a well-documented electrophysiological feature of Parkinson disease (PD). However, the causal relationship between subthalamic bursts and PD symptoms and the ionic mechanisms underlying the bursts remain to be established. Here, we have shown that T-type Ca(2+) channels are necessary for subthalamic burst firing and that pharmacological blockade of T-type Ca(2+) channels reduces motor deficits in a rat model of PD. Ni(2+), mibefradil, NNC 55-0396, and efonidipine, which inhibited T-type Ca(2+) currents in acutely dissociated STN neurons, but not Cd(2+) and nifedipine, which preferentially inhibited L-type or the other non–T-type Ca(2+) currents, effectively diminished burst activity in STN slices. Topical administration of inhibitors of T-type Ca(2+) channels decreased in vivo STN burst activity and dramatically reduced the locomotor deficits in a rat model of PD. Cd(2+) and nifedipine showed no such electrophysiological and behavioral effects. While low-frequency deep brain stimulation (DBS) has been considered ineffective in PD, we found that lengthening the duration of the low-frequency depolarizing pulse effectively improved behavioral measures of locomotion in the rat model of PD, presumably by decreasing the availability of T-type Ca(2+) channels. We therefore conclude that modulation of subthalamic T-type Ca(2+) currents and consequent burst discharges may provide new strategies for the treatment of PD.

    Topics: Animals; Benzimidazoles; Cadmium; Calcium; Calcium Channels, T-Type; Cyclopropanes; Dihydropyridines; Disease Models, Animal; Electrophysiology; Male; Mibefradil; Movement; Naphthalenes; Neurons; Nickel; Nitrophenols; Organophosphorus Compounds; Parkinson Disease; Rats; Rats, Wistar

2011
T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor.
    Neuropharmacology, 2010, Volume: 59, Issue:6

    Essential tremor is a common disorder that lacks molecular targets for therapeutic development. T-type calcium channel activation has been postulated to underlie rhythmicity in the olivo-cerebellar system that is implicated in essential tremor. We therefore tested whether compounds that antagonize T-type calcium channel currents suppress tremor in two mouse models that possess an essential tremor-like pharmacological response profile. Tremor was measured using digitized spectral motion power analysis with harmaline-induced tremor and in the GABA(A) receptor α1 subunit-null model. Mice were given ethosuximide, zonisamide, the neuroactive steroid (3β,5α,17β)-17-hydroxyestrane-3-carbonitrile (ECN), the 3,4-dihydroquinazoline derivative KYS05064, the mibefradil derivative NNC 55-0396, or vehicle. In non-sedating doses, each compound reduced harmaline-induced tremor by at least 50% (range of maximal suppression: 53-81%), and in the GABA(A) α1-null model by at least 70% (range 70-93%). Because the T-type calcium channel Cav3.1 is the dominant subtype expressed in the inferior olive, we assessed the tremor response of Cav3.1-deficient mice to harmaline, and found that null and heterozygote mice exhibit as much tremor as wild-type mice. In addition, ECN and NNC 55-0396 suppressed harmaline tremor as well in Cav3.1-null mice as in wild-type mice. The finding that five T-type calcium antagonists suppress tremor in two animal tremor models suggests that T-type calcium channels may be an appropriate target for essential tremor therapy development. It is uncertain whether medications developed to block only the Cav3.1 subtype would exhibit efficacy.

    Topics: Analysis of Variance; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Cyclopropanes; Disease Models, Animal; Essential Tremor; Estranes; Ethosuximide; Harmaline; Isoxazoles; Male; Mice; Mice, Inbred ICR; Mice, Knockout; Naphthalenes; Nitriles; Receptors, GABA-A; Zonisamide

2010