nitrophenols and Thalassemia

nitrophenols has been researched along with Thalassemia* in 3 studies

Other Studies

3 other study(ies) available for nitrophenols and Thalassemia

ArticleYear
Deferiprone and efonidipine mitigated iron-overload induced neurotoxicity in wild-type and thalassemic mice.
    Life sciences, 2019, Dec-15, Volume: 239

    We previously demonstrated that iron-overload in non-thalassemic rats induced neurotoxicity and cognitive decline. However, the effect of iron-overload on the brain of thalassemic condition has never been investigated. An iron chelator (deferiprone) provides neuroprotective effects against metal toxicity. Furthermore, a T-type calcium channels blocker (efonidipine) effectively attenuates cardiac dysfunction in thalassemic mice with iron-overload. However, the effects of both drugs on brain of iron-overload thalassemia has not been determined. We hypothesize that iron-overload induces neurotoxicity in Thalassemic and wild-type mice, and not only deferiprone, but also efonidipine, provides neuroprotection against iron-overload condition.. Mice from both wild-type (WT) and β-thalassemic type (HT) groups were assigned to be fed with a standard-diet or high-iron diet containing 0.2% ferrocene/kg of diet (HFe) for 4 months consecutively. After three months of HFe, 75-mg/kg/d deferiprone or 4-mg/kg/d efonidipine were administered to the HFe-fed WT and HT mice for 1 month.. HFe consumption caused an equal impact on circulating iron-overload, oxidative stress, and inflammation in WT and HT mice. Brain iron-overload and iron-mediated neurotoxicity, such as oxidative stress, inflammation, glial activation, mitochondrial dysfunction, and Alzheimer's like pathologies, were observed to an equal degree in HFe fed WT and HT mice. These pathological conditions were mitigated by both deferiprone and efonidipine.. These findings indicate that iron-overload itself caused neurotoxicity, and T-type calcium channels may play a role in this condition.

    Topics: Animals; Calcium Channel Blockers; Calcium Channels, T-Type; Deferiprone; Dihydropyridines; Disease Models, Animal; Iron; Iron Chelating Agents; Iron Overload; Mice; Mice, Inbred C57BL; Neurotoxicity Syndromes; Nitrophenols; Organophosphorus Compounds; Thalassemia

2019
Effects of iron overload, an iron chelator and a T-Type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice.
    European journal of pharmacology, 2017, Mar-15, Volume: 799

    Although cardiac mitochondrial dysfunction is involved in the pathophysiology of iron-overload cardiomyopathy, the precise mechanisms of iron-induced mitochondrial dysfunction, and the roles of the iron chelator deferiprone and the T-type calcium channel blocker efonidipine on cardiac mitochondrial biogenesis in thalassemic mice are still unknown. β-thalassemic (HT) mice were fed with a normal diet (ND) or a high iron-diet (FE) for 90 days. Then, the FE-fed mice were treated with deferiprone (75mg/kg/day) or efonidipine (4mg/kg/day) for 30 days. The hearts were used to determine cardiac mitochondrial function, biogenesis, mitochondrial dynamics and protein expressions for oxidative phosphorylation (OXPHOS) and apoptosis. ND-fed HT mice had impaired heart rate variability (HRV), increased mitochondrial dynamic proteins and caspase-3, compared with ND-fed wild-type mice. Iron overload led to increased plasma non-transferrin bound iron, oxidative stress, and the impairments of HRV and left ventricular function, cardiac mitochondrial function and mitochondrial dynamics, and decreased complex IV in thalassemic mice. Our results suggested that deferiprone and efonidipine treatment showed similar benefit in attenuating cardiac iron deposit and oxidative stress, and improved cardiac mitochondrial function, leading to improved left ventricular function, without altering the cardiac mitochondrial biogenesis, and apoptosis proteins in iron-overload thalassemic mice.

    Topics: Aminophylline; Animals; Apoptosis; Atropine; Blood Pressure; Calcium Channel Blockers; Calcium Channels, T-Type; Deferiprone; Dihydropyridines; Drug Combinations; Heart; Heart Rate; Iron; Iron Chelating Agents; Iron Overload; Male; Malondialdehyde; Mice; Mitochondria; Myocardium; Nitroglycerin; Nitrophenols; Organelle Biogenesis; Organophosphorus Compounds; Oxidative Phosphorylation; Papaverine; Phenobarbital; Pyridones; Signal Transduction; Thalassemia

2017
Dual T-type and L-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice.
    Experimental physiology, 2016, Volume: 101, Issue:4

    What is the central question of this study? Head-to-head comparison of the therapeutic efficacy among commercial iron chelators and a dual T- (TTCC) and L-type calcium channel (LTCC) blocker on cardiac function, mitochondrial function and the protein expression of cardiac iron transporters in thalassaemic mice in iron-overloaded conditions has not been assessed. What is the main finding and its importance? The dual TTCC and LTCC blocker efonidipine could provide broad beneficial effects in the heart, liver, plasma and mitochondria in both wild-type and thalassaemic mice in iron-overloaded conditions. Its beneficial effects are of the same degree as the three commercial iron chelators currently used clinically. It is possible that efonidipine could be an alternative choice in patients unable to take iron chelators for the treatment of iron-overload conditions. Iron chelation therapy is a standard treatment in thalassaemia patients; however, its poor cardioprotective efficacy and serious side-effects are a cause for concern. Previous studies have shown that treatment with L-type calcium channel (LTCC) blockers or dual T-type calcium channel (TTCC) and LTCC blockers decreases cardiac iron and improves cardiac dysfunction in an iron-overloaded rodent model. Currently, the head-to-head comparison of therapeutic efficacy among commercial iron chelators, a dual TTCC and LTCC blocker and an LTCC blocker on cardiac function, mitochondrial function and the protein expression of cardiac iron transporters in thalassaemic mice in an iron-overloaded state has never been investigated. An iron-overloaded state was induced in β-thalassaemic and wild-type mice. Cardiac iron overload was induced to a greater extent than in a previous study by feeding the mice with an iron-enriched diet for 4 months. Then, an LTCC blocker (amlodipine) or a dual TTCC and LTCC blocker (efonidipine) or one of the commercial iron chelators (deferoxamine, deferasirox or deferiprone) was administered for 1 month with continuous iron feeding. All treatments reduced cardiac iron deposition and improved mitochondrial and cardiac dysfunction in both types of mice. Only efonidipine and the iron chelators reduced liver iron accumulation, liver malondialdehyde and plasma malondialdehyde in these mice. Although all pharmacological interventions reduced cardiac iron deposition, they did not alter the protein expression levels of cardiac iron transporter. These findings indicated that efonidipine provided a

    Topics: Animals; Benzoates; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Cardiovascular Diseases; Deferasirox; Deferiprone; Deferoxamine; Dihydropyridines; Heart; Iron Chelating Agents; Iron Overload; Male; Malondialdehyde; Mice; Mice, Inbred C57BL; Mitochondria; Nitrophenols; Organophosphorus Compounds; Pyridones; Thalassemia; Triazoles

2016