nitrophenols has been researched along with Myocardial-Infarction* in 2 studies
2 other study(ies) available for nitrophenols and Myocardial-Infarction
Article | Year |
---|---|
T-type Ca2+ channel blockade prevents sudden death in mice with heart failure.
Pharmacological interventions for prevention of sudden arrhythmic death in patients with chronic heart failure remain limited. Accumulating evidence suggests increased ventricular expression of T-type Ca(2+) channels contributes to the progression of heart failure. The ability of T-type Ca(2+) channel blockade to prevent lethal arrhythmias associated with heart failure has never been tested, however.. We compared the effects of efonidipine and mibefradil, dual T- and L-type Ca(2+) channel blockers, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, on survival and arrhythmogenicity in a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor transgenic mice (dnNRSF-Tg), which is a useful mouse model of dilated cardiomyopathy leading to sudden death. Efonidipine, but not nitrendipine, substantially improved survival among dnNRSF-Tg mice. Arrhythmogenicity was dramatically reduced in dnNRSF-Tg mice treated with efonidipine or mibefradil. Efonidipine acted by reversing depolarization of the resting membrane potential otherwise seen in ventricular myocytes from dnNRSF-Tg mice and by correcting cardiac autonomic nervous system imbalance. Moreover, the R(-)-isomer of efonidipine, a recently identified, highly selective T-type Ca(2+) channel blocker, similarly improved survival among dnNRSF-Tg mice. Efonidipine also reduced the incidence of sudden death and arrhythmogenicity in mice with acute myocardial infarction.. T-type Ca(2+) channel blockade reduced arrhythmias in a mouse model of dilated cardiomyopathy by repolarizing the resting membrane potential and improving cardiac autonomic nervous system imbalance. T-type Ca(2+) channel blockade also prevented sudden death in mice with myocardial infarction. Our findings suggest T-type Ca(2+) channel blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Topics: Animals; Arrhythmias, Cardiac; Autonomic Nervous System; Blood Pressure; Body Weight; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Cardiomyopathy, Dilated; Death, Sudden, Cardiac; Dihydropyridines; Disease Models, Animal; Female; Mibefradil; Mice; Mice, Inbred C57BL; Mice, Transgenic; Myocardial Infarction; Myocytes, Cardiac; Nitrendipine; Nitrophenols; Organophosphorus Compounds; Patch-Clamp Techniques | 2009 |
Determination of phosphodiesterase I activity in human blood serum.
Phosphodiesterase I (EC 3.1.4.1) activity was detected in normal human blood serum. The enzyme is stable at laboratory temperature for three days, but is inactivated at pH less than 7. The pH for optimum activity increases with the substrate concentration (under the conditions used, from pH 9.0 to 10.2) and, conversely, the Km increases with pH and buffer concentration. The enzyme is inhibited by ethylenediaminetetraacetate but not by phosphate (0.1 mol/liter). We developed a simple quantitative method for its determination, based on hydrolysis of the p-nitrophenyl ester of thymidine 5'-monophosphate and subsequent measurement of the liberated p-nitrophenol at 400 nm in NaOH (0.1 mol/liter). Normal values (mean +/- 2 SD) were determined to be 33 +/- 6.4 U/liter. Preliminary studies indicate that phosphodiesterase I activity is greater than normal in serum of patients with necrotic changes in the liver or kidney or in cases of breast cancer, but not in that of patients with myocardial infarction, bone cancer, lung cancer, or chronic liver cirrhosis. Topics: Alkaline Phosphatase; Bone Neoplasms; Breast Neoplasms; Edetic Acid; Female; Humans; Kinetics; Liver Cirrhosis; Lung Neoplasms; Male; Myocardial Infarction; Nitrophenols; Phosphates; Phosphodiesterase Inhibitors; Phosphoric Diester Hydrolases; Thymine Nucleotides | 1975 |