nitrophenols has been researched along with Glomerulonephritis* in 2 studies
1 trial(s) available for nitrophenols and Glomerulonephritis
Article | Year |
---|---|
Efonidipine reduces proteinuria and plasma aldosterone in patients with chronic glomerulonephritis.
Efonidipine, a dihydropirydine calcium channel blocker, has been shown to dilate the efferent glomerular arterioles as effectively as the afferent arterioles. The present study compared the chronic effects of efonidipine and amlodipine on proteinuria in patients with chronic glomerulonephritis. The study subjects were 21 chronic glomerulonephritis patients presenting with spot proteinuria greater than 30 mg/dL and serum creatinine concentrations of Topics: Adult; Aged; Aldosterone; Amlodipine; Blood Pressure; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Chronic Disease; Cross-Over Studies; Dihydropyridines; Female; Glomerulonephritis; Humans; Male; Middle Aged; Nitrophenols; Organophosphorus Compounds; Proteinuria | 2007 |
1 other study(ies) available for nitrophenols and Glomerulonephritis
Article | Year |
---|---|
Precipitating antigen-antibody systems are required for the formation of subepithelial electron-dense immune deposits in rat glomeruli.
This study was conducted to determine whether multivalent, precipitating antigens are required for formation of subepithelial electron-dense immune deposits in glomeruli. 2-nitro-4-azidophenyl (NAP) was conjugated with variable density to human serum albumin (HSA) to yield nonprecipitating (NAP3.1 X HSA and NAP11.4 X HSA) and precipitating (NAP19.7 X HSA) antigens with antibodies to the hapten. These antigen preparations were cationized with ethylene diamine to enhance deposition in renal glomeruli due to interaction with the fixed negative charges in the glomerular capillary wall. Following injection into the left renal artery of rats these antigens alone persisted in the glomeruli for a relatively short time by immunofluorescence microscopy. When antibodies to NAP were injected intravenously after the antigen injection, the nonprecipitating antigens and antibodies were detectable in the glomeruli by immunofluorescence microscopy up to 8 h, comparable to antigen alone. Electron-dense deposits were not formed in these glomeruli. In contrast, when the precipitating antigen was injected and followed by antibodies to the hapten, antigen and antibody were detected by immunofluorescence microscopy through 96 h. In these specimens electron-dense deposits were present from 40 min through 96 h and after 24 h the deposits were present only in the subepithelial area. The same results were obtained when the nonprecipitating hapten-carrier conjugates were followed with antibodies to the carrier molecule. These data indicate that the persistence of immune deposits by immunofluorescence microscopy and the formation of electron-dense deposits in the subepithelial area require a precipitating antigen-antibody system. Topics: Animals; Antibodies; Antigen-Antibody Complex; Antigen-Antibody Reactions; Epithelium; Fluorescent Antibody Technique; Glomerulonephritis; Humans; Immune Complex Diseases; Kidney Glomerulus; Nitrophenols; Rats; Rats, Inbred Lew; Rats, Inbred Strains; Serum Albumin | 1983 |