nitrophenols has been researched along with Glioma* in 10 studies
10 other study(ies) available for nitrophenols and Glioma
Article | Year |
---|---|
Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis.
Overcoming apoptosis resistance is one major issue in glioblastoma (GB) therapies. Accumulating evidence indicates that resistance to apoptosis in GB is mediated via upregulation of pro-survival BCL2-family members. The synthetic BH3-mimetic ABT-737 effectively targets BCL2, BCL2 like 1 and BCL2 like 2 but still barely affects cell survival which is presumably due to its inability to inhibit myeloid cell leukemia 1 (MCL1). The constitutively active serine/threonine kinase proviral integration site for moloney murine leukemia virus 1 (PIM1) was recently found to be overexpressed in GB patient samples and to maintain cell survival in these tumors. For different GB cell lines, Western Blot, mitochondrial fractionation, fluorescence microscopy, effector caspase assays, flow cytometry, and an adult organotypic brain slice transplantation model were used to investigate the putative PIM1/MCL1 signaling axis regarding potential synergistic effects with ABT-737. We demonstrate that combination of the PIM1 inhibitor SGI-1776 or the pan-PIM kinase inhibitor AZD1208 with ABT-737 strongly sensitizes GB cells to apoptosis. Unexpectedly, this effect was found to be MCL1-independent, but could be partially blocked by caspase 8 (CASP8) inhibition. Remarkably, the analysis of autophagy markers in combination with the observation of massive accumulation and hampered degradation of autophagosomes suggests a completely novel function of PIM1 as a late stage autophagy regulator, maintaining the autophagic flux at the level of autophagosome/lysosome fusion. Our data indicate that PIM1 inhibition and ABT-737 synergistically induce apoptosis in an MCL1-independent but CASP8-dependent manner in GB. They also identify PIM1 as a suitable target for overcoming apoptosis resistance in GB. Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Biphenyl Compounds; Cell Line, Tumor; Cell Survival; Glioblastoma; Glioma; Humans; Mice; Mice, Inbred C57BL; Mitochondria; Myeloid Cell Leukemia Sequence 1 Protein; Nitrophenols; Peptide Fragments; Piperazines; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-pim-1; Sulfonamides; Thiazolidines | 2019 |
Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic-Induced Apoptosis.
Malignant gliomas exhibit a high intrinsic resistance against stimuli triggering apoptotic cell death. HSF1 acts as transcription factor upstream of HSP70 and the HSP70 co-chaperone BAG3 that is overexpressed in glioblastoma. To specifically target this resistance mechanism, we applied the selective HSF1 inhibitor KRIBB11 and the HSP70/BAG3 interaction inhibitor YM-1 in combination with the pan-Bcl-2 inhibitor AT-101. Here, we demonstrate that lentiviral BAG3 silencing significantly enhances AT-101-induced cell death and reactivates effector caspase-mediated apoptosis in U251 glioma cells with high BAG3 expression, whereas these sensitizing effects were less pronounced in U343 cells expressing lower BAG3 levels. KRIBB11 decreased protein levels of HSP70, BAG3, and the antiapoptotic Bcl-2 protein Mcl-1, and both KRIBB11 and YM-1 elicited significantly increased mitochondrial dysfunction, effector caspase activity, and apoptotic cell death after combined treatment with AT-101 and ABT-737. Depletion of BAG3 also led to a pronounced loss of cell-matrix adhesion, FAK phosphorylation, and in vivo tumor growth in an orthotopic mouse glioma model. Furthermore, it reduced the plating efficiency of U251 cells in three-dimensional clonogenic assays and limited clonogenic survival after short-term treatment with AT-101. Collectively, our data suggest that the HSF1/HSP70/BAG3 pathway plays a pivotal role for overexpression of prosurvival Bcl-2 proteins and cell death resistance of glioma. They also support the hypothesis that interference with BAG3 function is an effective novel approach to prime glioma cells to anoikis. Mol Cancer Ther; 16(1); 156-68. ©2016 AACR. Topics: Adaptor Proteins, Signal Transducing; Animals; Apoptosis; Apoptosis Regulatory Proteins; bcl-X Protein; Biomarkers, Tumor; Biphenyl Compounds; Cell Adhesion; Cell Line, Tumor; DNA-Binding Proteins; Drug Resistance, Neoplasm; Gene Expression; Gene Knockdown Techniques; Glioma; Gossypol; Heat Shock Transcription Factors; HSP70 Heat-Shock Proteins; Humans; Inhibitor of Apoptosis Proteins; Mice; Molecular Mimicry; NF-kappa B; Nitrophenols; Piperazines; Protein Binding; Proto-Oncogene Proteins c-bcl-2; RNA, Small Interfering; Signal Transduction; Sulfonamides; Survivin; Transcription Factors | 2017 |
Dinaciclib, a Cyclin-Dependent Kinase Inhibitor Promotes Proteasomal Degradation of Mcl-1 and Enhances ABT-737-Mediated Cell Death in Malignant Human Glioma Cell Lines.
The prognosis for malignant glioma, the most common brain tumor, is still poor, underscoring the need to develop novel treatment strategies. Because glioma cells commonly exhibit genomic alterations involving genes that regulate cell-cycle control, there is a strong rationale for examining the potential efficacy of strategies to counteract this process. In this study, we examined the antiproliferative effects of the cyclin-dependent kinase inhibitor dinaciclib in malignant human glioma cell lines, with intact, deleted, or mutated p53 or phosphatase and tensin homolog on chromosome 10; intact or deleted or p14ARF or wild-type or amplified epidermal growth factor receptor. Dinaciclib inhibited cell proliferation and induced cell-cycle arrest at the G2/M checkpoint, independent of p53 mutational status. In a standard 72-hour 3-[4,5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium (MTS) assay, at clinically relevant concentrations, dose-dependent antiproliferative effects were observed, but cell death was not induced. Moreover, the combination of conventional chemotherapeutic agents and various growth-signaling inhibitors with dinaciclib did not yield synergistic cytotoxicity. In contrast, combination of the Bcl-2/Bcl-xL inhibitors ABT-263 (4-[4-[[2-(4-chlorophenyl)-5,5-dimethylcyclohexen-1-yl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-morpholin-4-yl-1-phenylsulfanylbutan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylbenzamide) or ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4-[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl]amino]-3-nitrophenyl]sulfonylbenzamide) with dinaciclib potentiated the apoptotic response induced by each single drug. The synergistic killing by ABT-737 with dinaciclib led to cell death accompanied by the hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential; the release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor; phosphatidylserine exposure on the plasma membrane surface and activation of caspases and poly ADP-ribose polymerase. Mechanistic studies revealed that dinaciclib promoted proteasomal degradation of Mcl-1. These observations may have important clinical implications for the design of experimental treatment protocols for malignant human glioma. Topics: Biphenyl Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cell Death; Cell Line, Tumor; Cell Proliferation; Cyclic N-Oxides; Cyclin-Dependent Kinases; Dose-Response Relationship, Drug; Drug Synergism; Glioma; Humans; Indolizines; Myeloid Cell Leukemia Sequence 1 Protein; Nitrophenols; Piperazines; Proteasome Endopeptidase Complex; Pyridinium Compounds; Sulfonamides | 2016 |
Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide.
Genotoxic chemotherapy with temozolomide (TMZ) is a mainstay of treatment for glioblastoma (GBM); however, at best, TMZ provides only modest survival benefit to a subset of patients. Recent insight into the heterogeneous nature of GBM suggests a more personalized approach to treatment may be necessary to overcome cancer drug resistance and improve patient care. These include novel therapies that can be used both alone and with TMZ to selectively reactivate apoptosis within malignant cells. For this approach to work, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified first. Here, we describe the first proof-of-principle study that merges quantitative protein-based analysis of apoptosis signaling networks with data- and knowledge-driven mathematical systems modeling to predict treatment responsiveness of GBM cell lines to various apoptosis-inducing stimuli. These include monotherapies with TMZ and TRAIL, which activate the intrinsic and extrinsic apoptosis pathways, respectively, as well as combination therapies of TMZ+TRAIL. We also successfully employed this approach to predict whether individual GBM cell lines could be sensitized to TMZ or TRAIL via the selective targeting of Bcl-2/Bcl-xL proteins with ABT-737. Our findings suggest that systems biology-based approaches could assist in personalizing treatment decisions in GBM to optimize cell death induction. Topics: Antineoplastic Agents, Alkylating; Apoptosis; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Dacarbazine; Drug Resistance, Neoplasm; Glioblastoma; Glioma; Humans; Models, Theoretical; Nitrophenols; Piperazines; Signal Transduction; Sulfonamides; Systems Biology; Temozolomide; TNF-Related Apoptosis-Inducing Ligand; Treatment Outcome | 2016 |
Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells.
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas. Topics: Astrocytes; Aurora Kinase A; Aurora Kinase B; Biphenyl Compounds; Caspases; Cell Cycle; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Synergism; ErbB Receptors; Gene Expression; Genotype; Glioma; Humans; Inhibitor of Apoptosis Proteins; Nitrophenols; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; PTEN Phosphohydrolase; Signal Transduction; Sulfonamides; Survivin; Triterpenes; Tumor Suppressor Protein p53 | 2015 |
Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma.
Bcl2L12 as a new member of the Bcl2 family, which contains a BH2 domain and shares a lower amino acid similarity with other Bcl2 family proteins. Bcl2L12 is reported to be involved in apoptosis regulation, but this role remains controversial in different cancer type. Temozolomide (TMZ) is currently used to intervene glioma multiforme (GBM), but an acquired chemotherapeutic resistance maybe occurred due to undesired autophagy. Previous studies uncovered that Bcl2L12 may interact with Bcl-xL and may harbor a BH3-like domain. Therefore, we investigated whether this BH3-like domain is responsible for the Bcl2L12 anti-apoptotic property. Moreover, we tested whether ABT-737, a BH3 mimetic agent, can be combined with TMZ to treat GBM. We aligned Bcl2L12 with Bcl2 family members, compared interacting pattern of BH3 domain and their protein 3D structure. We identified that Bcl2L12 interacts with Bcl-xL and Bcl2 in yeast two-hybrid system. Bcl2L12192-220 was a minimal region for Bcl2L12-Bcl-xL interaction. Five-point mutations with respect to hydrophobic and charge residues were generated to test whether they are the key residue of BH3-like domain. Our data showed that both h1 (L213) and h2 residue (L217) are essential for Bcl2L12 interacting with Bcl2 family proteins. Ectopically expressed h1 or h2 mutant in U87MG cell line resulted in reactivation of cleaved-PARP, caspase-3 and cytochrome c releasing compared to Bcl2L12 wt group. Implementing ABT-737 combined with TMZ provided a superior effect on apoptosis induction in Bcl2L12 wt group, which effectively reactivated apoptotic markers. Altogether, our findings indicated that Bcl2L12 retains a BH3-like domain, which is important for the Bcl2L12 anti-apoptotic property and TMZ-induced autophagy. Our results basically support the idea of using ABT-737 to counteract the anti-apoptotic role of Bcl2L12 and sensitize drug response of the GBM cells to TMZ. Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; bcl-X Protein; Biphenyl Compounds; Dacarbazine; Drug Resistance, Neoplasm; Glioma; Humans; Models, Molecular; Muscle Proteins; Nitrophenols; Peptide Fragments; Piperazines; Protein Binding; Protein Structure, Tertiary; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Sulfonamides; Temozolomide; Tumor Cells, Cultured | 2015 |
Sorafenib Sensitizes Glioma Cells to the BH3 Mimetic ABT-737 by Targeting MCL1 in a STAT3-Dependent Manner.
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is overactivated in malignant glioma and plays a key role in promoting cell survival, thereby increasing the acquired apoptosis resistance of these tumors. Here we investigated the STAT3/myeloid cell leukemia 1 (MCL1) signaling pathway as a target to overcome the resistance of glioma cells to the Bcl-2-inhibiting synthetic BH3 mimetic ABT-737. Stable lentiviral knockdown of MCL1 sensitized LN229 and U87 glioma cells to apoptotic cell death induced by single-agent treatment with ABT-737 which was associated with an early activation of DEVDase activity, cytochrome c release, and nuclear apoptosis. Similar sensitizing effects were observed when ABT-737 treatment was combined with the multikinase inhibitor sorafenib which effectively suppressed levels of phosphorylated STAT3 and MCL1 in MCL1-proficient LN229 and U87 glioma cells. In analogous fashion, these synergistic effects were observed when we combined ABT-737 with the STAT3 inhibitor WP-1066. Lentiviral knockdown of the activating transcription factor 5 combined with subsequent quantitative polymerase chain reaction analysis revealed that sorafenib-dependent suppression of MCL1 occurred at the transcriptional level but did not depend on activating transcription factor 5 which previously had been proposed to be essential for MCL1-dependent glioma cell survival. In contrast, the constitutively active STAT3 mutant STAT3-C was able to significantly enhance MCL1 levels under sorafenib treatment to retain cell survival. Collectively, these data demonstrate that sorafenib targets MCL1 in a STAT3-dependent manner, thereby sensitizing glioma cells to treatment with ABT-737. They also suggest that targeting STAT3 in combination with inducers of the intrinsic pathway of apoptosis may be a promising novel strategy for the treatment of malignant glioma. Topics: Activating Transcription Factors; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Biphenyl Compounds; Cell Line, Tumor; Cell Survival; Cytochromes c; Gene Knockdown Techniques; Glioma; Humans; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Nitrophenols; Peptide Hydrolases; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Sorafenib; STAT3 Transcription Factor; Sulfonamides; Tyrphostins | 2015 |
Co-administration of ABT-737 and SAHA induces apoptosis, mediated by Noxa upregulation, Bax activation and mitochondrial dysfunction in PTEN-intact malignant human glioma cell lines.
We previously observed that glioma cells are differentially sensitive to ABT-737 and, when used as a single-agent, this drug failed to induce apoptosis. Identification of therapeutic strategies to enhance the efficacy of the Bcl-2 inhibitor ABT-737 in human glioma is of interest. Histone deacetylation inhibitors (HDACI) are currently being assessed clinically in patients with glioma, as regulation of epigenetic abnormalities is expected to produce pro-apoptotic effects. We hypothesized that co-treatment of glioma with a BH3-mimetic and HDACI may induce cellular death. We assessed the combination of ABT-737 and HDACI SAHA in established and primary cultured glioma cells. We found combination treatment led to significant cellular death when compared to either drug as single agent and demonstrated activation of the caspase cascade. This enhanced apoptosis also appears dependent upon the loss of mitochondrial membrane potential and the release of cytochrome c and AIF into the cytosol. The upregulation of Noxa, truncation of Bid, and activation of Bax caused by this combination were important factors for cell death and the increased levels of Noxa functioned to sequester Mcl-1. This combination was less effective in PTEN-deficient glioma cells. Both genetic and pharmacologic inactivation of the PI3K/Akt signaling pathway sensitized PTEN-deleted glioma cells to the combination. This study demonstrates that antagonizing apoptosis-resistance pathways, such as targeting the Bcl-2 family in combination with epigenetic modifiers, may induce cell death. These findings extend our previous observations that targeting the PI3K/Akt pathway may be additionally necessary to promote apoptosis in cancers lacking PTEN functionality. Topics: Antineoplastic Agents; Apoptosis; Apoptosis Inducing Factor; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Biphenyl Compounds; Cell Line, Tumor; Cell Proliferation; Cytochromes c; Drug Therapy, Combination; Glioma; Histone Deacetylase Inhibitors; Humans; Membrane Potential, Mitochondrial; Mitochondria; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; PTEN Phosphohydrolase; Sulfonamides; Up-Regulation | 2014 |
YM-155 potentiates the effect of ABT-737 in malignant human glioma cells via survivin and Mcl-1 downregulation in an EGFR-dependent context.
Antiapoptotic proteins are commonly overexpressed in gliomas, contributing to therapeutic resistance. We recently reported that clinically achievable concentrations of the Bcl-2/Bcl-xL inhibitor ABT-737 failed to induce apoptosis in glioma cells, with persistent expression of survivin and Mcl-1. To address the role of these mediators in glioma apoptosis resistance, we analyzed the effects of YM-155, a survivin suppressant, on survival on a panel of glioma cell lines. YM-155 inhibited cell growth and downregulated survivin and Mcl-1 in a dose- and cell line-dependent manner. While U373, LN18, LNZ428, T98G, LN229, and LNZ308 cells exhibited an IC(50) of 10 to 75 nmol/L, A172 cells were resistant (IC(50) ∼ 250 nmol/L). No correlation was found between sensitivity to YM-155 and baseline expression of survivin or cIAP-1/cIAP-2/XIAP. However, strong correlation was observed between EGF receptor (EGFR) activation levels and YM-155 response, which was confirmed using EGFR-transduced versus wild-type cells. Because we postulated that decreasing Mcl-1 expression may enhance glioma sensitivity to ABT-737, we examined whether cotreatment with YM-155 promoted ABT-737 efficacy. YM-155 synergistically enhanced ABT-737-induced cytotoxicity and caspase-dependent apoptosis. Downregulation of Mcl-1 using short hairpin RNA also enhanced ABT-737-inducing killing, confirming an important role for Mcl-1 in mediating synergism between ABT-737 and YM-155. As with YM-155 alone, sensitivity to YM-155 and ABT-737 inversely correlated with EGFR activation status. However, sensitivity could be restored in highly resistant U87-EGFRvIII cells by inhibition of EGFR or its downstream pathways, highlighting the impact of EGFR signaling on Mcl-1 expression and the relevance of combined targeted therapies to overcome the multiple resistance mechanisms of these aggressive tumors. Topics: Apoptosis; bcl-X Protein; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Down-Regulation; Drug Resistance, Neoplasm; ErbB Receptors; Gene Expression Regulation, Neoplastic; Glioma; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Microtubule-Associated Proteins; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Sulfonamides; Survivin | 2013 |
ABT-737 synergizes with bortezomib to induce apoptosis, mediated by Bid cleavage, Bax activation, and mitochondrial dysfunction in an Akt-dependent context in malignant human glioma cell lines.
We observed that glioma cells are differentially sensitive to N-{4-[4-(4'-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide (ABT-737) and administration of ABT-737 at clinically achievable doses failed to induce apoptosis. Although elevated Bcl-2 levels directly correlated with sensitivity to ABT-737, overexpression of Bcl-2 did not influence sensitivity to ABT-737. To understand the molecular basis for variable and relatively modest sensitivity to the Bcl-2 homology domain 3 mimetic drug ABT-737, the abundance of Bcl-2 family members was assayed in a panel of glioma cell lines. Bcl-2 family member proteins, Bcl-xL, Bcl-w, Mcl-1, Bax, Bak, Bid, and Noxa, were found to be expressed ubiquitously at similar levels in all cell lines tested. We then examined the contribution of other apoptosis-resistance pathways to ABT-737 resistance. Bortezomib, an inhibitor of nuclear factor-kappaB (NF-κB), was found to enhance sensitivity of ABT-737 in phosphatase and tensin homolog on chromosome 10 (PTEN)-wild type, but not PTEN-mutated glioma cell lines. We therefore investigated the association between phosphatidylinositol 3-kinase (PI3K)/Akt activation and resistance to the combination of ABT-737 and bortezomib in PTEN-deficient glioma cells. Genetic and pharmacological inhibition of PI3K inhibition sensitized PTEN-deficient glioma cells to bortezomib- and ABT-737-induced apoptosis by increasing cleavage of Bid protein, activation and oligomerization of Bax, and loss of mitochondrial membrane potential. Our data further suggested that PI3K/Akt-dependent protection may occur upstream of the mitochondria. This study demonstrates that interference with multiple apoptosis-resistance signaling nodes, including NF-κB, Akt, and Bcl-2, may be required to induce apoptosis in highly resistant glioma cells, and therapeutic strategies that target the PI3K/Akt pathway may have a selective role for cancers lacking PTEN function. Topics: Annexins; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Biphenyl Compounds; Blotting, Western; Boronic Acids; Bortezomib; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Glioma; Humans; Mitochondrial Diseases; NF-kappa B; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-akt; Pyrazines; Sulfonamides | 2012 |