nitrophenols has been researched along with Glioblastoma* in 9 studies
9 other study(ies) available for nitrophenols and Glioblastoma
Article | Year |
---|---|
Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis.
Overcoming apoptosis resistance is one major issue in glioblastoma (GB) therapies. Accumulating evidence indicates that resistance to apoptosis in GB is mediated via upregulation of pro-survival BCL2-family members. The synthetic BH3-mimetic ABT-737 effectively targets BCL2, BCL2 like 1 and BCL2 like 2 but still barely affects cell survival which is presumably due to its inability to inhibit myeloid cell leukemia 1 (MCL1). The constitutively active serine/threonine kinase proviral integration site for moloney murine leukemia virus 1 (PIM1) was recently found to be overexpressed in GB patient samples and to maintain cell survival in these tumors. For different GB cell lines, Western Blot, mitochondrial fractionation, fluorescence microscopy, effector caspase assays, flow cytometry, and an adult organotypic brain slice transplantation model were used to investigate the putative PIM1/MCL1 signaling axis regarding potential synergistic effects with ABT-737. We demonstrate that combination of the PIM1 inhibitor SGI-1776 or the pan-PIM kinase inhibitor AZD1208 with ABT-737 strongly sensitizes GB cells to apoptosis. Unexpectedly, this effect was found to be MCL1-independent, but could be partially blocked by caspase 8 (CASP8) inhibition. Remarkably, the analysis of autophagy markers in combination with the observation of massive accumulation and hampered degradation of autophagosomes suggests a completely novel function of PIM1 as a late stage autophagy regulator, maintaining the autophagic flux at the level of autophagosome/lysosome fusion. Our data indicate that PIM1 inhibition and ABT-737 synergistically induce apoptosis in an MCL1-independent but CASP8-dependent manner in GB. They also identify PIM1 as a suitable target for overcoming apoptosis resistance in GB. Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Biphenyl Compounds; Cell Line, Tumor; Cell Survival; Glioblastoma; Glioma; Humans; Mice; Mice, Inbred C57BL; Mitochondria; Myeloid Cell Leukemia Sequence 1 Protein; Nitrophenols; Peptide Fragments; Piperazines; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Proto-Oncogene Proteins c-pim-1; Sulfonamides; Thiazolidines | 2019 |
Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide.
Genotoxic chemotherapy with temozolomide (TMZ) is a mainstay of treatment for glioblastoma (GBM); however, at best, TMZ provides only modest survival benefit to a subset of patients. Recent insight into the heterogeneous nature of GBM suggests a more personalized approach to treatment may be necessary to overcome cancer drug resistance and improve patient care. These include novel therapies that can be used both alone and with TMZ to selectively reactivate apoptosis within malignant cells. For this approach to work, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified first. Here, we describe the first proof-of-principle study that merges quantitative protein-based analysis of apoptosis signaling networks with data- and knowledge-driven mathematical systems modeling to predict treatment responsiveness of GBM cell lines to various apoptosis-inducing stimuli. These include monotherapies with TMZ and TRAIL, which activate the intrinsic and extrinsic apoptosis pathways, respectively, as well as combination therapies of TMZ+TRAIL. We also successfully employed this approach to predict whether individual GBM cell lines could be sensitized to TMZ or TRAIL via the selective targeting of Bcl-2/Bcl-xL proteins with ABT-737. Our findings suggest that systems biology-based approaches could assist in personalizing treatment decisions in GBM to optimize cell death induction. Topics: Antineoplastic Agents, Alkylating; Apoptosis; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Dacarbazine; Drug Resistance, Neoplasm; Glioblastoma; Glioma; Humans; Models, Theoretical; Nitrophenols; Piperazines; Signal Transduction; Sulfonamides; Systems Biology; Temozolomide; TNF-Related Apoptosis-Inducing Ligand; Treatment Outcome | 2016 |
Microfluidic profiling of apoptosis-related genes after treatment with BH3-mimetic agents in astrocyte and glioblastoma cell lines.
Glioblastoma (GB) is the most frequent and biologically the most aggressive primary brain tumor in adults. Standard treatment for newly diagnosed GB consists of surgical resection, radiotherapy and chemotherapy. Resistance to therapy is a major obstacle, even with optimal treatment with a survival median of only 12-15 months. The heterogeneity and treatment response of GB makes this tumor type a challenging area of research. The aim of our study was to study the response of normal human astrocyte (HA) and human GB (T98G) cell lines to apoptosis inhibitors in vitro. ABT-737 is an inhibitor of anti-apoptotic proteins Bcl-2, Bcl-xL, Bcl-w, while MIM-1 is an Mcl-1 protein inhibitor. The viability of the cells was assayed biochemically using the cytotoxic methyl thiazolyl tetrazolium (MTT) assay. Changes in the expression of apoptosis-associated genes (n=93) in two human brain cell lines after treatment with the apoptosis inhibitors ABT-737 and MIM-1 (individually), between the apoptosis inhibitor treated group and the control group, were determined using a commercially pre-designed microfluidic array. Significant changes in apoptotic gene expression with more than a 2.0-fold difference in their expression levels were obtained in both cell lines; the most altered genes were in the HA cell line after MIM-1 treatment (n=42). These results contribute to the importance of apoptosis in normal and cancerous brain tissues and provide information on the effect of apoptosis inhibitors on cell viability and gene expression. Despite extensive investigations, a cure for GB is currently not available. The identification of an apoptotic gene panel and determining the sensitivity of normal and GB brain cells to individual apoptosis inhibitors could help to improve clinical practice and increase our understanding of brain tumor cell metabolism and apoptosis inhibitors in GB cells and astrocytes. Recognizing expression changes in pro-apoptotic and anti-apoptotic genes could contribute to the development of new treatments. Topics: Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Astrocytes; Biphenyl Compounds; Cell Line, Tumor; Cell Survival; Drug Screening Assays, Antitumor; Gene Expression; Glioblastoma; Humans; Microfluidics; Molecular Mimicry; Nitrophenols; Piperazines; Protein Interaction Domains and Motifs; Sulfonamides | 2016 |
Inhibition of phosphatidylinositol 3-kinase/AKT signaling by NVP-BKM120 promotes ABT-737-induced toxicity in a caspase-dependent manner through mitochondrial dysfunction and DNA damage response in established and primary cultured glioblastoma cells.
Identification of therapeutic strategies that might enhance the efficacy of B-cell lymphoma-2 (Bcl-2) inhibitor ABT-737 [N-{4-[4-(4-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-4-(3-dimethylamino-1-phenylsulfanylmethyl-propylamino)-3-nitro-benzenesulfonamide] is of great interest in many cancers, including glioma. Our recent study suggested that Akt is a crucial mediator of apoptosis sensitivity in response to ABT-737 in glioma cell lines. Inhibitors of phosphatidylinositol 3-kinase (PI3K)/Akt are currently being assessed clinically in patients with glioma. Because PI3K/Akt inhibition would be expected to have many proapoptotic effects, we hypothesized that there may be unique synergy between PI3K inhibitors and Bcl-2 homology 3 mimetics. Toward this end, we assessed the combination of the PI3K/Akt inhibitor NVP-BKM120 [5-(2,6-dimorpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine] and the Bcl-2 family inhibitor ABT-737 in established and primary cultured glioma cells. We found that the combined treatment with these agents led to a significant activation of caspase-8 and -3, PARP, and cell death, irrespective of PTEN status. The enhanced lethality observed with this combination also appears dependent on the loss of mitochondrial membrane potential and release of cytochrome c, smac/DIABLO, and apoptosis-inducing factor to the cytosol. Further study revealed that the upregulation of Noxa, truncation of Bid, and activation of Bax and Bak caused by these inhibitors were the key factors for the synergy. In addition, we demonstrated the release of proapoptotic proteins Bim and Bak from Mcl-1. We found defects in chromosome segregation leading to multinuclear cells and loss of colony-forming ability, suggesting the potential use of NVP-BKM120 as a promising agent to improve the anticancer activities of ABT-737. Topics: Aminopyridines; Antineoplastic Agents; Apoptosis Inducing Factor; Apoptosis Regulatory Proteins; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; Bcl-2-Like Protein 11; Biphenyl Compounds; Caspase 3; Caspase 8; Caspases; Cell Death; Cell Line, Tumor; Chromosome Segregation; Cytochromes c; DNA Damage; Drug Synergism; Glioblastoma; Humans; Intracellular Signaling Peptides and Proteins; Membrane Potential, Mitochondrial; Membrane Proteins; Mitochondria; Mitochondrial Proteins; Morpholines; Nitrophenols; Phosphoinositide-3 Kinase Inhibitors; Piperazines; Poly(ADP-ribose) Polymerases; Primary Cell Culture; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Sulfonamides | 2014 |
Loss of PDCD4 contributes to enhanced chemoresistance in Glioblastoma multiforme through de-repression of Bcl-xL translation.
Glioblastoma multiforme (GBM) is the most common and aggressive form of tumor of the central nervous system. Despite significant efforts to improve treatments, patient survival rarely exceeds 18 months largely due to the highly chemoresistant nature of these tumors. Importantly, misregulation of the apoptotic machinery plays a key role in the development of drug resistance. We previously demonstrated that Bcl-xL, an important anti-apoptotic protein, is regulated at the level of translation by the tumor suppressor programmed cell death 4 (PDCD4). We report here a strong correlation between low expression of PDCD4 and high expression of Bcl-xL in adult de novo GBM, GBM tumor initiating cells, and established GBM cell lines. Importantly, high Bcl-xL expression correlated significantly with poor progression and patient survival. We demonstrate that re-expression of PDCD4 in GBM cells down-regulated Bcl-xL expression and decreased cell viability. Finally, we show that direct inhibition of Bcl-xL by small molecule antagonist ABT-737 sensitizes GBM cells to doxorubicin. Our results identify Bcl-xL as a novel marker of GBM chemoresistance and advocate for the combined use of Bcl-xL antagonists and existing chemotherapeutics as a treatment option for this aggressive tumor. Topics: Adult; Aged; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis Regulatory Proteins; bcl-X Protein; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Down-Regulation; Doxorubicin; Drug Resistance, Neoplasm; Drug Synergism; Female; Glioblastoma; Humans; Male; Middle Aged; Nitrophenols; Piperazines; Protein Biosynthesis; RNA-Binding Proteins; Sulfonamides | 2013 |
p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737.
Treatment with the Bcl-2/Bcl-XL inhibitor ABT-737 is a promising novel strategy to therapeutically induce apoptotic cell death in malignant tumors such as glioblastomas. Although many studies have demonstrated that ABT-737 acts synergistically with chemotherapeutic drugs, the possibility of a combined treatment with ionizing radiation (IR) and ABT-737 has not yet been thoroughly investigated. Similarly, the relationship between p53 function and the pro-apoptotic effects of ABT-737 are still obscure. Here, we demonstrate that IR and ABT-737 synergistically induce apoptosis in glioblastoma cells. The sensitivity to ABT-737-mediated cell death is significantly increased by the IR-dependent accumulation of cells in the G2/M cell cycle phase. Wild type p53 function inhibits the efficacy of a combined IR and ABT-737 treatment via a p21-dependent G1 cell cycle arrest. Moreover, mutant as well as wild type p53 counteract the pro-apoptotic activity of ABT-737 by maintaining the expression levels of the Mcl-1 protein. Thus, p53 regulates the sensitivity to ABT-737 of glioblastoma cells. Our results warrant a further evaluation of a novel combination therapy using IR and ABT-737. The efficacy of such a therapy could be substantially enhanced by Mcl-1-lowering strategies. Topics: Apoptosis; bcl-X Protein; Biphenyl Compounds; Cell Line, Tumor; Cyclin-Dependent Kinase Inhibitor p21; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Myeloid Cell Leukemia Sequence 1 Protein; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Radiation, Ionizing; RNA, Small Interfering; Sulfonamides; Tumor Suppressor Protein p53 | 2012 |
ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells.
To search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several glioblastoma cell lines in a highly synergistic manner (combination index <0.1). Interestingly, the concerted action of ABT-737 and TRAIL to trigger the accumulation of truncated Bid (tBid) at mitochondrial membranes is identified as a key underlying mechanism. ABT-737 and TRAIL cooperate to cleave BH3-interacting domain death agonist (Bid) into its active fragment tBid, leading to increased accumulation of tBid at mitochondrial membranes. Coinciding with tBid accumulation, the activation of Bcl2-associated X protein (Bax), loss of mitochondrial membrane potential, release of cytochrome-c and second mitochondria-derived activator of caspase (Smac) into the cytosol and caspase activation are strongly increased in cotreated cells. Of note, knockdown of Bid significantly decreases ABT-737- and TRAIL-mediated Bax activation and apoptosis. Also, caspase-3 silencing reduces ABT-737- and TRAIL-induced Bid cleavage and apoptosis, indicating that a caspase-3-driven, mitochondrial feedback loop contributes to Bid processing. Importantly, ABT-737 profoundly enhances TRAIL-triggered apoptosis in primary cultured glioblastoma cells derived from tumor material, underlining the clinical relevance. Also, ABT-737 acts in concert with TRAIL to suppress tumor growth in an in vivo glioblastoma model. In conclusion, the rational combination of ABT-737 and TRAIL cooperates to trigger tBid mitochondrial accumulation and apoptosis. This approach presents a promising strategy for targeting the apoptosis pathways in glioblastoma, which warrants further investigation. Topics: Apoptosis; bcl-2-Associated X Protein; BH3 Interacting Domain Death Agonist Protein; Biphenyl Compounds; Cell Line, Tumor; Glioblastoma; Humans; Mitochondria; Nitrophenols; Piperazines; Sulfonamides; TNF-Related Apoptosis-Inducing Ligand | 2012 |
Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis.
Taspase1, the mixed lineage leukemia and TFIIAalpha-beta cleaving protease, enables cell proliferation and permits oncogenic initiation. Here, we show its critical role in cancer maintenance and thus offer a new anticancer target. Taspase1 is overexpressed in primary human cancers, and deficiency of Taspase1 in cancer cells not only disrupts proliferation but also enhances apoptosis. Mechanistically, loss of Taspase1 induces the levels of CDK inhibitors (CDKI: p16, p21, and p27) and reduces the level of antiapoptotic MCL-1. Therapeutically, deficiency of Taspase1 synergizes with chemotherapeutic agents and ABT-737, an inhibitor of BCL-2/BCL-X(L), to kill cancer cells. Taspase1 alone or in conjunction with MYC, RAS, or E1A fails to transform NIH/3T3 cells or primary mouse embryonic fibroblasts, respectively, but plays critical roles in cancer initiation and maintenance. Therefore, Taspase1 is better classified as a "non-oncogene addiction" protease, the inhibition of which may offer a novel anticancer therapeutic strategy. The reliance of oncogenes on subordinate non-oncogenes during tumorigenesis underscores the non-oncogene addiction hypothesis in which a large class of non-oncogenes functions to maintain cancer phenotypes and presents attractive anticancer therapeutic targets. The emergence of successful cancer therapeutics targeting non-oncogenes to which cancers are addicted supports the future development and potential application of small-molecule Taspase1 inhibitors for cancer therapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Biphenyl Compounds; Cell Growth Processes; Cell Line, Transformed; Cell Line, Tumor; Endopeptidases; Genes, myc; Genes, ras; Glioblastoma; Humans; Male; Melanoma; Mice; Mice, Inbred NOD; Mice, SCID; Myeloid Cell Leukemia Sequence 1 Protein; NIH 3T3 Cells; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Sulfonamides; Transduction, Genetic; Transfection | 2010 |
Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins.
Defects in the apoptotic signaling cascades contribute to the poor therapeutic response of malignant gliomas. As glioblastomas are characterized by high expression levels of anti-apoptotic Bcl-2 family proteins, we studied the effects of the novel Bcl-2 inhibitor, ABT-737, on malignant glioma cells. ABT-737 treatment released the pro-apoptotic Bax protein from its binding partner Bcl-2 and potently induced apoptotic cell death in glioblastoma cells in vitro and in vivo. The local administration of ABT-737 prolonged the survival in an intracranial glioma xenograft model. Downregulation of Mcl-1 and overexpression of Bcl-2 sensitized the cells to ABT-737-mediated apoptosis. Moreover, ABT-737 potentiated the cytotoxicity of the chemotherapeutic drugs vincristine and etoposide, and of the death ligand TRAIL. As glioma stem cells may play a crucial role for the tumor progression and the resistance to treatment in glioblastomas, we investigated the effects of ABT-737 on the subpopulation of glioma cells exhibiting stem cell characteristics. Inhibition of proliferation and induction of apoptosis by ABT-737 were less efficient in glioma stem cells than in non-stem cell-like glioma cells. As the resistance of glioma stem cells was associated with high Mcl-1 expression levels, ABT-737 treatment combined with downregulation of Mcl-1 could represent a promising novel approach in glioblastoma treatment. Topics: Animals; Apoptosis; Biphenyl Compounds; Cell Line, Tumor; Glioblastoma; Humans; Mice; Neoplastic Stem Cells; Nitrophenols; Piperazines; Protein Binding; Proto-Oncogene Proteins c-bcl-2; Sulfonamides; Survival Rate; TNF-Related Apoptosis-Inducing Ligand; Xenograft Model Antitumor Assays | 2008 |