nitrophenols has been researched along with Brain-Neoplasms* in 4 studies
4 other study(ies) available for nitrophenols and Brain-Neoplasms
Article | Year |
---|---|
Synergistic antitumor effects of 9.2.27-PE38KDEL and ABT-737 in primary and metastatic brain tumors.
Standard treatment, unfortunately, yields a poor prognosis for patients with primary or metastatic cancers in the central nervous system, indicating a necessity for novel therapeutic agents. Immunotoxins (ITs) are a class of promising therapeutic candidates produced by fusing antibody fragments with toxin moieties. In this study, we investigated if inherent resistance to IT cytotoxicity can be overcome by rational combination with pro-apoptotic enhancers. Therefore, we combined ITs (9.2.27-PE38KDEL or Mel-14-PE38KDEL) targeting chondroitin sulfate proteoglycan 4 (CSPG4) with a panel of Bcl-2 family inhibitors (ABT-737, ABT-263, ABT-199 [Venetoclax], A-1155463, and S63845) against patient-derived glioblastoma, melanoma, and breast cancer cells/cell lines. In vitro cytotoxicity assays demonstrated that the addition of the ABT compounds, specifically ABT-737, sensitized the different tumors to IT treatment, and improved the IC50 values of 9.2.27-PE38KDEL up to >1,000-fold. Mechanistic studies using 9.2.27-PE38KDEL and ABT-737 revealed that increased levels of intracellular IT, processed (active) exotoxin, and PARP cleavage correlated with the enhanced sensitivity to the combination treatment. Furthermore, we confirmed the synergistic effect of 9.2.27-PE38KDEL and ABT-737 combination therapy in orthotopic GBM xenograft and cerebral melanoma metastasis models in nude mice. Our study defines strategies for overcoming IT resistance and enhancing specific antitumor cytotoxicity in primary and metastatic brain tumors. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzothiazoles; Biphenyl Compounds; Brain Neoplasms; Cell Death; Cell Line, Tumor; Chondroitin Sulfate Proteoglycans; Drug Synergism; Endocytosis; Exotoxins; Furin; Humans; Immunotoxins; Isoquinolines; Membrane Proteins; Mice, Nude; Models, Biological; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Pyrimidines; Signal Transduction; Sulfonamides; Survival Analysis; Thiophenes; Time Factors; Xenograft Model Antitumor Assays | 2019 |
Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide.
Genotoxic chemotherapy with temozolomide (TMZ) is a mainstay of treatment for glioblastoma (GBM); however, at best, TMZ provides only modest survival benefit to a subset of patients. Recent insight into the heterogeneous nature of GBM suggests a more personalized approach to treatment may be necessary to overcome cancer drug resistance and improve patient care. These include novel therapies that can be used both alone and with TMZ to selectively reactivate apoptosis within malignant cells. For this approach to work, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified first. Here, we describe the first proof-of-principle study that merges quantitative protein-based analysis of apoptosis signaling networks with data- and knowledge-driven mathematical systems modeling to predict treatment responsiveness of GBM cell lines to various apoptosis-inducing stimuli. These include monotherapies with TMZ and TRAIL, which activate the intrinsic and extrinsic apoptosis pathways, respectively, as well as combination therapies of TMZ+TRAIL. We also successfully employed this approach to predict whether individual GBM cell lines could be sensitized to TMZ or TRAIL via the selective targeting of Bcl-2/Bcl-xL proteins with ABT-737. Our findings suggest that systems biology-based approaches could assist in personalizing treatment decisions in GBM to optimize cell death induction. Topics: Antineoplastic Agents, Alkylating; Apoptosis; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Dacarbazine; Drug Resistance, Neoplasm; Glioblastoma; Glioma; Humans; Models, Theoretical; Nitrophenols; Piperazines; Signal Transduction; Sulfonamides; Systems Biology; Temozolomide; TNF-Related Apoptosis-Inducing Ligand; Treatment Outcome | 2016 |
Loss of PDCD4 contributes to enhanced chemoresistance in Glioblastoma multiforme through de-repression of Bcl-xL translation.
Glioblastoma multiforme (GBM) is the most common and aggressive form of tumor of the central nervous system. Despite significant efforts to improve treatments, patient survival rarely exceeds 18 months largely due to the highly chemoresistant nature of these tumors. Importantly, misregulation of the apoptotic machinery plays a key role in the development of drug resistance. We previously demonstrated that Bcl-xL, an important anti-apoptotic protein, is regulated at the level of translation by the tumor suppressor programmed cell death 4 (PDCD4). We report here a strong correlation between low expression of PDCD4 and high expression of Bcl-xL in adult de novo GBM, GBM tumor initiating cells, and established GBM cell lines. Importantly, high Bcl-xL expression correlated significantly with poor progression and patient survival. We demonstrate that re-expression of PDCD4 in GBM cells down-regulated Bcl-xL expression and decreased cell viability. Finally, we show that direct inhibition of Bcl-xL by small molecule antagonist ABT-737 sensitizes GBM cells to doxorubicin. Our results identify Bcl-xL as a novel marker of GBM chemoresistance and advocate for the combined use of Bcl-xL antagonists and existing chemotherapeutics as a treatment option for this aggressive tumor. Topics: Adult; Aged; Antibiotics, Antineoplastic; Antineoplastic Combined Chemotherapy Protocols; Apoptosis Regulatory Proteins; bcl-X Protein; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Down-Regulation; Doxorubicin; Drug Resistance, Neoplasm; Drug Synergism; Female; Glioblastoma; Humans; Male; Middle Aged; Nitrophenols; Piperazines; Protein Biosynthesis; RNA-Binding Proteins; Sulfonamides | 2013 |
YM-155 potentiates the effect of ABT-737 in malignant human glioma cells via survivin and Mcl-1 downregulation in an EGFR-dependent context.
Antiapoptotic proteins are commonly overexpressed in gliomas, contributing to therapeutic resistance. We recently reported that clinically achievable concentrations of the Bcl-2/Bcl-xL inhibitor ABT-737 failed to induce apoptosis in glioma cells, with persistent expression of survivin and Mcl-1. To address the role of these mediators in glioma apoptosis resistance, we analyzed the effects of YM-155, a survivin suppressant, on survival on a panel of glioma cell lines. YM-155 inhibited cell growth and downregulated survivin and Mcl-1 in a dose- and cell line-dependent manner. While U373, LN18, LNZ428, T98G, LN229, and LNZ308 cells exhibited an IC(50) of 10 to 75 nmol/L, A172 cells were resistant (IC(50) ∼ 250 nmol/L). No correlation was found between sensitivity to YM-155 and baseline expression of survivin or cIAP-1/cIAP-2/XIAP. However, strong correlation was observed between EGF receptor (EGFR) activation levels and YM-155 response, which was confirmed using EGFR-transduced versus wild-type cells. Because we postulated that decreasing Mcl-1 expression may enhance glioma sensitivity to ABT-737, we examined whether cotreatment with YM-155 promoted ABT-737 efficacy. YM-155 synergistically enhanced ABT-737-induced cytotoxicity and caspase-dependent apoptosis. Downregulation of Mcl-1 using short hairpin RNA also enhanced ABT-737-inducing killing, confirming an important role for Mcl-1 in mediating synergism between ABT-737 and YM-155. As with YM-155 alone, sensitivity to YM-155 and ABT-737 inversely correlated with EGFR activation status. However, sensitivity could be restored in highly resistant U87-EGFRvIII cells by inhibition of EGFR or its downstream pathways, highlighting the impact of EGFR signaling on Mcl-1 expression and the relevance of combined targeted therapies to overcome the multiple resistance mechanisms of these aggressive tumors. Topics: Apoptosis; bcl-X Protein; Biphenyl Compounds; Brain Neoplasms; Cell Line, Tumor; Down-Regulation; Drug Resistance, Neoplasm; ErbB Receptors; Gene Expression Regulation, Neoplastic; Glioma; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Microtubule-Associated Proteins; Myeloid Cell Leukemia Sequence 1 Protein; Naphthoquinones; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Sulfonamides; Survivin | 2013 |