nitrobenzanthrone has been researched along with Cell-Transformation--Neoplastic* in 2 studies
2 other study(ies) available for nitrobenzanthrone and Cell-Transformation--Neoplastic
Article | Year |
---|---|
3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway.
Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-μM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity. Topics: Benz(a)Anthracenes; Cadherins; Carbon; Carcinogenesis; Carcinogens; Cell Transformation, Neoplastic; DNA Adducts; Epiregulin; Epithelial Cells; Humans; Interleukin-6; Lung; Lung Neoplasms; Mitogen-Activated Protein Kinase Kinases; Particulate Matter; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction | 2022 |
The genotoxic air pollutant 3-nitrobenzanthrone and its reactive metabolite N-hydroxy-3-aminobenzanthrone lack initiating and complete carcinogenic activity in NMRI mouse skin.
3-Nitrobenzanthrone (3-NBA), a genotoxic mutagen found in diesel exhaust and ambient air pollution and its active metabolite N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) were tested for initiating and complete carcinogenic activity in the NMRI mouse skin carcinogenesis model. Both compounds were found to be inactive as either tumour initiators or complete carcinogens in mouse skin over a dose range of 25-400nmol. Topical application of 3-NBA and N-OH-3-ABA produced DNA adduct patterns in epidermis, detected by (32)P-postlabelling, similar to those found previously in other organs of rats and mice. 24h after a single treatment of 100nmol DNA adduct levels produced by 3-NBA (18+/-4 adducts/10(8) nucleotides) were 6 times lower than those by 7,12-dimethylbenz[a]anthracene (DMBA; 114+/-37 adducts/10(8) nucleotides). In contrast, identical treatment with N-OH-3-ABA resulted in adduct levels in the same range as with DMBA (136+/-25 adducts/10(8) nucleotides), indicating that initial DNA adduct levels do not parallel tumour initiating activity. When compounds were tested for tumour initiating activity by a single treatment followed by twice-weekly applications of TPA, DNA adducts formed by DMBA, but not by 3-NBA or N-OH-3-ABA, were still detectable 40weeks after treatment. When tested for activity as complete carcinogens by twice-weekly topical application, 3-NBA and N-OH-3-ABA produced identical DNA adduct profiles in mouse skin, with adducts still detectable after 40weeks. Only 3-NBA produced detectable adducts in other organs. Topics: 9,10-Dimethyl-1,2-benzanthracene; Air Pollutants; Animals; Benz(a)Anthracenes; Carcinogens; Cell Transformation, Neoplastic; DNA Adducts; DNA Damage; Epidermis; Female; Mice; Skin; Skin Neoplasms; Vehicle Emissions | 2009 |