nitroarginine has been researched along with Ventricular-Dysfunction--Left* in 6 studies
6 other study(ies) available for nitroarginine and Ventricular-Dysfunction--Left
Article | Year |
---|---|
Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease.
Left ventricular systolic dysfunction (LVSD) in patients with chronic kidney disease (CKD) is associated with poorer prognosis. Because patients with CKD often exhibit progressively decreased nitric oxide (NO) availability and inhibition of NO production can reduce cardiac output, we hypothesized that loss of NO availability in CKD contributes to pathogenesis of LVSD. Subtotally nephrectomized (SNX) rats were treated with a low dose of the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA; 20 mg/l water; SNX+L-NNA) and compared with relevant control groups. To study permanent changes separate from hemodynamic effects, L-NNA was stopped after week 8 and rats were followed up to week 15, until blood pressure was similar in SNX+L-NNA and SNX groups. To study effects of NO depletion alone, a control group with high-dose L-NNA (L-NNA-High: 100 mg/l) was included. Mild systolic dysfunction developed at week 13 after SNX. In SNX+L-NNA, systolic function decreased by almost 50% already from week 4 onward, together with markedly reduced whole body NO production and high mortality. In L-NNA-High, LVSD was not as severe as in SNX+L-NNA, and renal function was not affected. Both LVSD and NO depletion were reversible in L-NNA-High after L-NNA was stopped, but both were persistently low in SNX+L-NNA. Proteinuria increased compared with rats with SNX, and glomerulosclerosis and cardiac fibrosis were worsened. We conclude that SNX+L-NNA induced accelerated and permanent LVSD that was functionally and structurally different from CKD or NO depletion alone. Availability of NO appears to play a pivotal role in maintaining cardiac function in CKD. Topics: Animals; Blood Pressure; Body Weight; Echocardiography; Enzyme Inhibitors; Hematocrit; Hypertension, Renal; Male; Nephrectomy; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Poult Enteritis Mortality Syndrome; Proteinuria; Rats; Rats, Inbred Lew; Renal Insufficiency, Chronic; Systole; Urine; Ventricular Dysfunction, Left | 2010 |
The nitric oxide donor molsidomine rescues cardiac function in rats with chronic kidney disease and cardiac dysfunction.
We recently developed a rat model of cardiorenal failure that is characterized by severe left ventricular systolic dysfunction (LVSD) and low nitric oxide (NO) production that persisted after temporary low-dose NO synthase inhibition. We hypothesized that LVSD was due to continued low NO availability and might be reversed by supplementing NO. Rats underwent a subtotal nephrectomy and were treated with low-dose NO synthase inhibition with N(ω)-nitro-l-arginine up to week 8. After 3 wk of washout, rats were treated orally with either the long-acting, tolerance-free NO donor molsidomine (Mols) or vehicle (Veh). Cardiac and renal function were measured on weeks 11, 13, and 15. On week 16, LV hemodynamics and pressure-volume relationships were measured invasively, and rats were killed to quantify histological damage. On week 15, blood pressure was mildly reduced and creatinine clearance was increased by Mols (both P < 0.05). Mols treatment improved ejection fraction (53 ± 3% vs. 37 ± 2% in Veh-treated rats, P < 0.001) and stroke volume (324 ± 33 vs. 255 ± 15 μl in Veh-treated rats, P < 0.05). Rats with Mols treatment had lower end-diastolic pressures (8.5 ± 1.1 mmHg) than Veh-treated rats (16.3 ± 3.5 mmHg, P < 0.05) and reduced time constants of relaxation (21.9 ± 1.8 vs. 30.9 ± 3.3 ms, respectively, P < 0.05). The LV end-systolic pressure-volume relationship was shifted to the left in Mols compared with Veh treatment. In summary, in a model of cardiorenal failure with low NO availability, supplementing NO significantly improves cardiac systolic and diastolic function without a major effect on afterload. Topics: Administration, Oral; Animals; Biomarkers; Cardiotonic Agents; Creatinine; Disease Models, Animal; Gene Expression Regulation; Kidney Diseases; Male; Molsidomine; Myocardial Contraction; Myocardium; Nephrectomy; Nitric Oxide; Nitric Oxide Donors; Nitroarginine; Rats; Rats, Inbred Lew; Stroke Volume; Time Factors; Tyrosine; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure | 2010 |
Nitric oxide production is maintained in exercising swine with chronic left ventricular dysfunction.
Left ventricular (LV) dysfunction caused by myocardial infarction (MI) is accompanied by endothelial dysfunction, most notably a loss of nitric oxide (NO) availability. We tested the hypothesis that endothelial dysfunction contributes to impaired tissue perfusion during increased metabolic demands as produced by exercise, and we determined the contribution of NO to regulation of regional systemic, pulmonary, and coronary vasomotor tone in exercising swine with LV dysfunction produced by a 2- to 3-wk-old MI. LV dysfunction resulted in blunted systemic and coronary vasodilator responses to ATP, whereas the responses to nitroprusside were maintained. Exercise resulted in blunted systemic and pulmonary vasodilator responses in MI that resembled the vasodilator responses in normal (N) swine following blockade of NO synthase with N(omega)-nitro-L-arginine (L-NNA, 20 mg/kg iv). However, L-NNA resulted in similar decreases in systemic (43 +/- 3% in N swine and 49 +/- 4% in MI swine), pulmonary (45 +/- 5% in N swine and 49 +/- 4% in MI swine), and coronary (28 +/- 4% in N and 35 +/- 3% in MI) vascular conductances in N and MI swine under resting conditions; similar effects were observed during treadmill exercise. Selective inhibition of inducible NO synthase with aminoguanidine (20 mg/kg iv) had no effect on vascular tone in MI. These findings indicate that while agonist-induced vasodilation is already blunted early after myocardial infarction, the contribution of endothelial NO synthase-derived NO to regulation of vascular tone under basal conditions and during exercise is maintained. Topics: Adenosine Triphosphate; Animals; Coronary Circulation; Coronary Vessels; Endothelium, Vascular; Enzyme Inhibitors; Guanidines; Lung; Myocardial Infarction; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Nitroprusside; Physical Exertion; Reproducibility of Results; Swine; Vasodilation; Ventricular Dysfunction, Left | 2002 |
Mechanisms whereby rapid RV pacing causes LV dysfunction: perfusion-contraction matching and NO.
Incessant tachycardia induces dilated cardiomyopathy in humans and experimental models; mechanisms are incompletely understood. We hypothesized that excessive chronotropic demands require compensatory contractility reductions to balance metabolic requirements. We studied 24 conscious dogs during rapid right ventricular (RV) pacing over 4 wk. We measured hemodynamic, coronary blood flow (CBF), myocardial O(2) consumption (MVO(2)) responses, myocardial nitric oxide (NO) production, and substrate utilization. Early pacing (6 h) resulted in decreased heart rate (HR)-adjusted coronary blood flow (CBF), MVO(2) (CBF/beat: 0.33 +/- 0.02 to 0.19 +/- 0.01 ml, P < 0.001, MVO(2)/beat: 0.031 +/- 0.002 to 0.016 +/- 0.001 ml O(2), P < 0.001), and contractility [left ventricular (LV) first derivative pressure (dP/dt)/LV end-diastolic diameter (EDD): 65 +/- 4 to 44 +/- 3 mmHg x s(-1) x mm(-1), P < 0.01], consistent with flow-metabolism-function coupling, which persisted over the first 72 h of pacing (CBF/beat: 0.15 +/- 0.01 ml, MVO(2)/beat: 0.013 +/- 0.001 ml O(2), P < 0.001). Thereafter, CBF per beat and MVO(2) per beat increased (CBF/beat: 0.25 +/- 0.01 ml, MVO(2)/beat: 0.021 +/- 0.001 ml O(2) at 28 days, P < 0.01 vs. 72 h). Contractility declined [(LV dP/dt)/LVEDD: 19 +/- 2 mmHg x s(-1) x mm(-1), P < 0.0001], signifying flow-function mismatch. Cardiac NO production, endothelial NO synthase expression, and fatty acid utilization decreased in late phase, whereas glycogen content and lactate uptake increased. Incessant tachycardia induces contractile, metabolic, and flow abnormalities reflecting flow-function matching early, but progresses to LV dysfunction late, despite restoration of flow and metabolism. The shift to flow-function mismatch is associated with impaired myocardial NO production. Topics: Animals; Cell Respiration; Consciousness; Coronary Circulation; Dogs; Enzyme Inhibitors; Female; Glycogen; Lactic Acid; Male; Myocardial Contraction; Myocardial Stunning; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroarginine; Pacemaker, Artificial; Tachycardia; Ventricular Dysfunction, Left | 2001 |
Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog.
The aim of the present study was to determine whether cardiac nitric oxide (NO) production changes during the progression of pacing-induced heart failure and whether this occurs in association with alterations in myocardial metabolism. Dogs (n=8) were instrumented and the heart paced until left ventricular end-diastolic pressure reached 25 mm Hg and clinical signs of severe failure were evident. Every week, hemodynamic measurements were recorded and blood samples were withdrawn from the aorta and the coronary sinus for measurement of NO metabolites, O2 content, free fatty acids (FFAs), and lactate and glucose concentrations. Cardiac production of NO metabolites or consumption of O2 or utilization of substrates was calculated as coronary sinus-arterial difference times coronary flow. In end-stage failure, occurring at 29+/-1.6 days, left ventricular end-diastolic pressure was 25+/-1 mm Hg, left ventricular systolic pressure was 92+/-3 mm Hg, mean arterial pressure was 75+/-2.5 mm Hg, and dP/dtmax was 1219+/-73 mm Hg/s (all P<0.05). These changes in hemodynamics were associated with a fall of cardiac NO metabolite production from 0.37+/-0.16 to -0.28+/-0.13 nmol/beat (P<0.05). O2 consumption and lactate uptake did not change significantly from control, while FFA uptake decreased from 0.16+/-0.03 to 0.05+/-0.01 microEq/beat and glucose uptake increased from -2.3+/-7.0 to 41+/-10 microgram/beat (P<0.05). The cardiac respiratory quotient also increased significantly by 28%. In 14 normal dogs the same measurements were performed at control and 1 hour after we injected 30 mg/kg of nitro-L-arginine, a competitive inhibitor of NO synthase .O2 consumption increased from 0.05+/-0.002 mL/beat at control to 0.071+/-0.003 mL/beat after nitro-L-arginine, while FFA uptake decreased from 0.1+/-0.01 to 0.06+/-0.01 microEq/beat, lactate uptake increased from 0.15+/-0.04 to 0.31+/-0.03 micromol/beat, glucose uptake increased from 8.2+/-5.0 to 35.4+/-9.5 microgram/beat, and RQ increased by 23% (all P<0.05). Our results indicate that basal cardiac production of NO falls below normal levels during cardiac decompensation and that there are shifts in substrate utilization. This switch in myocardial substrate utilization also occurs after acute pharmacological blockade of NO production in normal dogs. Topics: Animals; Blood Pressure; Carbon Dioxide; Consciousness; Diastole; Dogs; Fatty Acids, Nonesterified; Glucose; Heart Failure; Lactic Acid; Male; Muscle Fibers, Skeletal; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Oxygen Consumption; Pacemaker, Artificial; Respiration; Systole; Ventricular Dysfunction, Left | 1998 |
Role of EDRF in the cardiopulmonary dysfunction produced by massive sympathetic activation.
This study was undertaken to determine whether endothelium-derived relaxing factor (EDRF) modulates the pulmonary and systemic hemodynamic responses to massive sympathetic nervous system (SNS) activation and, in so doing, also modulates the degree of SNS-induced left ventricular (LV) dysfunction and the likelihood for pulmonary edema formation. The SNS of 13 anesthetized untreated rabbits and 14 anesthetized rabbits pretreated with the EDRF inhibitor, N omega-nitro-L-arginine (L-NNA, 20 mg/kg), was massively activated with an intracisternal injection of veratrine. Pulmonary and systemic arterial pressures increased to the same extent in both groups, but LV end-diastolic pressure was significantly lower in untreated rabbits. During this time, cardiac output decreased by 37% in L-NNA pretreated rabbits compared with 8% in untreated animals. Peak systemic and pulmonary vascular resistances increased significantly in L-NNA rabbits, whereas only systemic vascular resistance increased significantly in untreated rabbits. However, this increase in systemic vascular resistance was threefold less than that observed for L-NNA-treated animals. Although the degree of LV dysfunction was greater in the L-NNA rabbits, pulmonary edema developed less frequently in this group. We suggest that when EDRF release is inhibited during massive SNS activity, pulmonary vascular resistance increases markedly, which causes the right ventricle to fail. We further suggest that the reduced right ventricular output maintains pulmonary microvascular pressure below levels required for edema development. Topics: Animals; Arginine; Epinephrine; Extravascular Lung Water; Hemodynamics; In Vitro Techniques; Nitric Oxide; Nitroarginine; Norepinephrine; Pulmonary Circulation; Pulmonary Edema; Rabbits; Sympathetic Nervous System; Ventricular Dysfunction, Left; Ventricular Function, Right; Veratrine | 1995 |