nitroarginine has been researched along with Retinal-Diseases* in 5 studies
5 other study(ies) available for nitroarginine and Retinal-Diseases
Article | Year |
---|---|
The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia.
The involvement of matrix metalloproteinases (MMPs) in ischemic tissue damage and remodeling has been reported by many investigators. Our study was designed to investigate the involvement of MMPs and of tissue inhibitors of metalloproteinases (TIMPs) in rat retinal ischemic injury, the effect of nitric oxide synthase (NOS) inhibitors on MMPs' activity in this model and whether minocycline (an MMP inhibitor) is protective in retinal ischemia.. Ninety-four rats were used in the study. Ischemia was induced by 90 min elevation of intraocular pressure. MMPs' activities and the effect of NOS inhibitors [aminoguanidine (AG) or N-nitro-L-arginine (NNA)] and minocycline on MMPs' activities were assessed by zymography and TIMPs expression by Western analysis. Morphological damage was quantified by morphometry of hematoxylin and eosin-stained retinal sections.. Retinal extracts exhibited activities of proMMP-9 and proMMP-2. The activity of proMMP-9 increased immediately post ischemia (PI) and peaked to 4.6 times that of normal untreated controls in ischemic retinas and to 2.6 times that of controls in retinas of fellow sham-treated eyes at 24 h PI. The relative amount of TIMP-1 increased to 1.9-fold following ischemia and 2.5-fold in fellow sham-treated eyes at 24 h PI. ProMMP-2 activity increased more than two-fold immediately, at 24 h and at 48 h PI in ischemic retinas, and insignificantly in fellow sham-treated eyes. Treatment with 25 mg/kg AG or NNA caused a non-significant increase in proMMP-9 activity at 24 h PI (3.7- and 2.9-fold, respectively, p>0.6). There was no effect of AG or NNA on the activity of proMMP-2. Minocycline significantly attenuated the retinal ischemic damage, primarily by partially preserving ganglion cells and the inner plexiform layer. Minocyline (0.5 mg/ml or 5 mg/ml) inhibited MMPs' activities in ischemic retinal extracts in vitro.. MMPs participated in morphological ischemic damage to rat retina. Treatment with minocycline dramatically attenuated damage to the retina. Topics: Animals; Blotting, Western; Disease Models, Animal; Enzyme Inhibitors; Guanidines; Ischemia; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Matrix Metalloproteinase Inhibitors; Minocycline; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Sprague-Dawley; Retinal Diseases; Retinal Vessels; Tissue Inhibitor of Metalloproteinase-1 | 2007 |
Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy.
Opposing effects have been ascribed to nitric oxide (NO) on retinal microvascular survival. We investigated whether changes in the redox state may contribute to explain apparent conflicting actions of NO in a model of oxygen-induced retinal vasoobliteration. Retinal microvascular obliteration was induced by exposing 7-day-old rat pups (P7) for 2 or 5 days to 80% O(2). The redox state of the retina was assessed by measuring reduced glutathione and oxidative and nitrosative products malondialdehyde and nitrotyrosine. The role of NO on vasoobliteration was evaluated by treating animals with nitric oxide synthase (NOS) inhibitors (N-nitro-l-arginine; L-NA) and by determining NOS isoform expression and activity; the contribution of nitrosative stress was also determined in animals treated with the degradation catalyst of peroxynitrite FeTPPS or with the superoxide dismutase mimetic CuDIPS. eNOS, but not nNOS or iNOS, expression and activity were increased throughout the exposure to hyperoxia. These changes were associated with an early (2 days hyperoxia) decrease in reduced glutathione and increases in malondialdehyde and nitrotyrosine. CuDIPS, FeTPPS, and L-NA treatments for these 2 days of hyperoxia nearly abolished the vasoobliteration. In contrast, during 5 days exposure to hyperoxia when the redox state rebalanced, L-NA treatment aggravated the vasoobliteration. Interestingly, VEGFR-2 expression was respectively increased by NOS inhibition after short-term (2 days) exposure to hyperoxia and decreased during the longer hyperoxia exposure. Data disclose that the dual effects of NO on newborn retinal microvascular integrity in response to hyperoxia in vivo depend on the redox state and seem mediated at least in part by VEGFR-2. Topics: Animals; Animals, Newborn; Antioxidants; Glutathione; Isoenzymes; Malondialdehyde; Metalloporphyrins; Microcirculation; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oxidation-Reduction; Oxidative Stress; Oxygen; Rats; Rats, Sprague-Dawley; Retina; Retinal Diseases; Retinal Vessels; Salicylates; Tyrosine; Vascular Endothelial Growth Factor Receptor-2 | 2004 |
Role of nitric oxide during the initial phase of reperfusion after retinal ischemia in the rat.
The onset of reperfusion and the recovery of the ERG b-wave following retinal ischemia was examined among three groups of rats: group 1 (n = 12) and group 2 (n = 6) received pretreatment with NG-nitro-L-arginine (20 mg/kg, i.p., 2 h before ischemia) followed by intravenous injection of saline (group 1) or of 200 mg/kg L-arginine (group 2) 5 min before the end of ischemia; group 3 (n = 7) received saline pretreatment followed by intravenous injection of saline as a control. Group 1 showed delayed onset of reperfusion compared to the other two groups and a reduction in the rate of the b-wave recovery compared to the control on the 1st day after reperfusion (group 1 vs. group 3; p = 0.0357). The L-arginine posttreatment significantly increased the b-wave recovery (group 2 vs. group 1; p = 0.0005 on day 1 and p < 0.0006 on day 3). The rate of the b-wave recovery in group 1 was inversely proportional to the time to establish complete reperfusion. Inhibition of nitric oxide synthase during the initial phase of reperfusion may worsen the recovery of the b-wave following retinal ischemia, at least in part, by inhibiting establishment of reperfusion. Topics: Animals; Disease Models, Animal; Electroretinography; Enzyme Inhibitors; Ischemia; Male; Microcirculation; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Sprague-Dawley; Reperfusion; Retinal Diseases; Retinal Vessels; Treatment Outcome | 1999 |
Roles of constitutive nitric oxide synthase in postischemic rat retina.
Nitric oxide is a reactive species that could be protective or destructive to the retina depending on the stage of the evolving ischemic process. This study was conducted to obtain a better understanding of the roles of constitutive nitric oxide synthase (cNOS) during reperfusion after ischemia in rat retina.. Retinal ischemia was induced for 60 minutes in Sprague-Dawley rats by ligating the optic nerve. Gene expression for endothelial and neuronal nitric oxide synthases (eNOS and nNOS) was studied by reverse transcription-polymerase chain reaction (RT-PCR). To inhibit cNOS, NG-nitro-L-arginine (L-NNA) was injected intraperitoneally four times (every 6 hours) beginning 2 hours after reperfusion, for a total dose of 80 mg/kg. Retinal damage was assessed by the rate of a- and b-wave recovery on electroretinograms and by the thickness of the retinal layers. Retinal circulation and vessel diameter were evaluated by the dye-dilution technique.. After ischemia ended, eNOS mRNA initially decreased until 6 hours, then increased to a peak at 12 hours, and decreased progressively beyond 24 hours until the final measurement at 96 hours of reperfusion. nNOS mRNA decreased to nearly undetectable levels during the same measurement periods. L-NNA treatment enhanced reduction of a- and b-wave amplitudes and increased thinning of the inner retina in postischemic eyes. Retinal mean circulation time was markedly prolonged in L-NNA-treated postischemic eyes. Arterial mean transit times were 2.1-fold and 4.5-fold longer in L-NNA-treated postischemic eyes than in L-NNA-treated nonischemic eyes and in D-NNA-treated postischemic eyes, respectively.. This study shows that postischemic inhibition of NOS worsens retinal damage after ischemia-reperfusion and alters postischemic retinal circulation. Nitric oxide may play an important role in protecting the retina from ischemic injury, possibly by preventing postischemic hypoperfusion. Topics: Animals; DNA Primers; Electroretinography; Enzyme Inhibitors; Fluorescein Angiography; Gene Expression; Image Processing, Computer-Assisted; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Nitroarginine; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Retinal Diseases; Retinal Vessels; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 1999 |
Nitric oxide synthase inhibitors protect rat retina against ischemic injury.
Elevation of the ocular pressure in the anterior chamber of the rat eye caused major ischemic damage, manifested as changes in retinal morphology. The two most affected structures were the inner plexiform layer, which decreased in thickness by 90%, and the number of ganglion cells, which decreased by 80%. Pretreatment of the animals with N omega-nitro-L-arginine, a nitric oxide (NOS) inhibitor, almost completely abolished the ischemic damage. Administration of aminoguanidine, a NOS inhibitor selective for the inducible enzyme, partially abolished the ischemic damage. Moreover, administration of the NOS inhibitors 1 h after ischemia, also protected the retina from damage, suggesting that similarly acting drugs could be used clinically to limit ischemic injury in humans. We conclude that NOS, and therefore NO, may be involved in the mechanism of ischemic injury to the retina. Topics: Animals; Arginine; Cell Count; Enzyme Inhibitors; Guanidines; Intraocular Pressure; Ischemia; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Sprague-Dawley; Retinal Diseases; Retinal Ganglion Cells; Retinal Vessels | 1995 |