nitroarginine has been researched along with Renal-Insufficiency--Chronic* in 2 studies
2 other study(ies) available for nitroarginine and Renal-Insufficiency--Chronic
Article | Year |
---|---|
5/6th nephrectomy in combination with high salt diet and nitric oxide synthase inhibition to induce chronic kidney disease in the Lewis rat.
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD. Topics: Animals; Disease Models, Animal; Glomerular Filtration Rate; Male; Nephrectomy; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Inbred Lew; Renal Insufficiency, Chronic; Sodium Chloride, Dietary | 2013 |
Transient nitric oxide reduction induces permanent cardiac systolic dysfunction and worsens kidney damage in rats with chronic kidney disease.
Left ventricular systolic dysfunction (LVSD) in patients with chronic kidney disease (CKD) is associated with poorer prognosis. Because patients with CKD often exhibit progressively decreased nitric oxide (NO) availability and inhibition of NO production can reduce cardiac output, we hypothesized that loss of NO availability in CKD contributes to pathogenesis of LVSD. Subtotally nephrectomized (SNX) rats were treated with a low dose of the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA; 20 mg/l water; SNX+L-NNA) and compared with relevant control groups. To study permanent changes separate from hemodynamic effects, L-NNA was stopped after week 8 and rats were followed up to week 15, until blood pressure was similar in SNX+L-NNA and SNX groups. To study effects of NO depletion alone, a control group with high-dose L-NNA (L-NNA-High: 100 mg/l) was included. Mild systolic dysfunction developed at week 13 after SNX. In SNX+L-NNA, systolic function decreased by almost 50% already from week 4 onward, together with markedly reduced whole body NO production and high mortality. In L-NNA-High, LVSD was not as severe as in SNX+L-NNA, and renal function was not affected. Both LVSD and NO depletion were reversible in L-NNA-High after L-NNA was stopped, but both were persistently low in SNX+L-NNA. Proteinuria increased compared with rats with SNX, and glomerulosclerosis and cardiac fibrosis were worsened. We conclude that SNX+L-NNA induced accelerated and permanent LVSD that was functionally and structurally different from CKD or NO depletion alone. Availability of NO appears to play a pivotal role in maintaining cardiac function in CKD. Topics: Animals; Blood Pressure; Body Weight; Echocardiography; Enzyme Inhibitors; Hematocrit; Hypertension, Renal; Male; Nephrectomy; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Poult Enteritis Mortality Syndrome; Proteinuria; Rats; Rats, Inbred Lew; Renal Insufficiency, Chronic; Systole; Urine; Ventricular Dysfunction, Left | 2010 |