nitroarginine has been researched along with Inflammation* in 17 studies
1 review(s) available for nitroarginine and Inflammation
Article | Year |
---|---|
Electrophysiological approaches to the study of bradykinin and nitric oxide in inflammatory pain.
These electrophysiological studies, using desensitization and selective antagonists, demonstrate a peripheral role of bradykinin in the generation of pain in the rat. In addition, nitric oxide is shown to play a complex role in peripheral and spinal events in nociception. Topics: Animals; Arginine; Bradykinin; Formaldehyde; Inflammation; Neurons; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitroarginine; Pain; Rats; Receptors, Bradykinin; Receptors, Neurotransmitter; Spinal Cord | 1992 |
16 other study(ies) available for nitroarginine and Inflammation
Article | Year |
---|---|
Diverse effects of taurine on vascular response and inflammation in GSH depletion model in rabbits.
A reduction in GSH and an increase in free radicals are observed in inflammatory diseases, indicating oxidative stress. Taurine protects cells from the cytotoxic effects of inflammation. There have been limited studies to date evaluating the effect of taurine in oxidative stress-induced vascular dysfunction and its role in vascular inflammatory diseases. Therefore, we aimed to investigate the effect of taurine on the regulation of vascular tonus and vascular inflammatory markers in rabbit aortae and carotid arteries in oxidative stress-induced by GSH depletion.. Rabbits were treated subcutaneously with buthionine sulfoximine (BSO), GSH-depleting compound and/or taurine. Cumulative concentration-response curves for acetylcholine (ACh), phenylephrine and 5-hydroxytriptamine (5-HT) were constructed with or without Nω-nitro-L-arginine (LNA) in the carotid artery and aorta rings. Immunohistochemical staining was performed for TNF-α and IL-1β.. BSO increased ACh-induced NO-dependent relaxations, phenylephrine-induced contractions in the carotid artery and 5-HT induced-contractions in both the carotid artery and the aorta. BSO decreased EDHF dependent relaxations only in the aorta. ACh-induced NO-dependent relaxations and augmented contractions were normalized by taurine. BSO increased TNF-α expressions in both carotid arteries and aortas, which were reversed by taurine. The BSO-induced increase in IL-1β was reversed by taurine only in aortae.. Treatment with BSO resulted in vascular reactivity changes and increased immunostaining of TNF-α in mainly carotid arteries in this model of oxidative stress. The effect of taurine on BSO-induced vascular reactivity changes varied depending on the vessel. The inhibition of the increase in TNF-α expression by taurine in both carotid arteries and aortae supports the proposal that taurine has a beneficial effect in the treatment of inflammatory diseases such as atherosclerosis. Topics: Acetylcholine; Animals; Aorta; Buthionine Sulfoximine; Carotid Arteries; Glutathione; Immunohistochemistry; Inflammation; Interleukin-1beta; Male; Malondialdehyde; Nitric Oxide; Nitroarginine; Oxidative Stress; Rabbits; Taurine; Tumor Necrosis Factor-alpha | 2016 |
A newly synthesized compound, 4'-geranyloxyferulic acid-N(omega)-nitro-L-arginine methyl ester suppresses inflammation-associated colorectal carcinogenesis in male mice.
We previously reported the cancer chemopreventive activity of 4'-geranyloxyferulic acid (GOFA, Miyamoto et al., Nutr Cancer 2008; 60:675-84) and a β-cyclodextrin inclusion compound of GOFA (Tanaka et al., Int J Cancer 2010; 126:830-40) in colitis-related colorectal carcinogenesis. In our study, the chemopreventive effects of a newly synthesized GOFA-containing compound, GOFA-N(omega)-nitro-L-arginine methyl ester (L-NAME), which inhibits inducible nitric oxide (iNOS) and cyclooxygenase-2 (COX) enzymes, were investigated using a colitis-associated mouse colorectal carcinogenesis model with azoxymethane (AOM) and dextran sodium sulfate (DSS). The dietary administration of GOFA-L-NAME after the AOM and DSS treatments significantly reduced the multiplicity of adenocarcinomas (inhibition rates: 100 ppm, 84%, p < 0.001; 500 ppm, 94%, p < 0.001) compared with the AOM + DSS group. Dietary GOFA-L-NAME significantly decreased the proliferation (p < 0.001) and increased the apoptosis (p < 0.001) of colonic adenocarcinoma cells. A subsequent short-term experiment revealed that dietary GOFA-L-NAME decreased the mRNA expression of inflammatory enzymes, such as iNOS and COX-2, and proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and macrophage inflammatory protein (MIP)-2 in the colonic mucosa of mice that received 1.5% DSS in their drinking water for 7 days. Our findings indicate that GOFA-L-NAME is able to inhibit colitis-associated colon carcinogenesis by modulating inflammation, proliferation, apoptosis and the expression of proinflammatory cytokines in mice. Topics: Adenocarcinoma; Adenoma; Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Carcinogenesis; Cell Proliferation; Colorectal Neoplasms; Coumaric Acids; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Inflammation; Intestinal Mucosa; Male; Mice; Mice, Inbred ICR; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type II; Nitroarginine; RNA-Binding Proteins | 2014 |
Nitric oxide modulated the expression of DREAM/calsenilin/KChIP3 in inflammatory pain of rats.
Downstream regulatory element antagonistic modulator (DREAM) is a critical transcriptional repressor for pain modulation. The role of nitric oxide (NO) plays in modulating DREAM pain pathway in the periphery is unclear. Therefore, we investigated the role of the NO in modulation of the expression of DREAM in formalin-induced rat inflammatory pain models. Male Sprague-Dawley rats were randomly distributed into four groups: the normal group, formalin test group, Nω-nitro-L-arginine (l-NNA) group, and morphine group. One hundred microliters of 2.5 % formalin was injected into the plantar surface of the right hindpaw of rats. l-NNA (40 nmol/L) and morphine (40 nmol/L) were injected intrathecally in the hindpaw before formalin injection. The nociceptive behavioral reaction was recorded. After the formalin test, the expression of DREAM mRNA and protein in the spinal cord of the four groups were measured. The nociceptive reaction induced by injection of formalin exhibited two phases. Morphine and l-NNA significantly decreased pain scores of the second phase. The expression of DREAM was significantly increased in the rat spinal cord after formalin-induced pain. Morphine significantly upregulated the expression of DREAM, and the formalin-induced upregulation was significantly attenuated by l-NNA. NO may play an important role in the DREAM pathway modulation of inflammatory pain. Topics: Animals; Formaldehyde; Inflammation; Injections, Spinal; Kv Channel-Interacting Proteins; Male; Morphine; Nitric Oxide; Nitroarginine; Pain; Pain Measurement; Random Allocation; Rats; Rats, Sprague-Dawley; Repressor Proteins; RNA, Messenger; Spinal Cord | 2012 |
Effects of NO-modulating agents on the development of acute painful reaction in rats.
Painful reaction of rats to intraperitoneal injections of L-arginine, Nw-nitro-L-arginine, and agmatine was studied on the model of formalin-induced inflammation. All drugs exhibited a dubious effect on the patterns of nociceptive behavior depending on the phase of painful reaction. The dynamics of nitrate/nitrite content in animal blood and serum indicated the presence of NO-dependent and NO-independent components in the mechanisms of pharmacological effects of these drugs. Topics: Agmatine; Animals; Arginine; Behavior, Animal; Formaldehyde; Inflammation; Injections, Intraperitoneal; Male; Nitric Oxide; Nitroarginine; Pain; Pain Measurement; Rats; Rats, Wistar; Spectrophotometry | 2008 |
Intrathecally injected morphine inhibits inflammatory paw edema: the involvement of nitric oxide and cyclic-guanosine monophosphate.
Morphine can inhibit inflammatory edema in experimental animals. The mechanisms and sites by which opioids exert this effect are still under debate. Since the spinal level is a site for modulation of the neurogenic component of inflammation, we investigated the effect of intrathecal (i.t.) administration of morphine, and the involvement of spinal nitric oxide (NO)/cyclic-guanosine monophosphate-GMP pathway in carrageenan (CG)-induced paw edema.. Male Wistar rats received i.t. injections of drugs (20 microL) 30 min before paw stimulation with CG (150 microg). Edema was measured as paw volume increase (mL), and neutrophil migration was evaluated indirectly by myeloperoxidase (MPO) assay.. Morphine (37, 75, and 150 nmol) inhibited inflammatory edema, but had no effect on MPO activity. Coinjection with naloxone (64 nmol) reversed the effect of morphine. The corticosteroid synthesis inhibitor, aminoglutethimide (50 mg/kg, v.o.), administered 90 min before morphine injection did not modify its antiedematogenic effect. Low doses of the NO synthase inhibitor, N(omega)-nitro-L-arginine (L-NNA; 10 and 30 pmol) increased, while higher doses (3 and 30 nmol) inhibited edema. The guanylate cyclase inhibitor 1H-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 21 and 42 nmol) increased, while the phosphodiesterase type 5 inhibitor sildenafil (0.15 and 1.5 nmol) inhibited paw edema. Coadministration of a subeffective dose of L-NNA (3 pmol) or ODQ (10 nmol) with morphine prevented its antiedematogenic effect, but sildenafil (0.15 nmol) rendered a subeffective dose of morphine effective (18 nmol). ODQ also prevented the antiedematogenic effect of the NO donor S-nitroso-N-acetyl-penicilamine.. These results support the idea that morphine can act on opioid receptors at the spinal level to produce antiedematogenic, and that the NO/cGMP pathway seems to be an important mediator in this effect. Topics: Analgesics, Opioid; Animals; Anti-Inflammatory Agents, Non-Steroidal; Carrageenan; Cyclic GMP; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Enzyme Inhibitors; Guanylate Cyclase; Inflammation; Injections, Spinal; Male; Morphine; Naloxone; Narcotic Antagonists; Neutrophil Infiltration; Neutrophils; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitroarginine; Oxadiazoles; Peroxidase; Phosphodiesterase Inhibitors; Piperazines; Purines; Quinoxalines; Rats; Rats, Wistar; S-Nitroso-N-Acetylpenicillamine; Signal Transduction; Sildenafil Citrate; Spinal Cord; Sulfones; Time Factors | 2008 |
Transcriptome-based identification of pro- and antioxidative gene expression in kidney cortex of nitric oxide-depleted rats.
Nitric oxide (NO) depletion in rats induces severe endothelial dysfunction within 4 days. Subsequently, hypertension and renal injury develop, which are ameliorated by alpha-tocopherol (VitE) cotreatment. The hypothesis of the present study was that NO synthase (NOS) inhibition induces a renal cortical antioxidative transcriptional response and invokes pro-oxidative and proinflammatory gene expression due to elimination of dampening effects of NO and enhanced oxidative stress. Male Sprague-Dawley rats received NOS inhibitor N(omega)-nitro-l-arginine (l-NNA, 500 mg/l water) for 4 (4d-LNNA), 21 (21d-LNNA), or 21 days with VitE in chow (0.7 g/kg body wt/day). Renal cortical RNA was applied to oligonucleotide rat arrays. In 4d-LNNA, 21d-LNNA, and 21d-LNNA+VitE, 120, 320, and 184 genes were differentially expressed, respectively. Genes related to glutathione and bilirubin synthesis were suppressed during 4d and 21d-LNNA and not corrected by VitE. Proteinuria, tubulointerstitial macrophages, and heme-oxygenase-1 (HO-1) expression were strongly correlated. Remarkably, pro-oxidative genes were not induced. Inflammation- and injury-related genes, including kidney injury molecule-1 and osteopontin, were unchanged at day 4, induced at 21d, and partly corrected by VitE. Superimposing HO-1 inhibition on NOS inhibition had no impact on the development of hypertension. To summarize, renal expression of genes involved in synthesis of the antioxidants glutathione and bilirubin seemed directly NO dependent, but there were no direct effects of NO depletion on pro-oxidant systems. This indicates that renal transcriptional regulation of two defense systems, glutathione and bilirubin syntheses, seems to depend upon adequate NO synthesis. Interaction between NO synthesis and heme degradation pathways for blood pressure regulation was not found. Topics: Animals; Antioxidants; Bilirubin; Blood Pressure; Catalase; Endothelium; Enzyme Inhibitors; Gene Expression Profiling; Glutamate-Cysteine Ligase; Glutathione; Glutathione Synthase; Inflammation; Kidney Cortex; Male; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Oligonucleotide Array Sequence Analysis; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Transcription, Genetic; Vitamin E | 2007 |
Time course of neural and contractile disturbances in a rat model of colitis induced by Trichinella spiralis.
Colitis induced by Trichinella spiralis in rat induces alterations in the spontaneous motor pattern displayed by circular colonic muscle [Auli, M., Fernandez, E., 2005. Characterization of functional and morphological changes in a rat model of colitis induced by T. spiralis. Digestive Diseases and Sciences 50(8), 1432-1443]. We examined the temporal relationship between the severity of inflammation and the altered contractility of the underlying circular muscle as well as the role of NANC inhibitory pathways in the disruption of the motility pattern. Colitis was induced by intrarectal administration of T. spiralis larvae. Responses to acetylcholine (ACh) and increased extracellular potassium as well as the effect of tetrodotoxin (TTX, 1 microM), N-nitro-l-arginine (L-NOARG, 1 mM) and apamin (1 microM) were determined in vitro in the organ bath with circular muscle strips from sham-infected and infected rats at days 2-30 postinfection (PI). Microelectrode recordings were performed to study the putative changes in electrical activity of colonic smooth muscle cells. Responses to ACh and KCl were decreased at all days PI compared to sham. Intracellular calcium depletion had a greater inhibitory effect in inflamed tissue (6-14 PI). The effect of TTX, L-NOARG and apamin on the spontaneous contractions was found to be altered in all infected rats, i.e. their effects were transient and milder. Inflamed tissue showed lower resting membrane potential and a decreased duration of inhibitory junction potentials induced by electrical stimulation. These data suggest that the decreased contractility of colonic circular smooth muscle induced by the intrarectal T. spiralis infection results from the impairment of the excitation-contraction coupling, from a persistent hyperpolarization of smooth muscle cells and from impaired NANC inhibitory neurotransmission. Topics: Acetylcholine; Animals; Apamin; Colitis; Disease Models, Animal; Disease Progression; Electric Stimulation; Enteric Nervous System; Gastrointestinal Motility; Inflammation; Intestines; Male; Muscle Contraction; Muscle, Smooth; Nitroarginine; Rats; Rats, Sprague-Dawley; Signal Transduction; Synaptic Transmission; Tetrodotoxin; Time Factors; Trichinella spiralis; Trichinellosis | 2007 |
Role of nitric oxide in the impairment of circular muscle contractility of distended, uninflamed mid-colon in TNBS-induced acute distal colitis in rats.
To evaluate the role of nitric oxide (NO) in the motor disorders of the dilated uninflamed mid-colon (DUMC) from trinitrobenzene sulfonic acid (TNBS)-induced acute distal colitis in rats.. Colitis was induced in male Sprague-Dawley rats by a single intracolonic administration of TNBS. Control rats received an enema of 0.9% saline. The rats were killed 48 h after TNBS or saline administration. Macroscopic and histologic lesions of the colon were evaluated. Myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity were measured on the colonic tissue. In TNBS rats, we evaluated spontaneous and evoked contractile activity in circular muscle strips derived from DUMC in comparison to the same colonic segment of control rats, both in the presence and in the absence of a non-selective NOS isoforms inhibitor N-nitro-L-arginine (L-NNA). Pharmacological characterization of electric field stimulation (EFS)-evoked contractile responses was also performed.. In TNBS rats, the distal colon showed severe histological lesions and a high MPO activity, while the DUMC exhibited normal histology and MPO activity. Constitutive NOS activity was similar in TNBS and control rats, whereas inducible NOS activity was significantly increased only in the injured distal colon of TNBS rats. Isometrically recorded mechanical activity of circular muscle strips from DUMC of TNBS rats showed a marked reduction of the force and frequency of spontaneous contractions compared to controls, as well as of the contractile responses to a contracting stimulus. In the presence of L-NNA, the contractile activity and responses displayed a significantly greater enhancement compared to controls. The pharmacological characterization of EFS contractile responses showed that a cooperative-like interaction between cholinergic muscarinic and tachykinergic neurokinin 1 and 2 receptors mediated transmission in DUMC of TNBS rats vs a simple additive interaction in controls.. The results of this study show that, during TNBS-induced acute distal colitis, circular muscle intrinsic contractile mechanisms and possible enteric neural excitatory activity are inhibited in the distended uninflamed mid-colon. Suppression of NO synthesis markedly improves spontaneous and evokes muscle contractions, in spite of any evident change in local NO activity. Topics: Animals; Colitis; Inflammation; Male; Muscle Contraction; Muscle, Smooth; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Sprague-Dawley; Trinitrobenzenesulfonic Acid | 2005 |
Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis.
There is controversy in the literature over whether nitric oxide (NO) released during the inflammatory process has a pro- or inhibitory effect on neutrophil migration. The aim of the present investigation was to clarify this situation. Treatment of rats with non-selective, NG-nitro-L-arginine (nitro), or selective inducible NO synthase (iNOS), aminoguanidine (amino) inhibitors enhanced neutrophil migration 6h after the administration of low, but not high, doses of carrageenan (Cg) or Escherichia coli endotoxin (LPS). The neutrophil migration induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also enhanced by nitro or amino treatments. The enhancement of Cg-induced neutrophil migration by NOS inhibitor treatments was reversed by co-treatment with L-arginine, suggesting an involvement of the L-arginine/NOS pathway in the process. The administration of Cg in iNOS deficient (iNOS(-/-)) mice also enhanced the neutrophil migration compared with wild type mice. This enhancement was markedly potentiated by treatment of iNOS(-/-) mice with nitro. Investigating the mechanisms by which NOS inhibitors enhanced the neutrophil migration, it was observed that they promoted an increase in Cg-induced rolling and adhesion of leukocytes to endothelium and blocked the apoptosis of emigrated neutrophils. Similar results were observed in iNOS(-/-) mice, in which these mechanisms were potentiated and reverted by nitro and L-arginine treatments, respectively. In conclusion, these results suggest that during inflammation, NO released by either constitutive NOS (cNOS) or iNOS down-modulates the neutrophil migration. This NO effect seems to be a consequence of decreased rolling and adhesion of the neutrophils on endothelium and also the induction of apoptosis in migrated neutrophils. Topics: Animals; Apoptosis; Carrageenan; Cell Adhesion; Chemotaxis, Leukocyte; Enzyme Inhibitors; Guanidines; Inflammation; Leukocyte Rolling; Lipopolysaccharides; Male; Mice; Mice, Knockout; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Rats; Rats, Wistar | 2003 |
Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure.
Proinflammatory cytokines depress myocardial contractile function by enhancing the expression of inducible NO synthase (iNOS), yet the mechanism of iNOS-mediated myocardial injury is not clear. As the reaction of NO with superoxide to form peroxynitrite markedly enhances the toxicity of NO, we hypothesized that peroxynitrite itself is responsible for cytokine-induced cardiac depression. Isolated working rat hearts were perfused for 120 minutes with buffer containing interleukin-1 beta, interferon-gamma, and tumor necrosis factor-alpha. Cardiac mechanical function and myocardial iNOS, xanthine oxidoreductase (XOR), and NAD(P)H oxidase activities (sources of superoxide) were measured during the perfusion. Cytokines induced a marked decline in myocardial contractile function accompanied by enhanced activity of myocardial XOR, NADH oxidase, and iNOS. Cardiac NO content, myocardial superoxide production, and perfusate nitrotyrosine and dityrosine levels, markers of peroxynitrite, were increased in cytokine-treated hearts. The peroxynitrite decomposition catalyst FeTPPS (5,10,15, 20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), the NO synthase inhibitor N(G)-nitro-L-arginine, and the superoxide scavenger tiron each inhibited the decline in myocardial function and decreased perfusate nitrotyrosine levels. Proinflammatory cytokines stimulate the concerted enhancement in superoxide and NO-generating activities in the heart, thereby enhancing peroxynitrite generation, which causes myocardial contractile failure. Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Animals; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Heart; Heart Failure; Inflammation; Interferon-gamma; Interleukin-1; Male; Muscle Proteins; Myocardial Contraction; Myocardium; NADPH Oxidases; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Oxidation-Reduction; Oxidative Stress; Perfusion; Porphyrins; Rats; Rats, Sprague-Dawley; Superoxides; Tumor Necrosis Factor-alpha; Xanthine Oxidase | 2000 |
Conditions to study nitric oxide generation by polymorphonuclear cells from an inflammatory exudate in rats.
Superoxide and nitric oxide release by leukocytes has been usually performed after exposure to a particular stimulus. We measured the generation of superoxide and nitric oxide by cells isolated from an inflammatory exudate of rats in either the absence or the presence of a variety of stimuli. Nonstimulated leukocytes generated superoxide radical (1.2 nmol x 10(6) cells(-1)) and nitric oxide (3.8 nmol x 10(6) cells(-1)) after 2 h incubation. When cells were incubated with lipopolysaccharides, opsonized zymosan or phorbol 12-myristate 13-acetate, superoxide level increased while nitric oxide decreased. Phorbol 12-myristate 13-acetate (100 ng/ml) induced a decrease of 0.88 nmol x 10(6) cells(-1) compared with nonstimulated cells, and incubation with N-iminoethyl-L-ornithine increased superoxide production by 0.81 nmol x 10(6) cells(-1). These results provide clear evidence that cells from an inflammatory exudate which are already triggered are able to generate a considerable amount of nitric oxide and in less proportion superoxide, that the measure of nitric oxide must be performed without a further stimulus, and that both molecules react in an equimolar proportions to give peroxynitrite anion. Topics: Animals; Arginine; Carrageenan; Enzyme Inhibitors; Exudates and Transudates; Inflammation; Kinetics; Neutrophils; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Ornithine; Rats; Superoxides; Tetradecanoylphorbol Acetate; Zymosan | 1996 |
Mechanisms underlying the vascular activity of beta-amyloid protein fragment (beta A(4)25-35) at the level of skin microvasculature.
Deposition of beta-amyloid protein (beta A4) in extracellular senile plaques is a pathologic hallmark of Alzheimer's disease (AD). The neurotoxic effect of beta A4 has been ascribed to a discrete 11-amino acid internal sequence (beta A(4)25-35). Substance P (SP) has been found to be depleted in the brain of AD patients while its presence was found to protect against the neurodegenerative effect of beta A(4)25-35. Our previous studies, in vivo, in aged rats showed that beta A(4)25-35 exhibits a potent vasoconstrictor (VC) effect in rat skin microvasculature and can prevent SP but not calcitonin gene-related peptide (CGRP) from inducing a vasodilator (VD) response. It was postulated that beta A(4)25-35 might be interacting with SP at the level of the second messenger system via the phosphoinositide pathway. Using a blister model of inflammation in the rat hind footpad, we examined the ability of beta A(4)25-35 to modulate the vascular activity of bradykinin (BK) and serotonin (5-HT) which also activate the phosphoinositide pathway. In addition, the role of nitric oxide (NO), endothelin (ET, an endothelium-derived constrictor factor) and protein kinase C (PKC) in the vascular effects of beta A(4)25-35 were examined using the NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the ET-receptor antagonist, BQ-123, and the PKC inhibitor, bisindolylmaleimide (BIM) respectively. Changes in microvascular blood flow were monitored using laser Doppler flowmetry and the area within the response curve measured. The results showed that beta A(4)25-35 (10 microM) induced a VC effect and inhibited the subsequent VD response to BK (10 microM) and 5-HT (1 microM) in a similar fashion to its effect on SP (1 microM). In the presence of L-NOARG (100 microM), the VD effect of SP was reduced and further attenuated after perfusion of beta A(4)25-35. Superfusion of the blister base with BQ-123 (10 microM) or BIM (1 microM) prior to and during perfusion with beta A(4)25-35 abolished its VC effect and allowed SP to induce a normal VD response in both young and old rats. Based on these results, we suggest that the vascular activity of the active fragment, beta A(4)25-35, is mediated by ET via activation of PKC. This study provides new findings which may help to elucidate the signal transduction mechanisms involved in the vascular activity of beta A(4)25-35. The relevance of these mechanisms to those underlying the pathological effects of beta A4 and their significance in AD remains Topics: Aging; Alzheimer Disease; Amyloid beta-Peptides; Analysis of Variance; Animals; Blister; Bradykinin; Endothelin Receptor Antagonists; Enzyme Inhibitors; Humans; Indoles; Inflammation; Laser-Doppler Flowmetry; Male; Maleimides; Microcirculation; Nitroarginine; Peptide Fragments; Peptides, Cyclic; Protein Kinase C; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Serotonin; Skin; Vasodilation | 1996 |
Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide.
We investigated whether treatment with the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA) and the free radical scavenger superoxide dismutase influences cerebral blood flow changes, brain edema, and cerebrospinal fluid pleocytosis in early experimental pneumococcal meningitis. Compared to untreated infected rats, superoxide dismutase given 3 hours after infection significantly attenuated the increase of brain water content, intracranial pressure, and cerebrospinal fluid white blood cell count, but did not modulate the increase in regional cerebral blood flow. N-Nitro-L-arginine treatment (5 mg/kg intravenously, followed by 5 mg/kg/hour) reversed the increase in regional cerebral blood flow; prevented an increase in brain water content, intracranial pressure, and cerebrospinal fluid nitrite concentrations; and reduced cerebrospinal fluid white blood cell count. With a closed cranial window preparation, N-nitro-L-arginine prevented pneumococci-induced dilatation of pial arterioles. When the effective dose was increased twofold, the effects of N-nitro-L-arginine became more pronounced but resulted in the death of 4 of 5 rats, probably due to hemodynamic side effects. In primary cultures of rat cerebral endothelial cells, nitrite concentrations increased after pneumococcal stimulation, which could be prevented by N-nitro-L-arginine and cycloheximide. These data suggest that (a) nitric oxide accounts for regional cerebral blood flow changes and pial arteriolar dilatation in the early phase of experimental pneumococcal meningitis; (b) both superoxide radical and nitric oxide are involved as mediators of brain edema and meningeal inflammation; and (c) cerebral endothelial cells can be stimulated by pneumococci to release nitric oxide presumably via the inducible nitric oxide synthase. Topics: Amino Acid Oxidoreductases; Animals; Arginine; Arterioles; Brain Edema; Cells, Cultured; Cerebral Arteries; Cerebrospinal Fluid; Cerebrovascular Circulation; Endothelium, Vascular; Inflammation; Intracranial Pressure; Leukocyte Count; Male; Meningitis, Pneumococcal; Nitric Oxide; Nitric Oxide Synthase; Nitrites; Nitroarginine; Rats; Rats, Wistar; Superoxide Dismutase | 1995 |
An inhibitor of macrophage arginine transport and nitric oxide production (CNI-1493) prevents acute inflammation and endotoxin lethality.
Nitric oxide (NO), a small effector molecule produced enzymatically from L-arginine by nitric oxide synthase (NOS), is a mediator not only of important homeostatic mechanisms (e.g., blood vessel tone and tissue perfusion), but also of key aspects of local and systemic inflammatory responses. Previous efforts to develop inhibitors of NOS to protect against NO-mediated tissue damage in endotoxin shock have been unsuccessful, largely because such competitive NOS antagonists interfere with critical vasoregulatory NO production in blood vessels and decrease survival in endotoxemic animals. Accordingly, we sought to develop a pharmaceutical approach to selectively inhibit NO production in macrophages while sparing NO responses in blood vessels.. The process of cytokine-inducible L-arginine transport and NO production were studied in the murine macrophage-like cell line (RAW 264.7). A series of multivalent guanylhydrazones were synthesized to inhibit cytokine-inducible L-arginine transport. One such compound (CNI-1493) was studied further in animal models of endothelial-derived relaxing factor (EDRF) activity, carrageenan inflammation, and lethal lipopolysaccharide (LPS) challenge.. Upon activation with cytokines, macrophages increase transport of L-arginine to support the production of NO by NOS. Since endothelial cells do not require this additional arginine transport to produce NO, we reasoned that a competitive inhibitor of cytokine-inducible L-arginine transport would not inhibit EDRF activity in blood vessels, and thus might be effectively employed against endotoxic shock. CNI-1493, a tetravalent guanylhydrazone, proved to be a selective inhibitor of cytokine-inducible arginine transport and NO production, but did not inhibit EDRF activity. In mice, CNI-1493 prevented the development of carrageenan-induced footpad inflammation, and conferred protection against lethal LPS challenge.. A selective inhibitor of cytokine-inducible L-arginine transport that does not inhibit vascular EDRF responses is effective against endotoxin lethality and significantly reduces inflammatory responses. Topics: Animals; Arginine; Biological Transport; Carrageenan; Cell Line; Dose-Response Relationship, Drug; Edema; Endotoxins; Enzyme Inhibitors; Hydrazones; Inflammation; Interferon-gamma; Lipopolysaccharides; Macrophage Activation; Macrophages; Mice; Molecular Structure; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine | 1995 |
Nitric oxide synthase inhibitor blocks spinal sensitization induced by formalin injection into the rat paw.
This study evaluated the role of nitric oxide (NO) in spinal cord nociceptive transmission during peripheral inflammation evoked by formalin injection into the rat paw, using N omega-nitro-L-arginine (N-Arg), an NO synthase inhibitor. Male rats were prepared with intrathecal (IT) catheters. To quantify the formalin response, the instances of "flinching behavior" were counted at 5-min intervals for 60 min. IT N-Arg depressed the flinching behavior in a dose-dependent manner when N-Arg was administered 10 min before the formalin injection. This N-Arg effect was reversed with L-arginine but not D-arginine. We conclude that NO plays an important role in nociceptive transmission in the spinal cord during the formalin test. Topics: Amino Acid Oxidoreductases; Animals; Arginine; Dose-Response Relationship, Drug; Formaldehyde; Inflammation; Injections, Spinal; Male; Nitric Oxide Synthase; Nitroarginine; Pain; Rats; Rats, Sprague-Dawley; Spinal Cord | 1993 |
The quantitative contribution of nitric oxide and sensory nerves to bradykinin-induced inflammation in rat skin microvasculature.
Using a blister model in the rat hind footpad, the present study undertook to examine the relative contribution of sensory nerves and nitric oxide (NO) to the inflammatory response induced by bradykinin (BK). Using this model, combined with laser Doppler flowmetry, we were able to simultaneously monitor two parameters of the inflammatory response, namely vasodilatation (VD) and plasma extravasation (PE). Perfusion of BK (1, 10 or 100 microM) over the blister base elicited both VD and PE responses which were dose-dependent. The VD response was of rapid onset, sustained at the lowest concentration (1 microM), and showed tachyphylaxis at the highest two concentrations (10 and 100 microM). The PE response, however, was delayed in onset at the lower concentration but the response was maintained at all concentrations. The endothelium-independent vasodilator, sodium nitroprusside. (SNP, 100 microM), was used as an internal control and elicited a rapid maintained VD response. In rats pretreated as neonates with capsaicin to destroy primary sensory afferents, the inflammatory response to 10 microM BK was significantly smaller (50% and 64% decrease in VD and PE, respectively). The selective inhibitor of NO synthase, NG-nitro-L-arginine (L-NORAG) at 100 microM significantly attenuated the inflammatory response to BK in control rats (76% and 60% decrease in VD and PE, respectively) with a further decrease in the response in capsaicin pretreated rats. The inactive stereoisomer NG-nitro-D-arginine (D-NORAG) (100 microM) did not affect the inflammatory response to BK. The vasodilator response to SNP was intact in capsaicin pretreated rats and was not affected by either L-NORAG or D-NORAG.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Amino Acid Oxidoreductases; Amino Acid Sequence; Animals; Arginine; Bradykinin; Capsaicin; Female; Inflammation; Male; Microcirculation; Molecular Sequence Data; Neurons, Afferent; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Skin; Stereoisomerism | 1992 |