nintedanib and Cell-Transformation--Neoplastic

nintedanib has been researched along with Cell-Transformation--Neoplastic* in 2 studies

Other Studies

2 other study(ies) available for nintedanib and Cell-Transformation--Neoplastic

ArticleYear
An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents.
    Gastroenterology, 2019, Volume: 157, Issue:5

    Cirrhosis and chronic inflammation precede development of hepatocellular carcinoma (HCC) in approximately 80% of cases. We investigated immune-related gene expression patterns in liver tissues surrounding early-stage HCCs and chemopreventive agents that might alter these patterns to prevent liver tumorigenesis.. We analyzed gene expression profiles of nontumor liver tissues from 392 patients with early-stage HCC (training set, N = 167 and validation set, N = 225) and liver tissue from patients with cirrhosis without HCC (N = 216, controls) to identify changes in expression of genes that regulate the immune response that could contribute to hepatocarcinogenesis. We defined 172 genes as markers for this deregulated immune response, which we called the immune-mediated cancer field (ICF). We analyzed the expression data of liver tissues from 216 patients with cirrhosis without HCC and investigated the association between this gene expression signature and development of HCC and outcomes of patients (median follow-up, 10 years). Human liver tissues were also analyzed by histology. C57BL/6J mice were given a single injection of diethylnitrosamine (DEN) followed by weekly doses of carbon tetrachloride to induce liver fibrosis and tumorigenesis. Mice were then orally given the multiple tyrosine inhibitor nintedanib or vehicle (controls); liver tissues were collected and histology, transcriptome, and protein analyses were performed. We also analyzed transcriptomes of liver tissues collected from mice on a choline-deficient high-fat diet, which developed chronic liver inflammation and tumors, orally given aspirin and clopidogrel or the anti-inflammatory agent sulindac vs mice on a chow (control) diet.. We found the ICF gene expression pattern in 50% of liver tissues from patients with cirrhosis without HCC and in 60% of nontumor liver tissues from patients with early-stage HCC. The liver tissues with the ICF gene expression pattern had 3 different features: increased numbers of effector T cells; increased expression of genes that suppress the immune response and activation of transforming growth factor β signaling; or expression of genes that promote inflammation and activation of interferon gamma signaling. Patients with cirrhosis and liver tissues with the immunosuppressive profile (10% of cases) had a higher risk of HCC (hazard ratio, 2.41; 95% confidence interval, 1.21-4.80). Mice with chemically induced fibrosis or diet-induced steatohepatitis given nintedanib or aspirin and clopidogrel down-regulated the ICF gene expression pattern in liver and developed fewer and smaller tumors than mice given vehicle.. We identified an immune-related gene expression pattern in liver tissues of patients with early-stage HCC, called the ICF, that is associated with risk of HCC development in patients with cirrhosis. Administration of nintedanib or aspirin and clopidogrel to mice with chronic liver inflammation caused loss of this gene expression pattern and development of fewer and smaller liver tumors. Agents that alter immune regulatory gene expression patterns associated with carcinogenesis might be tested as chemopreventive agents in patients with cirrhosis.

    Topics: Animals; Anticarcinogenic Agents; Aspirin; Biomarkers, Tumor; Carcinoma, Hepatocellular; Case-Control Studies; Cell Transformation, Neoplastic; Clopidogrel; Diethylnitrosamine; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Regulatory Networks; Humans; Indoles; Liver Neoplasms; Liver Neoplasms, Experimental; Male; Mice, Inbred C57BL; Transcriptome; Tumor Escape; Tumor Microenvironment

2019
Two anti-angiogenic TKI-PET tracers, [(11)C]axitinib and [(11)C]nintedanib: Radiosynthesis, in vivo metabolism and initial biodistribution studies in rodents.
    Nuclear medicine and biology, 2016, Volume: 43, Issue:10

    Tyrosine kinase inhibitors (TKIs) are very attractive targeted drugs, although a large portion of patients remains unresponsive. PET imaging with EGFR targeting TKIs ([(11)C]erlotinib and [(18)F]afatinib) showed promise in identifying treatment sensitive tumors. The aim of this study was to synthesize two anti-angiogenic TKI tracers, [(11)C]axitinib and [(11)C]nintedanib, and to evaluate their potential for PET.. Following successful tracer synthesis, biodistribution studies in VU-SCC-OE and FaDu xenograft bearing mice were performed. Furthermore, tracer stability studies in mice were performed employing (radio-)HPLC and LC-MS/MS techniques. For [(11)C]nintedanib an LC-MS/MS method was developed to detect the primary carboxylic acid metabolite, resulting from methylester cleavage, in plasma and tumors, because this metabolite is postulated to be important for nintedanib efficacy. LC-MS/MS was also explored to assess the metabolic fate of [(11)C]axitinib in vivo, since axitinib has an isomerizable double bond.. [(11)C]axitinib and [(11)C]nintedanib were successfully synthesized with 10.5±2.6% and 25.6±3.3% radiochemical yield (corrected for decay), respectively. Biodistribution studies only demonstrated tumor uptake of [(11)C]nintedanib in FaDu xenografts of 1.66±0.02% ID/g at 60min p.i. In vivo stability analysis of [(11)C]axitinib at 45min p.i. revealed the formation of predominantly non-polar metabolites (36.6±6.8% vs 47.1±8.4% of parent tracer and 16.3±2.1% of polar metabolites), while for [(11)C]nintedanib mostly polar metabolites were found (70.9±4.1 vs 26.7±3.9% of parent tracer and only 2.4±1.6 of a non-polar metabolites). No isomerization of [(11)C]axtinib was observed in vivo; however, a sulfoxide metabolite could be detected using LC-MS/MS. For [(11)C]nintedanib, LC-MS/MS revealed formation of the reported primary carboxylic acid metabolite when in vitro plasma incubations were performed, with large differences in plasmas from different species. In vivo metabolite analysis, however, did not demonstrate the presence of the carboxylic acid in plasma or tumor tissue.. Reliable syntheses of [(11)C]axitinib and [(11)C]nintedanib were successfully developed. Tumor uptake was observed for [(11)C]nintedanib, albeit modest. The metabolic profiles of the tracers suggest that rapid metabolism is partly responsible for the modest tumor targeting observed.

    Topics: Angiogenesis Inhibitors; Animals; Axitinib; Carbon Radioisotopes; Cell Line, Tumor; Cell Transformation, Neoplastic; Humans; Imidazoles; Indazoles; Indoles; Mice; Positron-Emission Tomography; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Radioactive Tracers; Radiochemistry; Rats; Tissue Distribution

2016