nifuroxazide and Kidney-Diseases

nifuroxazide has been researched along with Kidney-Diseases* in 1 studies

Other Studies

1 other study(ies) available for nifuroxazide and Kidney-Diseases

ArticleYear
Nifuroxazide suppresses UUO-induced renal fibrosis in rats via inhibiting STAT-3/NF-κB signaling, oxidative stress and inflammation.
    Life sciences, 2021, May-01, Volume: 272

    The current work explored the influences of nifuroxazide, an in vivo inhibitor of signal transducer and activator of transcription-3 (STAT-3) activation, on tubulointerstitial fibrosis in rats with obstructive nephropathy using unilateral ureteral obstruction (UUO) model. Thirty-two male Sprague Dawley rats were assigned into 4 groups (n = 8/group) at random. Sham and UUO groups were orally administered 0.5% carboxymethyl cellulose (CMC) (2.5 mL/kg/day), while Sham-NIF and UUO-NIF groups were treated with 20 mg/kg/day of NIF (suspended in 0.5% CMC, orally). NIF or vehicle treatments were started 2 weeks after surgery and continued for further 2 weeks. NIF treatment ameliorated kidney function in UUO rats, where it restored serum creatinine, blood urea, serum uric acid and urinary protein and albumin to near-normal levels. NIF also markedly reduced histopathological changes in tubules and glomeruli and attenuated interstitial fibrosis in UUO-ligated kidneys. Mechanistically, NIF markedly attenuated renal immunoexpression of E-cadherin and α-smooth muscle actin (α-SMA), diminished renal oxidative stress (↓ malondialdehyde (MDA) levels and ↑ superoxide dismutase (SOD) activity), lessened renal protein expression of phosphorylated-STAT3 (p-STAT-3), phosphorylated-Src (p-Src) kinase, the Abelson tyrosine kinase (c-Abl) and phosphorylated nuclear factor-kappaB p65 (pNF-κB p65), decreased renal cytokine levels of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) and reduced number of cluster of differentiation 68 (CD68) immunolabeled macrophages in UUO renal tissues, compared to levels in untreated UUO kidneys. Taken together, NIF treatment suppressed interstitial fibrosis in UUO renal tissues, probably via inhibiting STAT-3/NF-κB signaling and attenuating renal oxidative stress and inflammation.

    Topics: Animals; Fibrosis; Hydroxybenzoates; Inflammation; Kidney; Kidney Diseases; Male; NF-kappa B; Nitrofurans; Oxidative Stress; Rats; Rats, Sprague-Dawley; Signal Transduction; STAT3 Transcription Factor; Ureteral Obstruction; Uric Acid

2021