nifuroxazide and Disease-Models--Animal

nifuroxazide has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for nifuroxazide and Disease-Models--Animal

ArticleYear
Nifuroxazide ameliorates pulmonary fibrosis by blocking myofibroblast genesis: a drug repurposing study.
    Respiratory research, 2022, Feb-16, Volume: 23, Issue:1

    Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease with a complex pathogenesis and high mortality. The development of new drugs is time-consuming and laborious; therefore, research on the new use of old drugs can save time and clinical costs and even avoid serious side effects. Nifuroxazide (NIF) was originally used to treat diarrhoea, but more recently, it has been found to have additional pharmacological effects, such as anti-tumour effects and inhibition of inflammatory diseases related to diabetic nephropathy. However, there are no reports regarding its role in pulmonary fibrosis.. The therapeutic effect of NIF on pulmonary fibrosis in vivo was measured by ELISA, hydroxyproline content, H&E and Masson staining, immunohistochemistry (IHC) and western blot. Immune cell content in lung tissue was also analysed by flow cytometry. NIF cytotoxicity was evaluated in NIH/3T3 cells, human pulmonary fibroblasts (HPFs), A549 cells and rat primary lung fibroblasts (RPLFs) using the MTT assay. Finally, an in vitro cell model created by transforming growth factor-β1 (TGF-β1) stimulation was assessed using different experiments (immunofluorescence, western blot and wound migration assay) to evaluate the effects of NIF on the activation of NIH/3T3 and HPF cells and the epithelial-mesenchymal transition (EMT) and migration of A549 cells.. In vivo, intraperitoneal injection of NIF relieved and reversed pulmonary fibrosis caused by bleomycin (BLM) bronchial instillation. In addition, NIF inhibited the expression of a variety of cellular inflammatory factors and immune cells. Furthermore, NIF suppressed the activation of fibroblasts and EMT of epithelial cells induced by TGF-β1. Most importantly, we used an analytical docking experiment and thermal shift assay to further verify that NIF functions in conjunction with signal transducer and activator of transcription 3 (Stat3). Moreover, NIF inhibited the TGF-β/Smad pathway in vitro and decreased the expression of phosphorylated Stat3 in vitro and in vivo.. Taken together, we conclude that NIF inhibits and reverses pulmonary fibrosis, and these results support NIF as a viable therapeutic option for IPF treatment.

    Topics: A549 Cells; Animals; Anti-Infective Agents; Disease Models, Animal; Drug Repositioning; Epithelial-Mesenchymal Transition; Flow Cytometry; Humans; Hydroxybenzoates; Idiopathic Pulmonary Fibrosis; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Myofibroblasts; Nitrofurans; Rats; Rats, Wistar; Signal Transduction

2022
Regulation of IL-6/STAT-3/Wnt axis by nifuroxazide dampens colon ulcer in acetic acid-induced ulcerative colitis model: Novel mechanistic insight.
    Life sciences, 2021, Jul-01, Volume: 276

    Ulcerative colitis (UC) is a common intestinal problem characterized by the diffusion of colon inflammation and immunity dysregulation. Nifuroxazide, a potent STAT-3 inhibitor, exhibits diverse pharmacological properties. The present study aimed to elucidate a novel anti-colitis mechanism of nifuroxazide against the acetic acid-induced UC model.. Rats were grouped into control (received vehicle), UC (2 ml of 5% acetic acid by intrarectal infusion), UC plus sulfasalazine (100 mg/kg/day, P.O.), UC plus nifuroxazide (25 mg/kg/day, P.O.), and UC plus nifuroxazide (50 mg/kg/day, P.O.) and lasted for 6 days.. The present study revealed that nifuroxazide significantly reduced UC measures, hematological changes, and histological alteration. In addition, treatment with nifuroxazide significantly down-regulated serum CRP as well as the colonic expressions of MPO, IL-6, TNF-α, TLR-4, NF-κB-p65, JAK1, STAT-3, DKK1 in a dose-dependent manner. Besides, our results showed that the colonic Wnt expression was up-regulated with nifuroxazide treatment. In a dose-dependent manner, nifuroxazide markedly alleviated acetic acid-induced cellular infiltration and improved ulcer healing by increasing intestinal epithelial cell regeneration.. Our results collectively indicate that nifuroxazide is an effective anti-colitis agent through regulation of colon inflammation and proliferation via modulation IL-6/STAT-3/Wnt signaling pathway.

    Topics: Acetic Acid; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Colitis, Ulcerative; Disease Models, Animal; Gene Expression Regulation; Hydroxybenzoates; Interleukin-6; Male; Nitrofurans; Rats; Rats, Wistar; STAT3 Transcription Factor; Wnt1 Protein

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Nifuroxazide attenuates experimentally-induced hepatic encephalopathy and the associated hyperammonemia and cJNK/caspase-8/TRAIL activation in rats.
    Life sciences, 2020, Jul-01, Volume: 252

    Hyperammonemia is a serious metabolic disorder associating with hepatic encephalopathy (HE) which occurs secondary to several forms of liver injury ranging from simple acute liver failure (ALF) to its most serious form; cirrhosis. The resent study highlights the possible ameliorative effect of oral nifuroxazide (25 mg/kg) against experimentally induced ALF and the subsequent HE in a well-standardized rat model. ALF and HE were induced in a rat model by I.P. injection of thioacetamide (TAA) (200 mg/kg) for 1 week at alternative days. Nifuroxazide administration for 14 days prior to and for further 7 days alongside TAA injection successfully attenuated TAA-induced ALF and HE; as demonstrated by the significant retraction in both brain and serum hyperammonemia with significant improvement in liver function biomarkers; ALT, AST, ALP, GGT, albumin, and serum total protein. This was associated with a significant restoration of both hepatic and brain oxidative stress incidences; MDA, SOD and catalase activities and GSH concentration. The observed improvement was associated with a significant reduction in liver and brain contents of c-Jun N-terminal kinase (cJNK); as an anti-inflammatory biomarker and a modulator of various pro- and anti-apoptotic proteins, caspase-8, and tumor necrosis factor-related apoptosis ligand (TRAIL); as biomarkers of apoptosis. In conclusion; the modulatory effect of nifuroxazide on cJNK/caspase-8/TRAIL signaling appears to underly its hepatoprotective effect and its ameliorative effect on HE progression.

    Topics: Animals; Caspase 8; Disease Models, Animal; Disease Progression; Hepatic Encephalopathy; Hydroxybenzoates; Hyperammonemia; JNK Mitogen-Activated Protein Kinases; Liver Failure, Acute; Male; Nitrofurans; Oxidative Stress; Rats; Rats, Sprague-Dawley; TNF-Related Apoptosis-Inducing Ligand

2020
A novel role of nifuroxazide in attenuation of sepsis-associated acute lung and myocardial injuries; role of TLR4/NLPR3/IL-1β signaling interruption.
    Life sciences, 2020, Sep-01, Volume: 256

    Acute lung injury (ALI) and the subsequent multi-system organ failure is a serious health problem with devastating impacts on the health care systems. Indeed, the world has been facing an un-preceded situation in the past couple of months following COVID-19 infestation and the associated high-mortality rates mainly attributed to sepsis and the associated multiple organ failures of particular concern; acute respiratory distress syndrome post lung injury. The current study provides evidence on the ameliorative impact of nifuroxazide, and FDA approved antidiarrheal drug in attenuation of lipopolysaccharide (LPS)-induced ALI and myocarditis when administrated either in prophylactic or curative regimens. Nifuroxazide administration was associated with a significant improvement in lung and heart histopathological characteristics and architecture with retraction of LPS-induced inflammatory-infiltration. This was associated with retraction in serum biomarkers of cellular injury of which; LDH, CK-MB, and ALP. Nifuroxazide administration was associated with a significant improvement in both lung and heart oxidative status. Such positive outcomes were underlined by a significant inhibitory effect of nifuroxazide on lung and heart contents of toll-like receptor (4) (TLR4)/the inflammasome NALPR3/interleukin- 1β (IL-1β). In conclusion: Nifuroxazide attenuates LPS-induced ALI and myocardial injury via interruption of TLR4/NALPR3/IL-1β signaling. Thus it can offer a potential approach for attenuation of sepsis in critically ill patients.

    Topics: Acute Lung Injury; Animals; Coronavirus Infections; COVID-19; Disease Models, Animal; Hydroxybenzoates; Interleukin-1beta; Lipopolysaccharides; Male; Multiple Organ Failure; Myocarditis; Nitrofurans; NLR Family, Pyrin Domain-Containing 3 Protein; Pandemics; Pneumonia, Viral; Rats; Rats, Sprague-Dawley; Sepsis; Signal Transduction; Toll-Like Receptor 4

2020
Nifuroxazide exerts potent anti-tumor and anti-metastasis activity in melanoma.
    Scientific reports, 2016, Feb-02, Volume: 6

    Melanoma is a highly malignant neoplasm of melanocytes with considerable metastatic potential and drug resistance, explaining the need for new candidates that inhibit tumor growth and metastasis. The signal transducer and activator of the transcription 3 (Stat3) signaling pathway plays an important role in melanoma and has been validated as promising anticancer target for melanoma therapy. In this study, nifuroxazide, an antidiarrheal agent identified as an inhibitor of Stat3, was evaluated for its anti-melanoma activity in vitro and in vivo. It had potent anti-proliferative activity against various melanoma cell lines and could induce G2/M phase arrest and cell apoptosis. Moreover, nifuroxazide markedly impaired melanoma cell migration and invasion by down-regulating phosphorylated-Src, phosphorylated-FAK, and expression of matrix metalloproteinase (MMP) -2, MMP-9 and vimentin. It also significantly inhibited tumor growth without obvious side effects in the A375-bearing mice model by inducing apoptosis and reducing cell proliferation and metastasis. Notably, nifuroxazide significantly inhibited pulmonary metastases, which might be associated with the decrease of myeloid-derived suppressor cells (MDSCs). These findings suggested that nifuroxazide might be a potential agent for inhibiting the growth and metastasis of melanoma.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Disease Models, Animal; G2 Phase Cell Cycle Checkpoints; Humans; Hydroxybenzoates; Melanoma; Melanoma, Experimental; Mitochondria; Neoplasm Metastasis; Nitrofurans; Xenograft Model Antitumor Assays

2016
Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model.
    Cell death & disease, 2015, Mar-26, Volume: 6

    Breast carcinoma is the most common female cancer with considerable metastatic potential. Signal transducers and activators of the transcription 3 (Stat3) signaling pathway is constitutively activated in many cancers including breast cancer and has been validated as a novel potential anticancer target. Here, we reported our finding with nifuroxazide, an antidiarrheal agent identified as a potent inhibitor of Stat3. The potency of nifuroxazide on breast cancer was assessed in vitro and in vivo. In this investigation, we found that nifuroxazide decreased the viability of three breast cancer cell lines and induced apoptosis of cancer cells in a dose-dependent manner. In addition, western blot analysis demonstrated that the occurrence of its apoptosis was associated with activation of cleaved caspases-3 and Bax, downregulation of Bcl-2. Moreover, nifuroxazide markedly blocked cancer cell migration and invasion, and the reduction of phosphorylated-Stat3(Tyr705), matrix metalloproteinase (MMP) MMP-2 and MMP-9 expression were also observed. Furthermore, in our animal experiments, intraperitoneal administration of 50 mg/kg/day nifuroxazide suppressed 4T1 tumor growth and blocked formation of pulmonary metastases without detectable toxicity. Meanwhile, histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells, MMP-9-positive cells and an increase in cleaved caspase-3-positive cells upon nifuroxazide. Notably, nifuroxazide reduced the number of myeloid-derived suppressor cell in the lung. Our data indicated that nifuroxazide may potentially be a therapeutic agent for growth and metastasis of breast cancer.

    Topics: Animals; Antidiarrheals; Apoptosis; Breast Neoplasms; Disease Models, Animal; Female; Gene Expression Regulation, Neoplastic; Humans; Hydroxybenzoates; Lung Neoplasms; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; MCF-7 Cells; Mice; Nitrofurans; STAT3 Transcription Factor

2015