nicotinamide-beta-riboside and Muscular-Diseases

nicotinamide-beta-riboside has been researched along with Muscular-Diseases* in 2 studies

Reviews

1 review(s) available for nicotinamide-beta-riboside and Muscular-Diseases

ArticleYear
A need for NAD+ in muscle development, homeostasis, and aging.
    Skeletal muscle, 2018, 03-07, Volume: 8, Issue:1

    Skeletal muscle enables posture, breathing, and locomotion. Skeletal muscle also impacts systemic processes such as metabolism, thermoregulation, and immunity. Skeletal muscle is energetically expensive and is a major consumer of glucose and fatty acids. Metabolism of fatty acids and glucose requires NAD+ function as a hydrogen/electron transfer molecule. Therefore, NAD+ plays a vital role in energy production. In addition, NAD+ also functions as a cosubstrate for post-translational modifications such as deacetylation and ADP-ribosylation. Therefore, NAD+ levels influence a myriad of cellular processes including mitochondrial biogenesis, transcription, and organization of the extracellular matrix. Clearly, NAD+ is a major player in skeletal muscle development, regeneration, aging, and disease. The vast majority of studies indicate that lower NAD+ levels are deleterious for muscle health and higher NAD+ levels augment muscle health. However, the downstream mechanisms of NAD+ function throughout different cellular compartments are not well understood. The purpose of this review is to highlight recent studies investigating NAD+ function in muscle development, homeostasis, disease, and regeneration. Emerging research areas include elucidating roles for NAD+ in muscle lysosome function and calcium mobilization, mechanisms controlling fluctuations in NAD+ levels during muscle development and regeneration, and interactions between targets of NAD+ signaling (especially mitochondria and the extracellular matrix). This knowledge should facilitate identification of more precise pharmacological and activity-based interventions to raise NAD+ levels in skeletal muscle, thereby promoting human health and function in normal and disease states.

    Topics: Aging; Animals; Homeostasis; Humans; Intracellular Space; Muscle Development; Muscle Proteins; Muscle, Skeletal; Muscular Diseases; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds; Regeneration; Signal Transduction

2018

Trials

1 trial(s) available for nicotinamide-beta-riboside and Muscular-Diseases

ArticleYear
A randomized placebo-controlled trial of nicotinamide riboside and pterostilbene supplementation in experimental muscle injury in elderly individuals.
    JCI insight, 2022, 10-10, Volume: 7, Issue:19

    BACKGROUNDDuring aging, there is a functional decline in the pool of muscle stem cells (MuSCs) that influences the functional and regenerative capacity of skeletal muscle. Preclinical evidence has suggested that nicotinamide riboside (NR) and pterostilbene (PT) can improve muscle regeneration, e.g., by increasing MuSC function. The objective of this study was to investigate if supplementation with NR and PT (NRPT) promotes skeletal muscle regeneration after muscle injury in elderly individuals by improved recruitment of MuSCs.METHODSThirty-two elderly individuals (55-80 years of age) were randomized to daily supplementation with either NRPT (1,000 mg NR and 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, skeletal muscle injury was induced by electrically induced eccentric muscle work. Skeletal muscle biopsies were obtained before, 2 hours after, and 2, 8, and 30 days after injury.RESULTSA substantial skeletal muscle injury was induced by the protocol and associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content, proliferation, and cell size revealed a large demand for recruitment after injury, but this was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, central nuclei, and embryonic myosin heavy chain showed no NRPT supplementation effect.CONCLUSIONDaily supplementation with 1,000 mg NR and 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly individuals.TRIAL REGISTRATIONClinicalTrials.gov NCT03754842.FUNDINGNovo Nordisk Foundation (NNF17OC0027242) and Novo Nordisk Foundation CBMR.

    Topics: Aged; Creatine Kinase, MM Form; Dietary Supplements; Humans; Muscle, Skeletal; Muscular Diseases; Myoglobin; Myosin Heavy Chains; Niacinamide; Pyridinium Compounds; Stilbenes

2022