nicotinamide-beta-riboside has been researched along with Insulin-Resistance* in 8 studies
1 review(s) available for nicotinamide-beta-riboside and Insulin-Resistance
Article | Year |
---|---|
Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection.
This review focuses upon the biology and metabolism of a trace component in foods called nicotinamide riboside. Nicotinamide riboside is a precursor of nicotinamide adenine dinucleotide (NAD), and is a source of Vitamin B3. Evidence indicates that nicotinamide riboside has unique properties as a Vitamin B3. We review knowledge of the metabolism of this substance, as well as recent work suggesting novel health benefits that might be associated with nicotinamide riboside taken in larger quantities than is found naturally in foods.. Recent work investigating the effects of nicotinamide riboside in yeast and mammals established that it is metabolized by at least two types of metabolic pathways. The first of these is degradative and produces nicotinamide. The second pathway involves kinases called nicotinamide riboside kinases (Nrk1 and Nrk2, in humans). The likely involvement of the kinase pathway is implicated in the unique effects of nicotinamide riboside in raising tissue NAD concentrations in rodents and for potent effects in eliciting insulin sensitivity, mitochondrial biogenesis, and enhancement of sirtuin functions. Additional studies with nicotinamide riboside in models of Alzheimer's disease indicate bioavailability to brain and protective effects, likely by stimulation of brain NAD synthesis.. Initial studies have clarified the potential for a lesser-known Vitamin B3 called nicotinamide riboside that is available in selected foods, and possibly available to humans by supplements. It has properties that are insulin sensitizing, enhancing to exercise, resisting to negative effects of high-fat diet, and neuroprotecting. Topics: Alzheimer Disease; Animals; Brain; Disease Models, Animal; Energy Metabolism; Humans; Insulin Resistance; Intracellular Signaling Peptides and Proteins; Mitochondrial Turnover; Muscle, Skeletal; NAD; Neuroprotective Agents; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds | 2013 |
2 trial(s) available for nicotinamide-beta-riboside and Insulin-Resistance
Article | Year |
---|---|
Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men.
This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase.. Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD Topics: Humans; Insulin Resistance; Male; Middle Aged; Mitochondria, Muscle; Muscle, Skeletal; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Obesity; Pyridinium Compounds | 2020 |
A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects.
Animal studies suggest a positive role for nicotinamide riboside (NR) on insulin sensitivity and hepatic steatosis in models of obesity and type 2 diabetes. NR, an NAD+ precursor, is a member of the vitamin B-3 family now available as an over-the-counter supplement. Although data from preclinical trials appear consistent, potential effects and safety need to be evaluated in human clinical trials.. The aim of this study was to test the safety of dietary NR supplementation over a 12-wk period and potential to improve insulin sensitivity and other metabolic parameters in obese, insulin-resistant men.. In an investigator-initiated randomized, placebo-controlled, double-blinded, and parallel-group designed clinical trial, forty healthy, sedentary men with a body mass index (BMI) > 30 kg/m2, age-range 40-70 y were randomly assigned to 12 wk of NR (1000 mg twice daily) or placebo. We determined the effects of NR supplementation on insulin sensitivity by a hyperinsulinemic euglycemic clamp and substrate metabolism by indirect calorimetry and labeled substrates of tritiated glucose and palmitate. Body composition and fat mass distribution were determined by whole-body dual-energy X-ray absorptiometry (DXA) and MRI scans, and measurements of intrahepatic lipid content were obtained by MR spectroscopy.. Insulin sensitivity, endogenous glucose production, and glucose disposal and oxidation were not improved by NR supplementation. Similarly, NR supplementation had no effect on resting energy expenditure, lipolysis, oxidation of lipids, or body composition. No serious adverse events due to NR supplementation were observed and safety blood tests were normal.. 12 wk of NR supplementation in doses of 2000 mg/d appears safe, but does not improve insulin sensitivity and whole-body glucose metabolism in obese, insulin-resistant men. This trial was registered at clinicaltrials.gov as NCT02303483. Topics: Adult; Aged; Body Composition; Dietary Supplements; Double-Blind Method; Glucose; Humans; Insulin Resistance; Lipid Metabolism; Male; Middle Aged; Niacinamide; Obesity; Pyridinium Compounds | 2018 |
5 other study(ies) available for nicotinamide-beta-riboside and Insulin-Resistance
Article | Year |
---|---|
Improving Mitochondrial Function in Skeletal Muscle Contributes to the Amelioration of Insulin Resistance by Nicotinamide Riboside.
High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR. Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Insulin; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; Palmitic Acid | 2023 |
Nicotinamide riboside reduces cardiometabolic risk factors and modulates cardiac oxidative stress in obese Wistar rats under caloric restriction.
NAD-based therapeutic strategies are encouraged against obesity and heart disease. Our study, therefore, aimed to investigate the effects of nicotinamide riboside (NR), isolated or combined with caloric restriction (CR), both approaches well-known for stimulating NAD levels, on adiposity parameters, cardiometabolic factors and cardiac oxidative stress in rats submitted to cafeteria diet (CAF).. After 42 days of CAF-induced obesity (hypercaloric and ultra-processed foods common to humans), we examined the effects of oral administration of NR (400 mg/kg for 28 days), combined or not with CR (-62% kcal, for 28 days), on anthropometric, metabolic, tissue, and cardiac oxidative stress parameters in obese male Wistar rats.. In obese rats, treatment with NR alone mitigated final body weight gain, reduced adiposity (visceral and subcutaneous), improved insulin resistance, and decreased TG/HDL ratio and heart size. In cardiac OS, treatment with NR increased the antioxidant capacity via glutathione peroxidase and catalase enzymes (in rats under CR) as well as reduced the pro-oxidant complex NADPH oxidase (in obese and lean rats). Hyperglycemia, hypertriglyceridemia and elevated levels of TBARS in the heart were state-dependent adverse effects, induced by treatment with NR.. This is the first study to report effects of nicotinamide riboside on cardiac oxidative stress in an obesity model. Nicotinamide riboside, a natural dietary compound, presented antiobesity effects and cardiometabolic benefits, in addition to positively modulating oxidative stress in the heart, in a state-dependent manner. Topics: Animals; Antioxidants; Caloric Restriction; Cardiometabolic Risk Factors; Insulin Resistance; Male; Niacinamide; Obesity; Oxidative Stress; Pyridinium Compounds; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances | 2020 |
Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage.
Supplementation with the NAD Topics: Animals; Blood Glucose; Diet, High-Fat; Disease Models, Animal; DNA Damage; Gene Knockout Techniques; Genetic Predisposition to Disease; Glucose Intolerance; Hepatocytes; Insulin Resistance; Lipid Metabolism; Liver; Liver Diseases; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mice, Knockout; NAD; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Protective Agents; Pyridinium Compounds | 2019 |
Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance.
NAD Topics: Aging; Animals; Diet, High-Fat; Fatty Liver; HEK293 Cells; Humans; Insulin Resistance; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; NAD; Niacinamide; NIH 3T3 Cells; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Triglycerides | 2018 |
Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice.
Male C57BL/6J mice raised on high fat diet (HFD) become prediabetic and develop insulin resistance and sensory neuropathy. The same mice given low doses of streptozotocin are a model of type 2 diabetes (T2D), developing hyperglycemia, severe insulin resistance and diabetic peripheral neuropathy involving sensory and motor neurons. Because of suggestions that increased NAD(+) metabolism might address glycemic control and be neuroprotective, we treated prediabetic and T2D mice with nicotinamide riboside (NR) added to HFD. NR improved glucose tolerance, reduced weight gain, liver damage and the development of hepatic steatosis in prediabetic mice while protecting against sensory neuropathy. In T2D mice, NR greatly reduced non-fasting and fasting blood glucose, weight gain and hepatic steatosis while protecting against diabetic neuropathy. The neuroprotective effect of NR could not be explained by glycemic control alone. Corneal confocal microscopy was the most sensitive measure of neurodegeneration. This assay allowed detection of the protective effect of NR on small nerve structures in living mice. Quantitative metabolomics established that hepatic NADP(+) and NADPH levels were significantly degraded in prediabetes and T2D but were largely protected when mice were supplemented with NR. The data justify testing of NR in human models of obesity, T2D and associated neuropathies. Topics: Animals; Blood Glucose; Cornea; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Diet, High-Fat; Hypoglycemic Agents; Insulin; Insulin Resistance; Liver; Male; Mice; Mice, Inbred C57BL; Niacinamide; Obesity; Prediabetic State; Pyridinium Compounds; Streptozocin | 2016 |