neuropeptide-y has been researched along with Metabolic-Diseases* in 7 studies
4 review(s) available for neuropeptide-y and Metabolic-Diseases
Article | Year |
---|---|
Participation of the central melanocortin system in metabolic regulation and energy homeostasis.
Obesity and metabolic disorders, such as type 2 diabetes and hypertension, have attracted considerable attention as life-threatening diseases not only in developed countries but also worldwide. Additionally, the rate of obesity in young people all over the world is rapidly increasing. Accumulated evidence suggests that the central nervous system may participate in the development of and/or protection from obesity. For example, in the brain, the hypothalamic melanocortin system senses and integrates central and peripheral metabolic signals and controls the degree of energy expenditure and feeding behavior, in concert with metabolic status, to regulate whole-body energy homeostasis. Currently, researchers are studying the mechanisms by which peripheral metabolic molecules control feeding behavior and energy balance through the central melanocortin system. Accordingly, recent studies have revealed that some inflammatory molecules and transcription factors participate in feeding behavior and energy balance by controlling the central melanocortin pathway, and have thus become new candidates as therapeutic targets to fight metabolic diseases such as obesity and diabetes. Topics: Agouti-Related Protein; Energy Metabolism; Humans; Hypothalamus; Leptin; Melanocortins; Metabolic Diseases; Neuropeptide Y; Receptors, Melanocortin; Transcription Factors | 2014 |
Neuropeptide Y is a mediator of chronic vascular and metabolic maladaptations to stress and hypernutrition.
Neuropeptide Y (NPY) is a central neuromodulator and peripheral sympathetic neurotransmitter that also has important regulatory roles in cardiovascular, neuroendocrine, immune and metabolic functions during stress. Focusing on the peripheral actions of the peptide in rodent models, we summarize recent studies from our laboratory demonstrating that stress-induced release of NPY mediates accelerated atherosclerosis/restenosis, obesity and metabolic-like syndrome, particularly when combined with a high fat, high sugar diet. In this review, we propose mechanisms of NPY's actions, its receptors and cellular substrates that increase the risk for cardiovascular and metabolic diseases when chronic stress is associated with pre-existing vascular injury and/or states of hypernutrition. Topics: Animals; Atherosclerosis; Cardiovascular Diseases; Humans; Metabolic Diseases; Models, Biological; Neuropeptide Y; Obesity; Overnutrition; Stress, Physiological | 2010 |
NPY L7P polymorphism and metabolic diseases.
Neuropeptide Y (NPY) is an abundant and widespread peptide in mammalian nervous system, both in the central and peripheral nervous systems. NPY is a multifunctional neurotransmitter with multiple modulator effects in the regulation of physiological functions and responses in the body. NPY is a potent orexigenic peptide, which has effects on energy balance at the level of energy intake, expenditure, and partition. There are many association studies between the NPY gene variants and cardiovascular and metabolic disease. Most of them are done by using p.L7P substitution as a marker. At the moment it seems that the p.L7P substitution of preproNPY protein causes altered NPY secretion, which leads to haemodynamic disturbances caused by sympathetic hyperactivity and to various effects caused by altered local signalling by NPY. SNP association studies using p.L7P polymorphism suggest that this functional substitution may be a strong independent risk factor for various metabolic and cardiovascular diseases. Topics: Animals; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Humans; Metabolic Diseases; Neuropeptide Y; Obesity; Polymorphism, Genetic | 2008 |
Human NPY gene variants in cardiovascular and metabolic diseases.
Topics: Cardiovascular Diseases; Genetic Variation; Humans; Metabolic Diseases; Neuropeptide Y | 2006 |
3 other study(ies) available for neuropeptide-y and Metabolic-Diseases
Article | Year |
---|---|
Caloric Restriction Prevents Metabolic Dysfunction and the Changes in Hypothalamic Neuropeptides Associated with Obesity Independently of Dietary Fat Content in Rats.
Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats ( Topics: Adiposity; Agouti-Related Protein; Animals; Caloric Restriction; Diet, Fat-Restricted; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Eating; Ghrelin; Hypothalamus; Leptin; Male; Metabolic Diseases; Neuropeptide Y; Neuropeptides; Obesity; Pro-Opiomelanocortin; Rats; Rats, Wistar; Weight Loss | 2021 |
Maternal protein restriction in mice causes adverse metabolic and hypothalamic effects in the F1 and F2 generations.
Maternal protein restriction causes metabolic alterations associated with hypothalamic dysfunction. Because the consequences of metabolic programming can be passed transgenerationally, the present study aimed to assess whether maternal protein restriction alters the expression of hypothalamic neuropeptides in offspring and to evaluate hormonal and metabolic changes in male offspring from the F1 and F2 generations. Female Swiss mice (F0) were mated and fed either a normal-protein (NP group; 19 % protein) or a low-protein (LP group; 5 % protein) diet throughout gestation of the F1 generation (NP1 and LP1). At 3 months of age, F1 females were mated to produce the F2 generation (NP2 and LP2). Animals from all groups were evaluated at 16 weeks of age. LP1 offspring had significantly lower weights and shorter lengths than NP1 offspring at birth, but they underwent a phase of rapid catch-up growth. Conversely, the LP2 offspring were not significantly different from the NP2 offspring in either weight or length. At 16 weeks, no differences were found in body mass among any of the groups, although LP1 and LP2 offspring showed hypercholesterolaemia, hypertriacylglycerolaemia, hyperglycaemia, glucose intolerance, insulin resistance, increased levels of insulin, leptin and resistin, decreased endogenous leptin sensitivity, increased adiposity with elevated leptin levels and leptin resistance characterised by altered expression of neuropeptide Y and pro-opiomelanocortin without any changes in the leptin receptor Ob-Rb. We conclude that severe maternal protein restriction promotes metabolic programming in F1 and F2 male offspring due to a dysregulation of the adipoinsular axis and a state of hypothalamic leptin resistance. Topics: Animals; Birth Weight; Body Weight; Diet, Protein-Restricted; Female; Growth; Hypothalamus; Leptin; Male; Maternal Nutritional Physiological Phenomena; Metabolic Diseases; Mice; Mice, Inbred Strains; Neuropeptide Y; Pregnancy; Prenatal Exposure Delayed Effects; Protein Deficiency; Receptors, Leptin | 2011 |
Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome.
Pre- and neonatal overfeeding programmes a permanent obesity disposition and accompanying diabetic and cardiovascular disorders, by unknown mechanisms. We proposed that early overfeeding may alter DNA methylation patterns of hypothalamic promoter regions of genes critically involved in the lifelong regulation of food intake and body weight. We induced neonatal overfeeding by rearing Wistar rats in small litters (SL) and thereafter mapped the DNA methylation status of CpG dinucleotides of gene promoters from hypothalamic tissue, using bisulfite sequencing. Neonatal overfeeding led to rapid early weight gain, resulting in a metabolic syndrome phenotype, i.e. obesity, hyperleptinaemia, hyperglycaemia, hyperinsulinaemia, and an increased insulin/glucose ratio. Accompanying, without group difference to controls, the promoter of the main orexigenic neurohormone, neuropeptide Y, was methylated at low levels (i.e. < 5%). In contrast, in SL rats the hypothalamic gene promoter of the main anorexigenic neurohormone, proopiomelanocortin (POMC), showed hypermethylation (P < 0.05) of CpG dinucleotides within the two Sp1-related binding sequences (Sp1, NF-kappaB) which are essential for the mediation of leptin and insulin effects on POMC expression. Consequently, POMC expression lacked upregulation, despite hyperleptinaemia and hyperinsulinaemia. Accordingly, the extent of DNA methylation within Sp1-related binding sequences was inversely correlated to the quotients of POMC expression/leptin (P = 0.02) and POMC expression/insulin (P < 0.001), indicating functionality of acquired epigenomic alterations. These data for the first time demonstrate a nutritionally acquired alteration of the methylation pattern and, consequently, the regulatory 'set point' of a gene promoter that is critical for body weight regulation. Our findings reveal overfeeding as an epigenetic risk factor of obesity programming and consecutive diabetic and cardiovascular disorders and diseases, in terms of the metabolic syndrome. Topics: Animals; DNA; DNA Methylation; Epigenesis, Genetic; Gene Expression Regulation; Humans; Hyperphagia; Hypothalamus; Metabolic Diseases; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Promoter Regions, Genetic; Rats; Rats, Wistar | 2009 |