neuropeptide-y has been researched along with Learning-Disabilities* in 4 studies
4 other study(ies) available for neuropeptide-y and Learning-Disabilities
Article | Year |
---|---|
Neuropeptide Y Impairs Retrieval of Extinguished Fear and Modulates Excitability of Neurons in the Infralimbic Prefrontal Cortex.
Neuropeptide Y (NPY), a 36 aa peptide, regulates stress and emotional behaviors. Preclinical and clinical studies support an association of NPY with trauma-evoked syndromes such as posttraumatic stress disorder (PTSD), although the exact contribution of NPY is not clear. In the current study, we examined functional attributes of NPY in the infralimbic (IL) cortex, an area that regulates fear memories and is reported to be hypoactive in PTSD. Carriers of NPY gene polymorphism rs16147 have been reported to have elevated prefrontal NPY expression. Infusion of NPY into the IL cortex in rats significantly impaired fear extinction memory without affecting conditioned fear expression or acquisition of extinction. Neuroendocrine stress response, depression-like behavior, and working memory performance were not affected by NPY infusion into the IL. The NPY Y1 receptor antagonist BIBO3304 completely abolished NPY effects on fear extinction retrieval. Y1 receptor expression was localized on CaMKII-positive pyramidal projection neurons and GAD67-positive interneurons in the IL. Patch-clamp recordings revealed increased inhibitory synaptic transmission onto IL projection neurons in the presence of NPY. Thus, NPY dampens excitability of IL projection neurons and impairs retrieval of extinction memory by inhibiting consolidation of extinction. Of relevance to PTSD, elevation of prefrontal NPY attributable to the genetic polymorphism rs16147 may contribute to IL hypoactivity, resulting in impaired extinction memory and susceptibility to the disorder.. Neuropeptide Y (NPY), a stress modulatory transmitter, is associated with posttraumatic stress disorder (PTSD). Contribution of NPY to PTSD symptomology is unclear. PTSD patients have reduced activity in the infralimbic (IL) subdivision of the medial prefrontal cortex (mPFC), associated with compromised extinction memory. No information exists on fear modulation by NPY in the IL cortex, although NPY and NPY receptors are abundant in these areas. This study shows that IL NPY inhibits consolidation of extinction, resulting in impaired retrieval of extinction memory and modulates excitability of IL projection neurons. In addition to providing a novel perspective on extinction memory modulation by NPY, our findings suggest that elevated mPFC NPY in gene polymorphism rs16147 carriers or after chronic stress could increase susceptibility to PTSD. Topics: Animals; Arginine; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Corticosterone; Disease Models, Animal; Dose-Response Relationship, Drug; Extinction, Psychological; Fear; Glutamate Decarboxylase; Learning Disabilities; Male; Mental Recall; Neurons; Neuropeptide Y; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Synaptic Potentials | 2016 |
Reduction in NPY-positive neurons and dysregulation of excitability in young senescence-accelerated mouse prone 8 (SAMP8) hippocampus precede the onset of cognitive impairment.
The senescence-accelerated mouse prone 8 (SAMP8) strain is considered a neurodegeneration model showing age-related cognitive deficits with little physical impairment. Young SAMP8 mice, however, exhibit signs of disturbances in development such as marked hyperactivity and reduced anxiety well before the onset of cognitive impairment. As the key enzyme in local regulation of thyroid hormone (TH) signaling, type 2 deiodinase, was significantly reduced in the SAMP8 hippocampus relative to that of the normally aging SAM-resistant 1 (SAMR1), we used these two strains to compare the development of the hippocampal GABAergic system, which is known to be strongly affected by hypothyroidism. Among GABAergic components, neuronal K+ /Cl- co-transporter 2 was down-regulated in SAMP8 transiently at 2 weeks. Although distribution of total GABAergic neurons was similar in both strains, 22-30% reduction was observed in the neuropeptide Y (NPY)-positive subpopulation of GABAergic neurons in SAMP8. Electrophysiological studies on hippocampal slices obtained at 4 weeks revealed that epileptiform activity, induced by high-frequency stimulation, lasted four times longer in SAMP8 compared with SAMR1, indicating a dysregulation of excitability that may be linked to the behavioral abnormalities of young SAMP8 and to neurodegeneration later on in life. Local attenuation of TH signaling may thus impact the normal development of the GABAergic system. Topics: Aging; Animals; Behavior, Animal; Cognition Disorders; Cyclic AMP Response Element-Binding Protein; Electrophysiological Phenomena; gamma-Aminobutyric Acid; Hippocampus; Iodide Peroxidase; K Cl- Cotransporters; Learning Disabilities; Male; Memory Disorders; Mice; Neurodegenerative Diseases; Neurons; Neuropeptide Y; Phosphorylation; Symporters; Thyroid Hormones | 2015 |
Characterization of neuropeptide Y, Y(2) receptor knockout mice in two animal models of learning and memory processing.
Neuropeptide Y (NPY) and, in particular, the Y2 receptor subtype, has been suggested to be involved in learning and memory processing. However, the precise role of Y2 receptors in learning and memory remains unclear. In the present study, mice lacking NPY Y2-type receptors were assessed in two animal models of learning and memory processing. We found that NPY Y2-/- mice displayed a deficit on the probe trial in the Morris water maze task, whereas acquisition performance, swim speed, and visible platform performance did not differ significantly between groups. In addition, NPY Y2-/- mice exhibited a marked deterioration in object memory 6 h, but not 1 h, following initial exposure in the object recognition test. Both groups of mice showed similar locomotor activity profiles in a low-stress, open field test. These data support the hypothesis that Y2 receptors are involved in the regulation of learning and memory processing. Topics: Animals; Brain; Brain Chemistry; Learning; Learning Disabilities; Male; Maze Learning; Memory; Memory Disorders; Mice; Mice, Knockout; Models, Animal; Motor Activity; Neuropeptide Y; Receptors, Neuropeptide Y; Recognition, Psychology | 2004 |
Neuropeptide Y and the calcitonin gene-related peptide attenuate learning impairments induced by MK-801 via a sigma receptor-related mechanism.
It has been shown recently that low doses of sigma (sigma) receptor ligands like 1,3-di-(2-tolyl)guanidine (DTG), (+)N-allylnormetazocine [(+)SKF 10,047] and (+)pentazocine can antagonize learning impairments induced by dizocilpine (MK-801), a non-competitive antagonist at the NMDA receptor channel. This antagonism has been proposed to involve sigma receptor sites since it is blocked by the administration of purported sigma antagonists such as NE-100 and BMY-14802. It has also been demonstrated that peptides of the neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) families modulate, in vivo, sigma labelling and electrophysiological effects in the hippocampal formation. Accordingly, we investigated if NPY- and CGRP-related peptides modulate cognitive processes by interacting with sigma sites in mice. In order to test this hypothesis, a step-down passive avoidance task was used. Interestingly, similarly to various sigma agonists, NPY, peptide YY (PYY) and the Y1 agonist [Leu31Pro34]NPY (but not NPY[13-36], a purported Y2 agonist), as well as hCGRPalpha and the purported CGRP2 agonist [Cys(ACM)2-7]hCGRPalpha (but not CGRP[8-37], a CGRP1 receptor antagonist), significantly attenuated learning impairments induced by MK-801. Furthermore, the effects of NPY, [Leu31Pro34]NPY, hCGRPalpha and [Cys(ACM)2-7]hCGRPalpha were blocked by the administration of the sigma antagonist, BMY-14802. The present data suggest that NPY- and CGRP-related peptides can indirectly interact in vivo with sigma receptors to modulate cognitive processes associated with NMDA receptor function. Topics: Animals; Avoidance Learning; Calcitonin Gene-Related Peptide; Cognition; Dizocilpine Maleate; Dose-Response Relationship, Drug; Electroshock; Humans; Learning Disabilities; Male; Memory; Mice; Neuropeptide Y; Peptide Fragments; Receptors, sigma | 1997 |