neuropeptide-y has been researched along with Intervertebral-Disc-Degeneration* in 3 studies
3 other study(ies) available for neuropeptide-y and Intervertebral-Disc-Degeneration
Article | Year |
---|---|
Neuropeptide Y and receptors are associated with the pyroptosis of nucleus pulposus in aging and degenerative intervertebral discs of rats.
The neuropeptide Y(NPY) mediates bone metabolism and the degradation of cartilage in the peripheral nervous system. However, its role in the intervertebral disc degeneration (IDD) is less clear and warrant further study. The process of IDD has always been accompanied by inflammatory response and pyroptosis of nucleus pulposus cells (NPCs). The aim of this study was to investigate the relationship between NPY, Y1R, Y2R and pyroptosis in aging and degenerative discs and the direct effect of NPY on NPCs. First, we have assessed NPY, Y1R, Y2R and the expression of pyroptosis related protein in the immature (6 weeks), mature (16 weeks), aged (54 weeks), and degenerated discs. As part of our studies, we also have evaluated pyroptotic changes in the NPCs, induced by exposure to NPY. Our results suggested that compared with natural aging discs, the degenerative discs showed the high expression of NPY, Y1R and Y2R. Correlation analysis showed that the level of NPY and Y1R in degenerative discs were positively correlated with GSDMD, whereas there was no significant correlation between Y2R and GSDMD. In vitro, NPY treatment stimulated the activation of caspase-1-dependent pyroptosis of NPCs. However, Y1R antagonist inhibited NPY-induced pyroptosis of NPCs. Western blot confirmed that Y1R antagonist decreased the level of cleaved.GSDMD and caspase-1 in NPCs. In conclusion, our results indicated that compared with natural aging discs, the degenerated discs showed the high expression of NPY, Y1R and Y2R. NPY-Y1R involve the IDD development by the regulation of pyroptosis in the NPCs. Regulating the function of NPY may be a promising strategy for IDD treatment. Topics: Aging; Animals; Caspases; Intervertebral Disc Degeneration; Neuropeptide Y; Nucleus Pulposus; Pyroptosis; Rats; Receptors, Neuropeptide Y | 2022 |
Neuropeptide Y prevents nucleus pulposus cells from cell apoptosis and IL‑1β‑induced extracellular matrix degradation.
Intervertebral disc degeneration (IDD) is characterized by excessive inflammatory reaction, and neuropeptide Y (NPY) was reported to have anti-inflammatory effect. However, the effect of NPY on NP cells has not been investigated up to date. This study aimed to clarify the role of NPY on the process of IDD. Fourteen fresh human lumbar intervertebral discs were harvested, and degeneration-related proteins were examined. Pfirrmann grading system was used to evaluate IDD. Rat nucleus pulposus (NP) cells were used to investigate the effect of NPY on the proliferation, apoptosis, and extracellular matrix (ECM) in NP cell induced by IL-1βin vitro. The expression levels of NPY and its receptors (type 1 receptor, Y1R, and type 2 receptor, Y2R) were detected via immunohistochemical analysis, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and proliferation were explored using cell counting kit-8 assay, western blot, and immunofluorescence analysis. Cell apoptosis was investigated by Hoechst staining, JC-1 Staining, annexin V-FITC/PI double staining, and western blot. The secretion of NPY from NP cells was determined via enzyme-linked immunosorbent assay (ELISA). The expression of anabolic and catabolic gene was analyzed by qRT-PCR, western blot, immunofluorescence analysis, and ELISA. The expression of Y2R was significantly increased in both human degenerative intervertebral discs and IL-1β-induced NP cells. Although no positive results for NPY indicated by western blot both in vivo and in vitro, ELISA results demonstrated that the secretion of NPY from NP cells was increased by low-concentration IL-1β, but was decreased when the concentration of IL-1β was 30 ng/ml and above. In addition, NPY could promote NP cells proliferation and protect NP cells against IL‑1β‑induced apoptosis via suppressing mitochondrial-mediated apoptosis pathway. What's more, NPY can suppress the expression of catabolic gene and ameliorate IL-1β- induced matrix degeneration in NP cells. In conclusion, NPY could promote NP cell proliferation and alleviate IL‑1β‑induced cell apoptosis via mitochondrial pathway. In addition, NPY can suppress the expression of ECM‑catabolic proteinases and ameliorate IL-1β- induced ECM degeneration in vitro. Topics: Adult; Animals; Apoptosis; Cell Proliferation; Cells, Cultured; Extracellular Matrix; Female; Humans; Interleukin-1beta; Intervertebral Disc Degeneration; Male; Middle Aged; Models, Biological; Neuropeptide Y; Neuroprotection; Nucleus Pulposus; Rats, Sprague-Dawley; Receptors, Neuropeptide | 2021 |
Origins and Neurochemical Characteristics of Porcine Intervertebral Disc Sympathetic Innervation: a Preliminary Report.
Intervertebral disc diseases (IVDDs) form a group of a vertebral column disorders affecting a large number of people worldwide. It is estimated that approximately 30% of individuals at the age of 35 and approximately 90% of individuals at the age of 60 and above will have some form of disc-affecting pathological changes leading to disc herniation, prolapse and degeneration as well as discogenic pain. Here, we aimed to establish the origins and neurochemical characteristics of porcine intervertebral disc sympathetic innervation involved in pain signalling in IVDD patients. Pigs were given an injection of the Ominipaque contrast agent and Fast Blue (FB) retrograde tracer into the L Topics: Animals; Dopamine beta-Hydroxylase; Enkephalin, Leucine; Female; Galanin; Ganglia, Sympathetic; Intervertebral Disc; Intervertebral Disc Degeneration; Intervertebral Disc Displacement; Neurons; Neuropeptide Y; Somatostatin; Swine | 2017 |