neuropeptide-y has been researched along with Disease-Models--Animal* in 435 studies
43 review(s) available for neuropeptide-y and Disease-Models--Animal
Article | Year |
---|---|
Effect of early postnatal nutrition on chronic kidney disease and arterial hypertension in adulthood: a narrative review.
Intrauterine growth restriction (IUGR) has been identified as a risk factor for adult chronic kidney disease (CKD), including hypertension (HTN). Accelerated postnatal catch-up growth superimposed to IUGR has been shown to further increase the risk of CKD and HTN. Although the impact of excessive postnatal growth without previous IUGR is less clear, excessive postnatal overfeeding in experimental animals shows a strong impact on the risk of CKD and HTN in adulthood. On the other hand, food restriction in the postnatal period seems to have a protective effect on CKD programming. All these effects are mediated at least partially by the activation of the renin-angiotensin system, leptin and neuropeptide Y (NPY) signaling and profibrotic pathways. Early nutrition, especially in the postnatal period has a significant impact on the risk of CKD and HTN at adulthood and should receive specific attention in the prevention of CKD and HTN. Topics: Animals; Child Development; Disease Models, Animal; Fetal Growth Retardation; Humans; Hypertension; Infant Nutritional Physiological Phenomena; Infant, Low Birth Weight; Infant, Newborn; Leptin; Metabolic Networks and Pathways; Neuropeptide Y; Nutritional Status; Renal Insufficiency, Chronic; Renin-Angiotensin System | 2018 |
Gastrointestinal neuroendocrine peptides/amines in inflammatory bowel disease.
Inflammatory bowel disease (IBD) is a chronic recurrent condition whose etiology is unknown, and it includes ulcerative colitis, Crohn's disease, and microscopic colitis. These three diseases differ in clinical manifestations, courses, and prognoses. IBD reduces the patients' quality of life and is an economic burden to both the patients and society. Interactions between the gastrointestinal (GI) neuroendocrine peptides/amines (NEPA) and the immune system are believed to play an important role in the pathophysiology of IBD. Moreover, the interaction between GI NEPA and intestinal microbiota appears to play also a pivotal role in the pathophysiology of IBD. This review summarizes the available data on GI NEPA in IBD, and speculates on their possible role in the pathophysiology and the potential use of this information when developing treatments. GI NEPA serotonin, the neuropeptide Y family, and substance P are proinflammatory, while the chromogranin/secretogranin family, vasoactive intestinal peptide, somatostatin, and ghrelin are anti-inflammatory. Several innate and adaptive immune cells express these NEPA and/or have receptors to them. The GI NEPA are affected in patients with IBD and in animal models of human IBD. The GI NEPA are potentially useful for the diagnosis and follow-up of the activity of IBD, and are candidate targets for treatments of this disease. Topics: Amines; Animals; Chromogranins; Disease Models, Animal; Gastrointestinal Microbiome; Gastrointestinal Tract; Ghrelin; Humans; Inflammatory Bowel Diseases; Neuroendocrine Cells; Neuropeptide Y; Neurosecretory Systems; Prevalence; Quality of Life; Recurrence; Serotonin; Serotonin Antagonists; Somatostatin; Substance P; Vasoactive Intestinal Peptide | 2017 |
Multiple Sclerosis: Implications of Obesity in Neuroinflammation.
Since the discovery of the remarkable properties of adipose tissue as a metabolically active organ, several evidences on the possible link between obesity and the pathogenesis of multiple sclerosis (MS) have been gathered. Obesity in early life, mainly during adolescence, has been proposed as a relevant risk factor for late MS development. Moreover, once MS is initiated, obesity can contribute to increase disease severity by negatively influencing disease progress. Despite the fact that clinical data are not yet conclusive, many biochemical links have been recently disclosed. The "low-grade inflammation" that characterizes obesity can lead to neuroinflammation through different mechanisms, including choroid plexus and blood-brain barrier disruption. Furthermore, it is well known that resident immune cells of central nervous system and peripheral immune cells are involved in the pathogenesis of MS, and adipokines and neuropeptides such as neuropeptide Y may mediate the cross talk between them. Topics: Adipokines; Animals; Blood-Brain Barrier; Brain; Choroid Plexus; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Humans; Hydroxyethylrutoside; Inflammation; Multiple Sclerosis; Neuropeptide Y; Obesity | 2017 |
Effects of drugs of abuse on the central neuropeptide Y system.
Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs. Topics: Amphetamines; Animals; Brain; Cocaine; Disease Models, Animal; Ethanol; Mice; Neuropeptide Y; Nicotine; Opiate Alkaloids; Rats; Receptors, Neuropeptide Y | 2016 |
Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models.
Neuropeptide Y (NPY) in noradrenergic neurons plays an important role in modulating the release and effects of catecholamines in a prolonged stress response. Among other functions, it controls energy metabolism. Transgenic expression of Npy in noradrenergic neurons in mice allowed showing that it is critical for diet- and stress-induced gain in fat mass. When overexpressed, NPY in noradrenergic neurons increases adiposity in gene-dose-dependent fashion, and leads to metabolic disorders such as impaired glucose tolerance. However, the mechanisms of obesity seem to be different in mice heterozygous and homozygous for the Npy transgene. While in heterozygous mice the adipogenic effect of NPY is important, in homozygous mice inhibition of sympathetic tone leading to decreased lipolytic activity and impaired brown fat function, as well as increased endocannabinoid levels contribute to obesity. The mouse model provides novel insight to the mechanisms of human diseases with increased NPY due to chronic stress or gain-of-function gene variants, and a tool for development of novel therapeutics. Topics: Adrenergic Neurons; Animals; Disease Models, Animal; Humans; Mice, Transgenic; Neuropeptide Y; Obesity; Receptors, Neuropeptide Y | 2016 |
Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update.
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder. Topics: Animals; Anxiety; Depression; Disease Models, Animal; Humans; Neuropeptide Y; Stress Disorders, Post-Traumatic; Stress, Psychological | 2016 |
Peripheral cardiac sympathetic hyperactivity in cardiovascular disease: role of neuropeptides.
High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of β-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with β-blockers and implantable vagus nerve stimulators to improve patient outcome. Topics: Animals; Cardiovascular Diseases; Disease Models, Animal; Galanin; Heart; Hypertension; Neuropeptide Y; Neuropeptides; Rats; Rats, Inbred SHR; Sympathetic Nervous System | 2013 |
Non-human primate models of alcohol-related phenotypes: the influence of genetic and environmental factors.
Because of their complex social structures, behaviors, and genetic similarities to humans, nonhuman primates are useful for studying how genetic factors influence alcohol consumption. The neurobiological systems that influence addiction vulnerability may do so by acting on alcohol response, reward pathways, behavioral dyscontrol, and vulnerability to stress and anxiety. Rhesus macaques show individual differences in alcohol response and temperament, and such differences are influenced by genetic variants that are similar functionally to those present in humans. Genes at which variation moderates these phenotypes include those encoding monoamine oxidase A (MAOA-LPR), the serotonin transporter (HTTLPR), corticotropin releasing hormone (CRH-248C/T and -2232 C/G), Neuropeptide Y (NPY-1002 T/G), and the μ-opioid receptor (OPRM1 C77G). These provide opportunities for modeling how genetic and environmental factors (i.e., stress, individual's sex, or alcohol exposure) interact to influence alcohol consumption. Studies in primates may also reveal selective factors have driven maintenance or fixation of alleles that increase risk for alcohol use disorders in modern humans. Topics: Alcohol-Related Disorders; Animals; Disease Models, Animal; Gene-Environment Interaction; Humans; Monoamine Oxidase; Mutation; Neuropeptide Y; Phenotype; Primates; Receptors, Opioid, mu; Serotonin Plasma Membrane Transport Proteins | 2013 |
Tobacco addiction and the dysregulation of brain stress systems.
Tobacco is a highly addictive drug and is one of the most widely abused drugs in the world. The first part of this review explores the role of stressors and stress-associated psychiatric disorders in the initiation of smoking, the maintenance of smoking, and relapse after a period of abstinence. The reviewed studies indicate that stressors facilitate the initiation of smoking, decrease the motivation to quit, and increase the risk for relapse. Furthermore, people with depression or an anxiety disorder are more likely to smoke than people without these disorders. The second part of this review describes animal studies that investigated the role of brain stress systems in nicotine addiction. These studies indicate that corticotropin-releasing factor, Neuropeptide Y, the hypocretins, and norepinephrine play a pivotal role in nicotine addiction. In conclusion, the reviewed studies indicate that smoking briefly decreases subjective stress levels but also leads to a further dysregulation of brain stress systems. Drugs that decrease the activity of brain stress systems may diminish nicotine withdrawal and improve smoking cessation rates. Topics: Animals; Corticotropin-Releasing Hormone; Disease Models, Animal; Humans; Hypothalamo-Hypophyseal System; Intracellular Signaling Peptides and Proteins; Mental Disorders; Neuropeptide Y; Neuropeptides; Norepinephrine; Orexins; Pituitary-Adrenal System; Tobacco Use Disorder | 2012 |
Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence.
Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release. Topics: Alcoholism; Amygdala; Animals; Disease Models, Animal; Humans; Mood Disorders; Neuropeptide Y; Recruitment, Neurophysiological | 2012 |
Neurobiology of resilience.
Humans exhibit a remarkable degree of resilience in the face of extreme stress, with most resisting the development of neuropsychiatric disorders. Over the past 5 years, there has been increasing interest in the active, adaptive coping mechanisms of resilience; however, in humans, most published work focuses on correlative neuroendocrine markers that are associated with a resilient phenotype. In this review, we highlight a growing literature in rodents that is starting to complement the human work by identifying the active behavioral, neural, molecular and hormonal basis of resilience. The therapeutic implications of these findings are important and can pave the way for an innovative approach to drug development for a range of stress-related syndromes. Topics: Animals; Brain; Dehydroepiandrosterone; Disease Models, Animal; Early Growth Response Transcription Factors; Humans; Hypothalamo-Hypophyseal System; Neurobiology; Neuropeptide Y; Pituitary-Adrenal System; Resilience, Psychological; Stress, Psychological; Testosterone | 2012 |
Neurobiology driving hyperactivity in activity-based anorexia.
Hyperactivity in anorexia nervosa is difficult to control and negatively impacts outcome. Hyperactivity is a key driving force to starvation in an animal model named activity-based anorexia (ABA). Recent research has started unraveling what mechanisms underlie this hyperactivity. Besides a general increase in locomotor activity that may be an expression of foraging behavior and involves frontal brain regions, the increased locomotor activity expressed before food is presented (food anticipatory behavior or FAA) involves hypothalamic neural circuits. Ghrelin plays a role in FAA, whereas decreased leptin signaling is involved in both aspects of increased locomotor activity. We hypothesize that increased ghrelin and decreased leptin signaling drive the activity of dopamine neurons in the ventral tegmental area. In anorexia nervosa patients, this altered activity of the dopamine system may be involved not only in hyperactivity but also in aberrant cognitive processing related to food. Topics: Analgesics, Opioid; Animals; Anorexia; Disease Models, Animal; Dopamine; Ghrelin; Humans; Hyperkinesis; Leptin; Melanocortins; Neurobiology; Neuropeptide Y | 2011 |
A possible role of neuropeptide Y in depression and stress.
Neuropeptide Y (NPY) mediates its physiological effects through at least four receptors known as Y(1), Y(2), Y(4), and Y(5). This peptide is one of the most abundant peptides in the central nervous system and is highly conserved throughout evolution. The most abundant receptors of the NPY family, the Y(1) and Y(2) receptors, are densely expressed in the cortex, hippocampus, and amygdala. These brain regions are particularly associated with mood disorders, stress responses, and memory processing. With this in mind, researchers suggested the involvement of NPY as well as the Y(1) and Y(2) receptors in affective disorders. Earlier studies showed that NPY and the Y(1) and Y(2) receptors mediate some aspects of depression-like disorders and stress responses in rodents. Recent research also suggests the involvement of the Y(4) and Y(5) receptors in emotion-related processes in rodents. In addition, human studies have consistently suggested a role for NPY in stress responses, whereas conflicting data have been obtained in relation to the role of NPY in depression-related illnesses. However, novel evidence from polymorphisms in the prepro-NPY gene has shed new light on the potential clinical relevance of NPY in depression. In this article, we review the literature from both animal and human studies regarding the contribution of NPY and its receptors in depression and stress. Topics: Animals; Brain; Depressive Disorder; Disease Models, Animal; Genetic Predisposition to Disease; Humans; Neuropeptide Y; Polymorphism, Genetic; Receptors, Neuropeptide Y; Stress, Psychological | 2010 |
Behavioral effects of neuropeptides in rodent models of depression and anxiety.
In recent years, studies have advocated neuropeptide systems as modulators for the behavioral states found in mood disorders such as depression and anxiety disorders. Neuropeptides have been tested in traditional animal models and screening procedures that have been validated by known antidepressants and anxiolytics. However, it has become clear that although these tests are very useful, neuropeptides have distinct behavioral effects and dose-dependent characteristics, and therefore, use of these tests with neuropeptides must be done with an understanding of their unique characteristics. This review will focus on the behavioral actions of neuropeptides and their synthetic analogs, particularly in studies utilizing various preclinical tests of depression and anxiety. Specifically, the following neuropeptide systems will be reviewed: corticotropin-releasing factor (CRF), urocortin (Ucn), teneurin C-terminal associated peptide (TCAP), neuropeptide Y (NPY), arginine vasopressin (AVP), oxytocin, the Tyr-MIF-1 family, cholecystokinin (CCK), galanin, and substance P. These neuropeptide systems each have a unique role in the regulation of stress-like behavior, and therefore provide intriguing therapeutic targets for mood disorder treatment. Topics: Animals; Anxiety; Arginine Vasopressin; Behavior, Animal; Cholecystokinin; Corticotropin-Releasing Hormone; Depression; Disease Models, Animal; Galanin; Humans; MSH Release-Inhibiting Hormone; Neuropeptide Y; Neuropeptides; Neuropsychological Tests; Oxytocin; Social Behavior; Urocortins | 2010 |
Rodent models of varicella-zoster virus neurotropism.
Inoculation of rodents with varicella-zoster virus (VZV) results in a latent infection in dorsal root ganglia with expression of at least five of the six VZV transcripts and one of the viral proteins that are reported to be expressed during latency in human ganglia. Rats develop allodynia and hyperalgesia in the limb distal to the site of injection and the resulting exaggerated withdrawal response to stimuli is reduced by treatment with gabapentin and amitryptyline, but not by antiviral therapy. Inoculation of rats with VZV mutants show that most viral genes are dispensable for latency, but that some genes (e.g., ORF4, 29, and ORF63) that are expressed during latency are important for the establishment of latency in rodents, but not for infection of rodent ganglia. The rodent model for VZV latency allows one to study ganglia removed immediately after death, avoiding the possibility of reactivation, and helps to identify VZV genes required for latency. Topics: Activating Transcription Factor 3; Animals; Animals, Newborn; Disease Models, Animal; Galanin; Ganglia, Spinal; Herpes Zoster; Herpesvirus 3, Human; Humans; Neuropeptide Y; Rats; Sigmodontinae; Virus Latency | 2010 |
Strategies for performing genotype-phenotype association studies in nonhuman primates.
Anthropoid primate models offer opportunities to study genetic influence on alcohol consumption and alcohol-related intermediate phenotypes in socially and behaviorally complex animal models that are closely related to humans, and in which functionally equivalent or orthologous genetic variants exist. This review will discuss the methods commonly used for performing candidate gene-based studies in rhesus macaques in order to model how functional genetic variation moderates risk for human psychiatric disorders. Various in silico and in vitro approaches to identifying functional genetic variants for performance of these studies will be discussed. Next, I will provide examples of how this approach can be used for performing candidate gene-based studies and for examining gene by environment interactions. Finally, these approaches will then be placed in the context of how function-guided studies can inform us of genetic variants that may be under selection across species, demonstrating how functional genetic variants that may have conferred selective advantage at some point in the evolutionary history of humans could increase risk for addictive disorders in modern society. Topics: Algorithms; Animals; Disease Models, Animal; Genetic Variation; Genotype; Humans; Macaca; Neuropeptide Y; Phenotype; Primates | 2009 |
Neuronal plasticity in animal models and the epileptic human hippocampus.
Topics: Animals; Dentate Gyrus; Disease Models, Animal; Epilepsy; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Hippocampus; Humans; Mossy Fibers, Hippocampal; Nerve Degeneration; Neuronal Plasticity; Neuropeptide Y; Rats; Receptors, GABA-A; Status Epilepticus; Synaptic Transmission | 2009 |
Y eat?
Feeding behavior is tightly regulated by peptidergic transmission within the hypothalamus. Neuropeptide Y (NPY) is one of the most potent known stimulators of food intake and has robust effects on the hypothalamic feeding neuronal networks. A vast body of literature has documented the substantial effects of NPY on feeding behavior. However, the cellular mechanisms underlying the actions of NPY have only recently begun to be explored. The NPYergic signal, including its expression in hypothalamic neurons, its release into the synaptic space, and its direct or indirect receptor-mediated actions, is highly responsive to decreases in the metabolic state. The orexigenic NPY signal can suppress the anorexigenic drive to restore energy balance homeostasis when energy levels are low, such as after food deprivation. The NPY signal interacts with glucose- and fat-sensitive signals arriving in the hypothalamus and effects changes in anorexigenic pathways, such as those mediated by the melanocortins. Recent applications of electrophysiological methods to examine the neuronal activity and pathways engaged by NPY-mediated signaling have advanced our understanding of this orexigenic system. Furthermore, crucial roles for NPY pathways in the development of hypothalamic feeding circuitry have been identified by these means. Orexigenic NPY signaling is critical during development and its absence is lethal in adults, thus reflecting the essential role of NPY for the regulation of energy homeostasis. Topics: Animals; Anorexia; Appetite Regulation; Behavior, Animal; Disease Models, Animal; Feeding Behavior; Hypothalamus; Neuropeptide Y; Obesity; Rats | 2008 |
NPY and its involvement in axon guidance, neurogenesis, and feeding.
The role of neuropeptides in nervous system function is still in many cases undefined. In the present study we examined a possible role of the 36-amino acid neuropeptide Y (NPY) with regard to three functions: axon guidance and attraction/repulsion, adult neurogenesis, and control of food intake.. Growth cones from embryonic dorsal root ganglion neurons were studied in culture during asymmetrical gradient application of NPY. Growth cones were monitored over a 60-min period, and final turning angle and growth rate were recorded. In the second part the NPY Y(1) and Y(2) receptors were studied in the subventricular zone, the rostral migratory stream, and the olfactory bulb in normal mice and mice with genetically deleted NPY Y(1) or Y(2) receptors. In the third part an anorectic mouse was analyzed with immunohistochemistry.. 1) NPY elicited an attractive turning response and an increase in growth rate, effects exerted via the NPY Y(1) receptor. 2) The NPY Y(1) receptor was expressed in neuroblasts in the anterior rostral migratory stream. Mice deficient in the Y(1) or Y(2) receptor had fewer proliferating precursor cells and neuroblasts in the subventricular zone and rostral migratory stream and fewer neurons in the olfactory bulb expressing calbindin, calretinin or tyrosine hydroxylase. 3) In the anorectic mouse markers for microglia were strongly upregulated in the arcuate nucleus and in projection areas of the NPY/agouti gene-related protein arcuate system.. NPY participates in several mechanisms involved in the development of the nervous system and is of importance in the control of food intake. Topics: Animals; Anorexia; Axons; Disease Models, Animal; Eating; Feeding Behavior; Mice; Neurogenesis; Neuropeptide Y | 2008 |
Models of 'obesity' in large animals and birds.
Most laboratory-based research on obesity is carried out in rodents, but there are a number of other interesting models in the animal kingdom that are instructive. This includes domesticated animal species such as pigs and sheep, as well as wild, migrating and hibernating species. Larger animals allow particular experimental manipulations that are not possible in smaller animals and especially useful models have been developed to address issues such as manipulation of fetal development. Although some of the most well-studied models are ruminants, with metabolic control that differs from monogastrics, the general principles of metabolic regulation still pertain. It is possible to obtain much more accurate endocrine profiles in larger animals and this has provided important data in relation to leptin and ghrelin physiology. Genetic models have been created in domesticated animals through selection and these complement those of the laboratory rodent. This short review highlights particular areas of research in domesticated and wild species that expand our knowledge of systems that are important for our understanding of obesity and metabolism. Topics: Animal Migration; Animals; Birds; Cattle; Disease Models, Animal; Epigenesis, Genetic; Female; Ghrelin; Insulin Resistance; Leptin; Neuropeptide Y; Obesity; Pregnancy; Pregnancy, Animal; Seasons; Sheep; Sus scrofa | 2008 |
Neuropeptide Y modulation of ethanol intake: effects of ethanol drinking history and genetic background.
Intracerebroventricular administration of NPY suppresses ethanol intake in selectively bred alcohol-preferring rat lines, but not in rats selectively bred for low ethanol drinking or in unselected Wistar rats, when access to ethanol is limited to 2h/day. However, when rats undergo chronic (24h/day) ethanol drinking (or exposure to ethanol by vapor inhalation) and have periods of imposed ethanol abstinence, the reductions in ethanol drinking following NPY administration are enhanced in alcohol-preferring rats and are also observed in unselected Wistar rats. Thus, sensitivity to the effects of NPY on ethanol drinking appears to be altered by selective breeding for ethanol preference and by a prior history of chronic but intermittent exposure to ethanol. Topics: Alcohol Drinking; Alcoholism; Animals; Disease Models, Animal; Neuropeptide Y; Rats; Rats, Wistar | 2007 |
Spinal mechanisms of NPY analgesia.
We review previously published data, and present some new data, indicating that spinal application of neuropeptide Y (NPY) reduces behavioral and neurophysiological signs of acute and chronic pain. In models of acute pain, early behavioral studies showed that spinal (intrathecal) administration of NPY and Y2 receptor agonists decrease thermal nociception. Subsequent neurophysiological studies indicated that Y2-mediated inhibition of excitatory neurotransmitter release from primary afferent terminals in the substantia gelatinosa may contribute to the antinociceptive actions of NPY. As with acute pain, NPY reduced behavioral signs of inflammatory pain such as mechanical allodynia and thermal hyperalgesia; however, receptor antagonist studies indicate an important contribution of spinal Y1 rather than Y2 receptors. Interestingly, Y1 agonists suppress inhibitory synaptic events in dorsal horn neurons (indeed, well known mu-opioid analgesic drugs produce similar cellular actions). To resolve the behavioral and neurophysiological data, we propose that NPY/Y1 inhibits the spinal release of inhibitory neurotransmitters (GABA and glycine) onto inhibitory neurons, e.g. disinhibition of pain inhibition, resulting in hyporeflexia. The above mechanisms of Y1- and Y2-mediated analgesia may also operate in the setting of peripheral nerve injury, and new data indicate that NPY dose-dependently inhibits behavioral signs of neuropathic pain. Indeed, neurophysiological studies indicate that Y2-mediated inhibition of Ca(2+) channel currents in dorsal root ganglion neurons is actually increased after axotomy. We conclude that spinal delivery of Y1 agonists may be of use in the treatment of chronic inflammatory pain, and that the use of Y1 and Y2 agonists in neuropathic pain warrants further consideration. Topics: Analgesics; Animals; Disease Models, Animal; Injections, Spinal; Neuropeptide Y; Pain | 2007 |
Neuropeptide Y: potential role in recurrent developmental seizures.
Seizures induce profound plastic changes in the brain, including altered expression of neuropeptide Y (NPY) and its receptors. Here, I discuss a potential role of NPY plasticity in the developmental brain: in a rat model of febrile seizures (FS), the most common type of seizures in infants and young children, NPY expression was up-regulated in hippocampus after experimentally induced FS. Interestingly, NPY up-regulation was associated with an increased seizure threshold for additional (recurrent) FS, and this effect was abolished when an antagonist against NPY receptor type 2 was applied. These findings suggest that inhibitory actions of NPY, released after seizures, exert a protective effect that reduces the risk of seizure recurrence in the developing brain. Topics: Animals; Disease Models, Animal; Humans; Neuropeptide Y; Rats; Recurrence; Seizures, Febrile | 2007 |
[Is it possible to reproduce rat models for violence-prone brain and depression-prone brain (serotonin scarcity brain) in humans?].
Topics: Animals; Antidepressive Agents; Behavior, Animal; Brain; Depression; Disease Models, Animal; Humans; Neuropeptide Y; Olfactory Bulb; Rats; Serotonin; Violence | 2007 |
Neuropeptide Y and sympathetic control of vascular tone in hypertension.
Topics: Animals; Disease Models, Animal; Humans; Hypertension; Muscle, Smooth, Vascular; Neuropeptide Y; Sympathetic Nervous System | 2006 |
NPY and bone.
Topics: Animals; Bone and Bones; Disease Models, Animal; Humans; Neuropeptide Y; Osteoporosis; Receptors, Neuropeptide Y | 2006 |
Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms.
Alcoholism is a major public health problem and resembles, in many ways, other chronic relapsing medical conditions. At least 2 separate dimensions of its symptomatology offer targetable pathophysiological mechanisms. Systems that mediate positive reinforcement by alcohol are likely important targets in early stages of the disease, particularly in genetically susceptible individuals. In contrast, long term neuroadaptive changes caused by chronic alcohol use primarily appear to affect systems mediating negative affective states, and gain importance following a prolonged history of dependence. Feasibility of pharmacological treatment in alcoholism has been demonstrated by a first wave of drugs which consists of 3 currently approved medications, the aldehyde dehydrogenase blocker disulfiram, the opioid antagonist naltrexone (NTX) and the functional glutamate antagonist acamprosate (ACM). The treatment toolkit is likely to be expanded in the near future. This will improve overall efficacy and allow individualized treatment, ultimately taking in account the patient's genetic makeup. In a second wave, early human efficacy data are available for the 5HT3 antagonist ondansetron, the GABA-B agonist baclofen and the anticonvulsant topiramate. The third wave is comprised of compounds predicted to be effective based on a battery of animal models. Using such models, a short list of additional targets has accumulated sufficient preclinical validation to merit clinical development. These include the cannabinoid CB1 receptor, receptors modulating glutamatergic transmission (mGluR2, 3 and 5), and receptors for stress-related neuropeptides corticotropin releasing factor (CRF), neuropeptide Y (NPY) and nociceptin. Once novel treatments are developed, the field faces a major challenge to assure their delivery to patients. Topics: Acamprosate; Alcohol Deterrents; Alcoholism; Animals; Baclofen; Corticotropin-Releasing Hormone; Disease Models, Animal; Disulfiram; Fructose; Humans; Naltrexone; Neuropeptide Y; Nociceptin; Ondansetron; Opioid Peptides; Receptor, Cannabinoid, CB1; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Taurine; Topiramate | 2006 |
The Flinders Sensitive Line rat: a selectively bred putative animal model of depression.
The Flinders Sensitive Line (FSL) rats were originally selectively bred for increased responses to an anticholinesterase agent. The FSL rat partially resembles depressed individuals because it exhibits reduced appetite and psychomotor function but exhibits normal hedonic responses and cognitive function. The FSL rat also exhibits sleep and immune abnormalities that are observed in depressed individuals. Neurochemical and/or pharmacological evidence suggests that the FSL rat exhibits changes consistent with the cholinergic, serotonergic, dopaminergic, NPY, and circadian rhythm models but not the noradrenergic, HPA axis or GABAergic models of depression. However, evidence for the genetic basis of these changes is lacking and it remains to be determined which, if any, of the neurochemical changes are primary to the behavioral alterations. The FSL rat model has been very useful as a screen for antidepressants because known antidepressants reduced swim test immobility when given chronically and psychomotor stimulants did not. Furthermore, rolipram and a melatonin agonist were shown to have anti-immobility effects in the FSL rats and later to have antidepressant effects in humans. Thus, the FSL rat model of depression exhibits some behavioral, neurochemical, and pharmacological features that have been reported in depressed individuals and has been very effective in detecting antidepressants. Topics: Animals; Antidepressive Agents; Anxiety; Asthma; Behavioral Symptoms; Breeding; Circadian Rhythm; Depression; Disease Models, Animal; Humans; Hypothalamo-Hypophyseal System; Immune System Diseases; Irritable Bowel Syndrome; Nerve Growth Factors; Neuropeptide Y; Neurotransmitter Agents; Pituitary-Adrenal System; Rats; Rats, Inbred Strains | 2005 |
Mutant mouse models of depression: candidate genes and current mouse lines.
Depression is a multifactorial and multigenetic disease. At present, three main theories try to conceptualize its molecular and biochemical mechanisms, namely the monoamine-, the hypothalamus-pituitary-adrenal- (HPA-) system- and the neurotrophin-hypotheses. One way to explore, validate or falsify these hypotheses is to alter the expression of genes that are involved in these systems and study their respective role in animal behavior and neuroendocrinological parameters. Following an introduction in which we briefly describe each hypothesis, we review here the different mouse lines generated to study the respective molecular pathways. Among the many mutant lines generated, only a few can be regarded as genetic depression models or as models of predisposition for a depressive syndrome after stress exposure. However, this is likely to reflect the human situation where depressive syndromes are complex, can vary to a great extent with respect to their symptomatology, and may be influenced by a variety of environmental factors. Mice with mutations of candidate genes showing depression-like features on behavioral or neurochemical levels may help to define a complex molecular framework underlying depressive syndromes. Because it is conceivable that manipulation of one single genetic function may be necessary but not sufficient to cause complex behavioral alterations, strategies for improving genetic modeling of depression-like syndromes in animals possibly require a simultaneous targeted dysregulation of several genes involved in the pathogenesis of depression. This approach would correspond to the new concept of 'endophenotypes' in human depression research trying to identify behavioral traits which are thought to be encoded by a limited set of genes. Topics: Animals; Biogenic Monoamines; Depression; Disease Models, Animal; Humans; Hypothalamo-Hypophyseal System; Interleukins; Mice; Mice, Mutant Strains; Models, Neurological; Nerve Growth Factors; Neuropeptide Y; Pituitary-Adrenal System; Receptors, Neurokinin-1; Substance P | 2005 |
Atherosclerosis and angiogenesis: what do nerves have to do with it?
Neuropeptide Y (NPY) is a sympathetic neurotransmitter and a stress mediator with pleiotropic activities mediated by multiple receptors, Y1-Y5. Originally known as an appetite stimulant and a vasoconstrictor, NPY has recently emerged as a growth factor for a variety of cells from vascular smooth muscle to neural precursors - implicating the peptide in atherosclerosis and tissue remodeling. NPY is also potently angiogenic, and was hailed as a potential candidate for a nerve-driven ischemic revascularization. To determine if the latter, beneficial activity of the peptide can be separated from its deleterious pro-atherosclerotic action - receptor specificity and mechanisms of this "Janus phenomenon" were studied. Expression of Y2 receptors on the endothelium, and Y1 receptors on vascular smooth muscle, were required for angiogenic and pro-atherosclerotic activities, respectively. Amplification of both activities was provided by co-expression of Y5 receptors. In rodent models, limb ischemia up-regulated the NPY-Y2 system, which contributed to post-ischemic revascularization; exogenous NPY further augmented it and nearly normalized blood flow and function of ischemic tissues. NPY-induced angiogenesis was also dependent on nitric oxide and endothelial dipeptidyl peptidase IV (DPPIV, which converts NPY to Y2/Y5-selective agonist), but resistant to Y1 receptor blockade. Conversely, vascular angioplasty up-regulated the NPY-Y1 system and promoted atherosclerosis and hyperplastic remodeling, and these activities were blocked by Y1 receptor antagonist and augmented by DPPIV inhibitors. Thus, drugs targeting specific NPY receptors may become new therapeutics against atherosclerosis/restenosis (Y1-selective antagonists) or for ischemic revascularization (Y2-selective agonists). Such drugs may be particularly beneficial for patients with elevated circulating NPY levels e.g. by chronic stress. Topics: Animals; Atherosclerosis; Disease Models, Animal; Drug Delivery Systems; Humans; Ischemia; Neovascularization, Physiologic; Neuropeptide Y; Receptors, Neuropeptide Y | 2005 |
Molecular and cellular correlates of the developmental acquisition of mechanisms modulating ingestive behavior.
Postnatal development in most mammals is accompanied by the acquisition of controls of ingestion. In rodents, the initial and default controller appears to be gastric stretch. In the second week of life, rat pups acquire the ability to sense the presence of nutrients within the gut and appropriately modulate ingestion. In the third week of life, rat pups start to become weaned from the dam's milk and begin independent ingestion. There have been strong indications that neuropeptide Y is a stimulator of ingestion in adults, although there was very little information in pups. Dr. Gerard Smith initiated a series of studies that provide strong evidence to indicate that hypothalamic neuropeptide Y (NPY) neurons are strong candidates for providing the ability of preweaning rat pups to modulate ingestion according to caloric intake. Moreover, the studies also suggest that the overactivity of hypothalamic NPY neurons presage the onset of hyperphagia in syndromes associated with defects in leptin signaling. Topics: Aging; Animals; Disease Models, Animal; Feeding Behavior; Gene Expression Regulation, Developmental; Hypothalamus; Mice; Neurons; Neuropeptide Y; Obesity; Rats | 2004 |
Alcoholism: allostasis and beyond.
Alcoholism is a chronic relapsing disorder characterized by compulsive drinking, loss of control over intake, and impaired social and occupational function. Animal models have been developed for various stages of the alcohol addiction cycle with a focus on the motivational effects of withdrawal, craving, and protracted abstinence. A conceptual framework focused on allostatic changes in reward function that lead to excessive drinking provides a heuristic framework with which to identify the neurobiologic mechanisms involved in the development of alcoholism. Neuropharmacologic studies in animal models have provided evidence for specific neurochemical mechanisms in specific brain reward and stress circuits that become dysregulated during the development of alcohol dependence. The brain reward system implicated in the development of alcoholism comprises key elements of a basal forebrain macrostructure termed the extended amygdala that includes the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and a transition zone in the medial (shell) part of the nucleus accumbens. There are multiple neurotransmitter systems that converge on the extended amygdala that become dysregulated during the development of alcohol dependence, including gamma-aminobutyric acid, opioid peptides, glutamate, serotonin, and dopamine. In addition, the brain stress systems may contribute significantly to the allostatic state. During the development of alcohol dependence, corticotropin-releasing factor may be recruited, and the neuropeptide Y brain antistress system may be compromised. These changes in the reward and stress systems are hypothesized to maintain hedonic stability in an allostatic state, as opposed to a homeostatic state, and as such convey the vulnerability for relapse in recovering alcoholics. The allostatic model not only integrates molecular, cellular, and circuitry neuroadaptations in brain motivational systems produced by chronic alcohol ingestion with genetic vulnerability but also provides a key to translate advances in animal studies to the human condition. Topics: Alcoholism; Amygdala; Animals; Arousal; Brain Mapping; Corticotropin-Releasing Hormone; Disease Models, Animal; Ethanol; Humans; Motivation; Nerve Net; Neuropeptide Y; Prosencephalon; Reward; Substance Withdrawal Syndrome | 2003 |
Peptides: their role in excess alcohol drinking and their promise as a therapeutic tool.
Topics: Alcohol Drinking; Alcoholism; Animals; Disease Models, Animal; Ethanol; Humans; Leptin; Motivation; Neuropeptide Y; Neuropeptides; Rats; Substance Withdrawal Syndrome | 2003 |
A role for neuropeptide Y in alcohol intake control: evidence from human and animal research.
This article is based on proceedings of a symposium presented at the 2002 meeting of the Society for the Study of Ingestive Behavior and provides a brief overview of recent research suggesting a role for neuropeptide Y (NPY) in the modulation of ethanol drinking. The discussion focuses mainly on recent studies with genetic animal models including mutant mice lacking specific NPY receptor and selectively bred rodents, namely the Indiana alcohol-preferring (P) and alcohol-nonpreferring (NP) rats and the Indiana high alcohol drinking (HAD) and low alcohol drinking (LAD) rats. It is concluded that abnormal or low central NPY activity can promote high alcohol drinking and that NPY modulates alcohol consumption via the NPY Y1 and Y2 receptors. Topics: Alcohol Drinking; Alcoholism; Animals; Disease Models, Animal; Gene Expression; Humans; Mice; Mice, Mutant Strains; Models, Genetic; Neuropeptide Y; Rats; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Neuropeptide Y; Research | 2003 |
Neuropeptide Y (NPY) and depression: from animal studies to the human condition.
Neuropeptide Y (NPY) is widely distributed throughout the central nervous system (CNS) and is one of the most conserved peptides in evolution, suggesting an important role in the regulation of basic physiological functions. In addition, both pre-clinical and clinical evidence have suggested that NPY, together with its receptors, may have a direct implication in several psychiatric disorders, including depression and related illnesses. NPY-like immunoreactivity and NPY receptors are expressed throughout the brain, with varying concentrations being found throughout the limbic system. Such brain structures have been repeatedly implicated in the modulation of emotional processing, as well as in the pathogenesis of depressive disorders. This review will concentrate on the distribution of NPY, its receptors, and the putative role played by this peptide in depressive illness based on both pre-clinical and clinical evidence. Topics: Animals; Biomedical Research; Brain; Depression; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Neuropeptide Y; Receptors, Neuropeptide Y | 2002 |
Past, present and future strategies to study the genetics of body weight regulation.
Genetic advances have made remarkable progress towards our understanding of body weight regulation. Much of our current knowledge has come from the cloning and characterisation of the genes responsible for obesity syndromes in the mouse, and the identification of homologous mutations causing rare forms of obesity in humans. Gene targeting experiments in mice have been instrumental in confirming the importance of many genes in the aetiology of obesity, and the existence of a fundamental physiological pathway that controls energy balance is becoming clear. The genetic determinants that underlie common forms of human obesity are largely polygenic, with most genes producing small effects. Thus, elucidating the many genetic determinants of obesity is a current challenge for modern geneticists. Despite the inherent difficulties, progress has been made through linkage/association studies and a genetic map of quantitative trait loci for human obesity is beginning to emerge. Obesity research is now very much in a transition period. Not so long ago, access to high throughput screening, as well as microarray and proteomic techniques, was prohibitively expensive and available only to the few. In recent years, these technologies have become more accessible to the larger scientific community and, in this paper, we will discuss how such technological advances are likely to drive the next wave of progress in obesity research. For example, large-scale mutagenesis screens in rodents coupled with high throughput screening are likely to emerge as important technologies for identifying genes previously unexpected to be involved in body weight regulation. Furthermore, applications of microarray and proteomic techniques will further refine our understanding of currently known peptides as well as identify novel pathways and molecules which are involved in energy homeostasis. Topics: Agouti Signaling Protein; Agouti-Related Protein; alpha-MSH; Animals; Body Weight; Cloning, Molecular; Disease Models, Animal; Genomics; Humans; Intercellular Signaling Peptides and Proteins; Leptin; Mice; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Proprotein Convertase 1; Proteins; Proteomics; Receptors, Cell Surface; Receptors, Leptin; Receptors, Melanocortin | 2002 |
Brain neuropeptide Y (NPY) in stress and alcohol dependence.
Neuropeptide Y (NPY), the prototypical member of the NPY-like peptide family, antagonizes behavioral consequences of stress through actions within the brain. This was initially indicated by microinjection studies with NPY receptor ligands, suggesting that NPY Y1 receptors mediate the anti-stress effects of NPY. Behavioral anti-stress actions of NPY are note-worthy in that 1) their magnitude surpasses that of other endogenous compounds; 2) they are produced across a wide range of animal models, normally thought to reflect different aspects of emotionality. These findings suggest that NPY acts with a high potency on a common core mechanism of emotionality and behavioral stress responses. This hypothesis is supported by behavioral studies in genetically modified animals. Increased emotionality, as well as increased alcohol intake, has been reported in mice with a homologous recombination knockout of the preproNPY gene. More detailed studies have been made possible by a transgenic rat system, in which NPY is selectively overexpressed within the hippocampus. These subjects display no overt phenotype under baseline conditions and have a normal endocrine stress response, but lack behavioral responses to stress. These findings point to the potential of the NPY system for developing novel pharmacological treatments of stress-related disorders, including anxiety and depression. Recent data additionally point to a role of NPY in the regulation of alcohol intake, and alcohol dependence emerges as a novel potential indication for compounds targeting the NPY system. Topics: Alcoholism; Animals; Anxiety; Arginine; Behavior, Animal; Benzazepines; Brain; Depression; Disease Models, Animal; DNA-Binding Proteins; Gene Expression; Genetic Heterogeneity; Humans; Neuropeptide Y; Receptors, Neuropeptide Y; Stress, Physiological | 2002 |
Knockout models resulting in the development of obesity.
Our understanding of body weight regulation has been greatly advanced by the characterization of previously existing mutations in mice that cause obesity. Subsequent analysis of a number of mouse knockout models has greatly expanded the number of genes known to influence adiposity by affecting metabolic rate, physical activity, and/or appetite. Topics: Animals; Disease Models, Animal; Gonadal Steroid Hormones; Humans; Mice; Mice, Knockout; Neuropeptide Y; Neurotransmitter Agents; Obesity; Pro-Opiomelanocortin; Receptors, Adrenergic, beta-3; Receptors, Corticotropin; Receptors, Cytoplasmic and Nuclear; Receptors, Melanocortin; Receptors, Neuropeptide Y; Transcription Factors | 2001 |
Neurochemical alterations during age-related anorexia.
Unexplained weight loss during the latter stages of aging is commonly preceded by a spontaneous diminution in food intake. Multiple etiologies of age-related anorexia in humans, ranging from social isolation to impaired gastrointestinal function, have been proposed. The observation of this phenomenon in older laboratory animals suggests that physiological changes play a significant causal role. A continually expanding body of information on the neurochemical control of food intake supports a contribution of altered neurochemistry to dysregulated feeding behavior. This review provides an update on the relationship between declining food intake during advanced age and physiological (specifically neurochemical) function. The complexity of the control of food intake as well as the variety of investigative methods used in this field of study render the identification of definitive causes difficult. Evidence presented here is evaluated and possible etiologic factors are suggested. Topics: Aging; Animals; Anorexia; Appetite Stimulants; Disease Models, Animal; Feeding Behavior; Humans; Leptin; Narcotics; Neuropeptide Y; Neurotransmitter Agents; Proteins | 1999 |
Regulation of energy balance by leptin.
The high prevalence of obesity and its well documented association with the cardiovascular risk factors diabetes mellitus, dyslipidemia and hypertension represents a major problem for the general health status of industrialized societies. Although numerous studies have shown that genetic factors have a major influence on the regulation of energy homeostasis and the susceptibility to obesity, the genes and predisposing mutations involved are insufficiently understood. Among several known rodent models of obesity due to single gene mutations, mice homozygous for the obese (ob) gene exhibit massive early-onset obesity, hyperphagia, non-insulin-dependent diabetes mellitus, defective thermoregulation and infertility. Recently the ob gene was identified by positional cloning and shown to be mutated in ob/ob mice. Leptin, the product of the ob gene, is a 167-amino acid secreted protein that is synthesized exclusively in adipose tissue. With the exception of ob/ob mice, circulating plasma leptin is elevated in obesity. Administration of recombinant leptin to ob/ob mice reduces fat mass, food intake, hyperglycemia and hyperinsulinemia. The various effects of the hormone are mediated by leptin receptors expressed at high levels in the hypothalamus, but also in several other non-neuronal tissues. A mutation in the leptin receptor gene is responsible for the obese phenotype of db/db mice. Plasma leptin in humans is positively correlated with body fat mass, suggesting that leptin resistance rather than leptin deficiency is a common feature of human obesity. This review briefly summarizes the current status of the rapidly growing evidence that leptin plays an important role in the regulation of body weight and fat deposition. Topics: Adipocytes; Animals; Body Mass Index; Body Weight; Carrier Proteins; Disease Models, Animal; Energy Metabolism; Humans; Leptin; Mice; Mice, Mutant Strains; Neuropeptide Y; Obesity; Protein Biosynthesis; Proteins; Receptors, Cell Surface; Receptors, Leptin | 1996 |
[Genetic aspects of hypertension--etiology of essential hypertension].
Topics: Angiotensinogen; Animals; Disease Models, Animal; Genes; Humans; Hypertension; Neuropeptide Y; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Receptors, Angiotensin; Renin; Type C Phospholipases | 1995 |
Interneurons in rat hippocampus after cerebral ischemia. Morphometric, functional, and therapeutic investigations.
This review describes the neuropathology and pathophysiology of interneurons in dorsal hippocampus of the adult rat subjected to transient global cerebral ischemia. The object is to verify if the interneurons die or survive after an ischemic insult, and study if ischemia changes GABA inhibition in the period preceding delayed CA1 pyramidal cell death. The findings are discussed from the point of the hypothesis that loss of GABA inhibition may result in excitatory hyperactivity (possibly epilepsy) and excitotoxic glutamate release. Thereby, early ischemic damage to interneurons may exacerbate the ischemic process resulting in the major and delayed CA1 cell death in hippocampus. Interneurons, located in dentate hilus, and a small number of interneurons located in the mossy fiber layer are selectively lost after ischemia. These interneurons contain somatostatin and neuropeptide Y, but the inhibitory or excitatory nature of them is unknown. However, counts of all hippocampal cells immunoreactive for glutamic acid decarboxylase showed that the GABA interneurons survive ischemia. It is therefore suggested that the vulnerable interneurons in hilus and the mossy fiber layer do not contain GABA. As the GABA interneurons, other hippocampal interneurons also survive ischemia. Among these, the CA1 and CA3 interneurons containing neuropeptide Y demonstrate permanently reduced immunoreactivity for neuropeptide Y, evident 1-2 days after ischemia. Another subpopulation transiently shows a decrease in immunoreactivity for parvalbumin approximately 4 days after ischemia. These results are in contrast to the finding that protein synthesis in hippocampal interneurons returns to preischemic levels 9 hours after ischemia. The integrity between excitation and inhibition in CA1 is unchanged in hippocampal slices taken from animals 1-2 days after ischemia. Furthermore, GABA can readily be released upon potassium stimulation in the period preceding CA1 pyramidal cell death. Binding to hippocampal benzodiazepine sites, however, declines prior to ischemic CA1 pyramidal cell death. It is demonstrated that administration of diazepam and GABA uptake inhibitors during this period offers postischemic neuron protection in CA1. There is no conclusive evidence of excitatory hyperactivity preceding ischemic CA1 pyramidal cell death. On the contrary, results from Chang et al. (1) suggest that ischemic loss of interneurons in the dentate hilus is associated with an increase in inhibition. Howe Topics: Animals; Autoradiography; Brain Ischemia; Calcium-Binding Proteins; Cell Death; Cholecystokinin; Disease Models, Animal; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Hippocampus; Interneurons; Neuropeptide Y; Pyramidal Cells; Rats; Receptors, GABA; Somatostatin | 1993 |
Peptidergic regulation of feeding.
Topics: Afferent Pathways; Animals; Bombesin; Brain Mapping; Calcitonin; Calcitonin Gene-Related Peptide; Cholecystokinin; Corticotropin-Releasing Hormone; Disease Models, Animal; Endorphins; Feeding Behavior; Glucagon; Humans; Insulin; Motilin; Nerve Tissue Proteins; Neuropeptide Y; Neurotensin; Obesity; Pancreatic Polypeptide; Satiety Response; Somatostatin; Species Specificity; Stress, Psychological; Taste; Thyrotropin-Releasing Hormone | 1985 |
392 other study(ies) available for neuropeptide-y and Disease-Models--Animal
Article | Year |
---|---|
Potential benefits of intranasal neuropeptide Y include sustained extinction of fear memory.
Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile. Rats were administered intranasal NPY (150 μg/rat) or equal volume of vehicle (distilled water), and 7 days later they were tested on the elevated plus maze (EPM) and forced swim test (FST). There was no significant difference in the number of entries or duration in the open or closed arms, or in their anxiety index. Defecation on the EPM and immobility on the FST, measures of anxiety and depressive-like behavior respectively, were similar in both groups. To further characterize potential benefits of intranasal NPY, its effect on fear memory and extinction, important features of PTSD, were examined. Intranasal administration of NPY at the time of the traumatic stress had a profound effect on fear conditioning a week later. It prevented the SPS-triggered impairment in the retention of extinguished behavior, both contextual and cued. The findings support the translation of non-invasive intranasal NPY delivery to the brain for PTSD-behaviors including impairments in sustained extinction of fear memories. Topics: Administration, Intranasal; Animals; Anxiety; Disease Models, Animal; Fear; Humans; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Stress, Psychological | 2023 |
Since the NAD+-dependent histone deacetylases sirtuin-1 (SIRT1) and sirtuin-2 (SIRT2) are critically involved in epigenetics, endocrinology and immunology and affect the longevity in model organisms, we investigated their expression in brains of 3-month-old and 14-15 months old rat model of depression Flinders Sensitive Line (FSL) and control Flinders Resistant Line (FRL) rats. In view of the dysregulated NPY system in depression, we also studied NPY in young and old FSL to explore the temporal trajectory of depressive-like-ageing interaction. Sirt1, Sirt2 and Npy mRNA were determined using qRT-PCR in prefrontal cortex (PFC) from young and old FSL and FRL, and in hippocampi from young FSL and FRL. PFC: Sirt1 expression was decreased in FSL (p = 0.001). An interaction between age and genotype was found (p = 0.032); young FSL had lower Sirt1 with respect to both age (p = 0.026) and genotype (p = 0.001). Sirt2 was lower in FSL (p = 0.003). Npy mRNA was downregulated in FSL (p = 0.001) but did not differ between the young and old rat groups. Hippocampus: Sirt1 was reduced in young FSL compared to young FRL (p = 0.005). There was no difference in Sirt2 between FSL and FRL. Npy levels were decreased in hippocampus of young FSL compared to young FRL (p = 0.003). Effects of ageing could not be investigated due to loss of samples. To conclude, i this is the first demonstration that SIRT1 and SIRT2 are changed in brain of FSL, a rat model of depression; ii the changes are age-dependent; iii sirtuins are potential targets for treatment of age-related neurodegenerative diseases. Topics: Animals; Depression; Disease Models, Animal; Down-Regulation; Neuropeptide Y; Rats; Rats, Inbred Strains; Sirtuin 1; Sirtuin 2; Sirtuins | 2022 |
Restraint stress potentiates neuropeptide Y-mediated impairment on spatial memory in rats.
Memory is the ability to store, retrieve and use information that requires a progressive time-dependent stabilization process known as consolidation to be established. The hippocampus is essential for processing all the information that forms memory, especially spatial memory. Neuropeptide Y (NPY) affects memory, so in this study we investigated the participation and recruitment of NPY receptors during spatial memory consolidation in rats. Using the water maze test, we show that NPY (1 pmol) injected into the dorsal hippocampus impaired memory consolidation and that previous restraint stress (30 min) potentiates NPY effects, i.e. further impaired memory consolidation. Using selective antagonists for NPY Y Topics: Animals; Arginine; Behavior, Animal; Benzazepines; Disease Models, Animal; Male; Memory Disorders; Neuropeptide Y; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Restraint, Physical; Spatial Memory; Stress, Psychological | 2022 |
The effect of insulin receptor deletion in neuropeptide Y neurons on hippocampal dependent cognitive function in aging mice.
Insulin is known to act in the central nervous system to regulate several physiological and behavioural outcomes, including energy balance, glucose homeostasis and cognitive functioning. However, the neuronal populations through which insulin enhances cognitive performance remain unidentified. Insulin receptors are found in neuropeptide-Y (NPY) expressing neurons, which are abundant in the hypothalamus and hippocampus; regions involved in feeding behaviour and spatial memory, respectively. Here we show that mice with a tissue specific knockout of insulin receptors in NPY expressing neurons (IRlox/lox; NPYCre/+) display an impaired performance in the probe trial of the Morris Water Maze compared with control mice at both the 6 and the 12, but not at the 24 months time point, consistent with a crucial role of insulin and NPY in cognitive functioning. By 24 months of age all groups demonstrated similar reductions in spatial memory performance. Together, these data suggest that the mechanisms through which insulin influences cognitive functioning are, at least in part, via insulin receptor signaling in NPY expressing neurons. These results also highlight that cognitive impairments observed in aging may be due to impaired insulin signaling. Topics: Aging; Animals; Behavior, Animal; Cognitive Dysfunction; Disease Models, Animal; Hippocampus; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Neuropeptide Y; Receptor, Insulin; Spatial Memory | 2022 |
Neuronal Induction of Bone-Fat Imbalance through Osteocyte Neuropeptide Y.
A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY. Topics: Adipocytes; Adipogenesis; Animals; Bone and Bones; Disease Models, Animal; Female; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; Osteoblasts; Osteocytes; Osteogenesis; Osteoporosis | 2021 |
Role for Histone Deacetylation in Traumatic Brain Injury-Induced Deficits in Neuropeptide Y in Arcuate Nucleus: Possible Implications in Feeding Behavior.
Repeated traumatic events result in long-lasting neuropsychiatric ailments, including neuroendocrine imbalances. Neuropeptide Y (NPY) in the arcuate nucleus (Arc) is an important orexigenic peptide. However, the molecular underpinnings of its dysregulation owing to traumatic brain injury remain unknown.. Rats were subjected to repeated mild traumatic brain injury (rMTBI) using the closed head weight-drop model. Feeding behavior and the regulatory epigenetic parameters of NPY expression were measured at 48 h and 30 days post-rMTBI. Further, sodium butyrate (SB), a pan-histone deacetylase (HDAC) inhibitor, was administered to examine whether histone deacetylation is involved in NPY expression post-rMTBI.. The rMTBI attenuated food intake, which was coincident with a decrease in NPY mRNA and protein levels in the Arc post-rMTBI. Further, rMTBI also reduced the mRNA levels of the cAMP response element-binding protein (CREB) and CREB-binding protein (CBP) and altered the mRNA levels of the various isoforms of the HDACs. Concurrently, the acetylated histone 3-lysine 9 (H3-K9) levels and the binding of CBP at the NPY promoter in the Arc of the rMTBI-exposed rats were reduced. However, the treatment with SB corrected the rMTBI-induced deficits in the H3-K9 acetylation levels and CBP occupancy at the NPY promoter, restoring both NPY expression and food intake.. These findings suggest that histone deacetylation at the NPY promoter persistently controls NPY function in the Arc after rMTBI. This study also demonstrates the efficacy of HDAC inhibitors in mitigating trauma-induced neuroendocrine maladaptations in the hypothalamus. Topics: Animals; Arcuate Nucleus of Hypothalamus; Behavior, Animal; Brain Concussion; Butyric Acid; Disease Models, Animal; Feeding Behavior; Histone Deacetylase Inhibitors; Neuropeptide Y; Rats | 2021 |
Effects of leptin, ghrelin and neuropeptide y on spike-wave discharge activity and certain biochemical parameters in WAG/Rij rats with genetic absence epilepsy.
This study aimed to evaluate the effects of leptin, ghrelin and neuropeptide-Y on the development of nonconvulsive seizure activity and their role on combating oxidative stress and cytokines produced by the systemic immune response in the WAG/Rij rat model for genetic absence epilepsy. Current study showed that all three peptides aggravated spike wave discharges activity and affected the oxidative stress in WAG/Rij rats without any significant changes in the levels of IL-1β, IL-6 and TNF-α except leptin that only induced an increment in the concentration of IL-1β. Our results support the modulatory role of these endogenous peptides on absence epilepsy. Topics: Animals; Disease Models, Animal; Epilepsy, Absence; Ghrelin; Leptin; Male; Neuropeptide Y; Oxidative Stress; Rats | 2021 |
Behavioral changes and brain epigenetic alterations induced by maternal deficiencies of B vitamins in a mouse model.
B vitamins play essential roles in brain development and functionality; however, the effects of their deficiency during early life on mental health are not thoroughly understood.. The objective of this study is to investigate the effects of a maternal deficiency of vitamin B6, B9 (folate), and B12 on behavioral changes in adult offspring.. Female C57BL/6 J mice were put on a diet lacking vitamin B6, B9, B12, or the above three vitamins from pregnancy to weaning. The growth and developmental characteristics of both the pregnant mothers and offspring were collected. In the adult offspring, the serum levels of neuroactive substances were measured using an enzyme-linked immunosorbent assay. The level of BDNF and dimethylated lysine 9 on histone H3 (H3K9me2) was detected by immunohistochemical staining. In addition, their depressive-like behaviors, anxiety-like behaviors, and sociability were recorded using sucrose preference, a forced swim, social interaction, tail suspension, and open field tests.. The maternal deficiency of the three B vitamins delayed offspring development. Compared to the controls, all of the groups showed decreased serum levels of 5-HT and neuropeptide Y. In the groups with deficiency of B9 or the three B vitamins, there were significant changes in sociability and social novelty preference. In groups with deficiencies in B9, B12, or all three B vitamins, the expression levels of BDNF and H3K9me2 in the hippocampus were significantly decreased.. Maternal deficiencies of the major B vitamins caused changes in social behaviors in adult mice accompanied with epigenetic alterations in the brain and changes in the serum levels of neuroactive substances. Topics: Animals; Behavior, Animal; Brain Chemistry; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Epigenesis, Genetic; Female; Hindlimb Suspension; Histones; Mice; Mice, Inbred C57BL; Motor Activity; Neuropeptide Y; Pregnancy; Prenatal Exposure Delayed Effects; Social Interaction; Vitamin B Deficiency | 2021 |
Neuropeptide Y (NPY) intranasal delivery alleviates Machado-Joseph disease.
Machado-Joseph disease (MJD) is the most common dominantly-inherited ataxia worldwide with no effective treatment to prevent, stop or alleviate its progression. Neuropeptide Y (NPY) is a neuroprotective agent widely expressed in the mammalian brain. Our previous work showed that NPY overexpression mediated by stereotaxically-injected viral vectors mitigates motor deficits and neuropathology in MJD mouse models. To pursue a less invasive translational approach, we investigated whether intranasal administration of NPY would alleviate cerebellar neuropathology and motor and balance impairments in a severe MJD transgenic mouse model. For that, a NPY solution was administered into mice nostrils 5 days a week. Upon 8 weeks of treatment, we observed a mitigation of motor and balance impairments through the analysis of mice behavioral tests (rotarod, beam walking, pole and swimming tests). This was in line with a reduction of cerebellar pathology, evidenced by a preservation of cerebellar granular layer and of Purkinje cells and reduction of mutant ataxin-3 aggregate numbers. Furthermore, intranasal administration of NPY did not alter body weight gain, food intake, amount of body fat nor cholesterol or triglycerides levels. Our findings support the translational potential of intranasal infusion of NPY as a pharmacological intervention in MJD. Topics: Administration, Intranasal; Animals; Ataxin-3; Cerebellum; Disease Models, Animal; Machado-Joseph Disease; Mice; Mice, Transgenic; Neuropeptide Y; Purkinje Cells | 2021 |
Ninjinyoeito improves anxiety behavior in neuropeptide Y deficient zebrafish.
Anxiety induced by excess mental or physical stress is deeply involved in the onset of human psychiatric diseases such as depression, bipolar disorder, and panic disorder. Recently, Kampo medicines have received focus as antidepressant drugs for clinical use because of their synergistic and additive effects. Thus, we evaluated the anxiolytic activity of Ninjinyoeito (NYT) using neuropeptide Y-knockout (NPY-KO) zebrafish that exhibit severe anxiety responses to acute stress. Adult NPY-KO zebrafish were fed either a 3% NYT-supplemented or normal diet (i.e., the control diet) for four days and were then examined via behavioral tests. After short-term cold stress (10 °C, 2 s) was applied, control-fed NPY-KO zebrafish exhibited anxiety behaviors such as freezing, erratic movement, and increased swimming time along the tank wall. On the other hand, NYT-fed NPY-KO zebrafish significantly suppressed these anxiety behaviors, accompanied by a downregulation of tyrosine hydroxylase levels and phosphorylation of extracellular signal-regulated kinases in the brain. To understand the responsible component(s) in NYT, twelve kinds of herbal medicines that composed NYT were tested in behavioral trials with the zebrafish. Among them, nine significantly reduced freezing behavior in NPY-KO zebrafish. In particular, Schisandra fruit induced the most potent effect on abnormal zebrafish behavior, even in the lower amount (0.3% equivalent to NYT), followed by Atractylodes rhizome and Cinnamon bark. Subsequently, four lignans uniquely found in Schisandra fruit (i.e., gomisin A, gomisin N, schizandrin, and schizandrin B) were investigated for their anxiolytic activity in NPY-KO zebrafish. As a result, schizandrin was identified as a responsible compound in the anxiolytic effect of NYT. These results suggest that NYT has a positive effect on mental stress-induced anxiety and may be a promising therapeutic for psychiatric diseases. Topics: Animals; Anti-Anxiety Agents; Anxiety; Brain; Cold-Shock Response; Disease Models, Animal; Drug Evaluation, Preclinical; Drugs, Chinese Herbal; Extracellular Signal-Regulated MAP Kinases; Freezing Reaction, Cataleptic; Fruit; Gene Expression Regulation; Gene Knockout Techniques; Lignans; Medicine, Kampo; Nerve Tissue Proteins; Neuropeptide Y; Phytotherapy; RNA, Messenger; Schisandra; Swimming; Tyrosine 3-Monooxygenase; Zebrafish; Zebrafish Proteins | 2021 |
A novel mouse model to evaluate neuropeptide Y-mediated melanocyte pathology.
Vitiligo is an autoimmune disease characterized by depigmented patches of skin due to loss of the pigment-producing melanocytes. No cure exists for vitiligo. The available treatments are inefficient for many patients, suggesting that universal treatment approaches may be inappropriate. Deeper understanding of the mechanistic basis for variability in vitiligo aetiologies is necessary. Genetic mutations in neuropeptide Y (NPY), a widely distributed protein, are associated with increased NPY expression and increased susceptibility for vitiligo. NPY is also upregulated in the circulation and lesional skin of some vitiligo patients. However, the contributions of NPY to melanocyte pathology are not understood, and presently there are no models with which to investigate this possibility. In this study, we employed NPY-overexpressing mice to explore the role of NPY in melanocyte dysfunction. Our results show that NPY overexpression induces progressive hair greying (depigmentation) due to premature depletion of follicular melanocyte stem cells. Additionally, NPY transcripts and protein are elevated in the skin and melanocytes of these mice, respectively, suggesting that these effects may be mediated locally. Together, these results suggest that supraphysiological levels of NPY in the skin can induce melanocyte dysfunction, thus identifying this mouse line as a novel model to study NPY-mediated melanocyte pathology. Topics: Animals; Disease Models, Animal; Female; Male; Melanocytes; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuropeptide Y; Vitiligo | 2021 |
Caloric Restriction Prevents Metabolic Dysfunction and the Changes in Hypothalamic Neuropeptides Associated with Obesity Independently of Dietary Fat Content in Rats.
Energy restriction is a first therapy in the treatment of obesity, but the underlying biological mechanisms have not been completely clarified. We analyzed the effects of restriction of high-fat diet (HFD) on weight loss, circulating gut hormone levels and expression of hypothalamic neuropeptides. Ten-week-old male Wistar rats ( Topics: Adiposity; Agouti-Related Protein; Animals; Caloric Restriction; Diet, Fat-Restricted; Diet, High-Fat; Dietary Fats; Disease Models, Animal; Eating; Ghrelin; Hypothalamus; Leptin; Male; Metabolic Diseases; Neuropeptide Y; Neuropeptides; Obesity; Pro-Opiomelanocortin; Rats; Rats, Wistar; Weight Loss | 2021 |
Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model.
Neuropeptide Y (NPY) plays a crucial role in many neurobiological functions, such as cognition and memory. Cognitive and memory impairment have been described in diabetic patients. The metabolism of NPY is determined by the activity of proteases, primarily dipeptidyl-peptidase-IV (DPP-IV). Therefore, DPP-IV inhibitors, such as sitagliptin, may modulate the function of NPY. In this study, we investigated the effect of type 1 diabetes and sitagliptin treatment on the regulation of the mRNA encoding for NPY and its receptors (Y1, Y2, and Y5 receptors) in the hippocampus.. Type 1 diabetes was induced in male Wistar rats by i.p. injection of streptozotocin. Starting two weeks after diabetes onset, animals were treated orally with sitagliptin (5mg/kg, daily) for two weeks. The mRNA expression of Npy and its receptors (Npy1r, Npy2r, and Npy5r) in the hippocampus was evaluated using in situ hybridization with. The mRNA expression of Npy, Npy1r and Npy5r was higher in the dentate gyrus, whereas Npy2r highest level was observed in the CA3 subregion. The mRNA expression of Npy, Npy1r and Npy5r in dentate gyrus, CA1 and CA3 was not affected by diabetes and/or by sitagliptin treatment. Type 1 diabetes increased the mRNA expression of Npy2r in the CA3 subregion, which was prevented by sitagliptin treatment.. Our results show that type 1 diabetes, at early stages, induces mild changes in the NPY system in the hippocampus that were counteracted by sitagliptin treatment. Topics: Analysis of Variance; Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Hippocampus; Hypoglycemic Agents; Male; Neuropeptide Y; Oligonucleotide Probes; Random Allocation; Rats; Rats, Wistar; RNA, Messenger; Sitagliptin Phosphate | 2020 |
Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD.
Topics: Amygdala; Animals; Arachidonic Acids; Arousal; Basolateral Nuclear Complex; Behavior, Animal; Benzamides; Carbamates; Depression; Disease Models, Animal; Endocannabinoids; Extinction, Psychological; Neuropeptide Y; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptors, Neuropeptide Y; Reflex, Startle; Social Behavior; Stress Disorders, Post-Traumatic | 2020 |
Activation of a Classic Hunger Circuit Slows Luteinizing Hormone Pulsatility.
The central regulation of fertility is carefully coordinated with energy homeostasis, and infertility is frequently the outcome of energy imbalance. Neurons in the hypothalamus expressing neuropeptide Y and agouti-related peptide (NPY/AgRP neurons) are strongly implicated in linking metabolic cues with fertility regulation.. We aimed here to determine the impact of selectively activating NPY/AgRP neurons, critical regulators of metabolism, on the activity of luteinizing hormone (LH) pulse generation.. We employed a suite of in vivo optogenetic and chemogenetic approaches with serial measurements of LH to determine the impact of selectively activating NPY/AgRP neurons on dynamic LH secretion. In addition, electrophysiological studies in ex vivo brain slices were employed to ascertain the functional impact of activating NPY/AgRP neurons on gonadotropin-releasing hormone (GnRH) neurons.. Selective activation of NPY/AgRP neurons significantly decreased post-castration LH secretion. This was observed in males and females, as well as in prenatally androgenized females that recapitulate the persistently elevated LH pulse frequency characteristic of polycystic ovary syndrome (PCOS). Reduced LH pulse frequency was also observed when optogenetic stimulation was restricted to NPY/AgRP fiber projections surrounding GnRH neuron cell bodies in the rostral preoptic area. However, electrophysiological studies in ex vivo brain slices indicated these effects were likely to be indirect.. These data demonstrate the ability of NPY/AgRP neuronal signaling to modulate and, specifically, reduce GnRH/LH pulse generation. The findings suggest a mechanism by which increased activity of this hunger circuit, in response to negative energy balance, mediates impaired fertility in otherwise reproductively fit states, and highlight a potential mechanism to slow LH pulsatility in female infertility disorders, such as PCOS, that are associated with hyperactive LH secretion. Topics: Agouti-Related Protein; Animals; Disease Models, Animal; Female; Gonadotropin-Releasing Hormone; Hunger; Luteinizing Hormone; Male; Mice; Mice, Transgenic; Nerve Net; Neurons; Neuropeptide Y; Polycystic Ovary Syndrome; Pregnancy; Prenatal Exposure Delayed Effects; Secretory Pathway | 2020 |
Early life stress and the programming of eating behavior and anxiety: Sex-specific relationships with serotonergic activity and hypothalamic neuropeptides.
Early life experiences have strong influences on brain programming and can affect eating behavior control and body weight later in life. However, there is no consensus about the relationship between neonatal stress and feeding behavior. We evaluated whether maternal deprivation (MD) and maternal separation (MS) alter body weight and appetite using standard rat chow consumption and palatable food. Also, we evaluated anxiety and the expression of the leptin receptor, neuropeptides POMC, CART, NPY in the hypothalamus, as well as the serotoninergic system in the amygdala and hypothalamus as possible modulators of these behaviors. We found a decrease in standard rat chow consumption in MD. However, both neonatal stress protocols increased the consumption of palatable food and led to anxiogenic behavior in male animals. MD led to decreased hypothalamic POMC levels in adult males. Serotonin in the hypothalamus was decreased by both stress models in males and females. In the amygdala, MS decreased serotonin levels while MD increased its metabolite levels. We observed that males are more vulnerable and females are more resilient to the effects of neonatal stress on anxiety-like behavior, as well as on food consumption and on the central changes observed. These data together add support to the concept that the early environment contributes to the development of eating disorders later in life. Topics: Amygdala; Animals; Animals, Newborn; Anxiety; Behavior, Animal; Disease Models, Animal; Feeding Behavior; Female; Hypothalamus; Male; Maternal Deprivation; Nerve Tissue Proteins; Neuropeptide Y; Pro-Opiomelanocortin; Rats; Rats, Wistar; Receptors, Leptin; Resilience, Psychological; Serotonin; Sex Characteristics; Stress, Psychological | 2020 |
The Effects of Neuropeptide Y Overexpression on the Mouse Model of Doxorubicin-Induced Cardiotoxicity.
Doxorubicin is a potent anticancer drug with cardiotoxicity hampering its use. Neuropeptide Y (NPY) is the most abundant neuropeptide in the heart and a co-transmitter of the sympathetic nervous system that plays a role in cardiac diseases. The aim of this work was to study the impact of NPY on doxorubicin-induced cardiotoxicity. Transgenic mice overexpressing NPY in noradrenergic neurons (NPY-OE Topics: Adrenergic Neurons; Animals; Body Composition; Calcium Signaling; Cardiotoxicity; Disease Models, Animal; Doxorubicin; Heart Diseases; Male; Mice, Inbred C57BL; Mice, Transgenic; Myocytes, Cardiac; Neuropeptide Y; Stroke Volume; Up-Regulation; Ventricular Function, Left; Ventricular Remodeling; Weight Gain | 2020 |
Activation of NPY receptor subtype 1 by [D-His
The neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His Topics: Administration, Intranasal; Animals; Anxiety; Disease Models, Animal; Male; Maze Learning; Neuropeptide Y; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Reflex, Startle; Stress Disorders, Post-Traumatic | 2020 |
Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice.
The evidence to guide clinicians regarding rationale polytherapy with current antiepileptic drugs (AEDs) is lacking, and current practice recommendations are largely empirical. The excessive drug loading with combinatorial therapies of existing AEDs are associated with escalated neurotoxicity, and that emergence of pharmacoresistant seizures couldn't be averted. In pursuit of judicious selection of novel AEDs in combinatorial therapies with mechanism based evidences, standardized dose of raloxifene, fluoxetine, bromocriptine and their low dose combinations, were experimentally tested for their impact on maximal electroshock (MES) induced tonic hind limb extension (THLE) in mice. Hippocampal neuropeptide Y (NPY) levels, oxidative stress and histopathological studies were undertaken. The results suggest the potentiating effect of 4 mg/kg raloxifene on 14 mg/kg fluoxetine against MES induced THLE, as otherwise monotherapy with 4 mg/kg raloxifene was unable to produce an effect. The results also depicted better efficacy than carbamazepine (20 mg/kg), standard AED. Most profoundly, MES-induced significant (P < 0.001) reduction in hippocampal NPY levels, that were escalated insignificantly with the duo-drug combination, suggesting some other mechanism in mitigation of electroshock induced seizures. These results were later corroborated with assays to assess oxidative stress and neuronal damage. In conclusion, the results demonstrated the propitious therapeutic benefit of duo-drug low dose combination of drugs; raloxifene and fluoxetine, with diverse mode of actions fetching greater effectiveness in the management of generalized tonic clonic seizures (GTCS). Topics: Animals; Anticonvulsants; Bromocriptine; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Electroshock; Fluoxetine; Glutamic Acid; Hippocampus; Mice; Neuropeptide Y; Oxidative Stress; Raloxifene Hydrochloride; Receptors, Dopamine; Receptors, Serotonin; Seizures; Signal Transduction | 2020 |
Significance of the orexinergic system in modulating stress-related responses in an animal model of post-traumatic stress disorder.
Converging evidence indicates that orexins (ORXs), the regulatory neuropeptides, are implicated in anxiety- and depression-related behaviors via the modulation of neuroendocrine, serotonergic, and noradrenergic systems. This study evaluated the role of the orexinergic system in stress-associated physiological responses in a controlled prospective animal model. The pattern and time course of activation of hypothalamic ORX neurons in response to predator-scent stress (PSS) were examined using c-Fos as a marker for neuronal activity. The relationship between the behavioral response pattern 7 days post-exposure and expressions of ORXs was evaluated. We also investigated the effects of intracerebroventricular microinfusion of ORX-A or almorexant (ORX-A/B receptor antagonist) on behavioral responses 7 days following PSS exposure. Hypothalamic levels of ORX-A, neuropeptide Y (NPY), and brain-derived neurotrophic factor (BDNF) were assessed. Compared with rats whose behaviors were extremely disrupted (post-traumatic stress disorder [PTSD]-phenotype), those whose behaviors were minimally selectively disrupted displayed significantly upregulated ORX-A and ORX-B levels in the hypothalamic nuclei. Intracerebroventricular microinfusion of ORX-A before PSS reduced the prevalence of the PTSD phenotype compared with that of artificial cerebrospinal fluid or almorexant, and rats treated with almorexant displayed a higher prevalence of the PTSD phenotype than did untreated rats. Activated ORX neurons led to upregulated expressions of BDNF and NPY, which might provide an additional regulatory mechanism for the modulation of adaptive stress responses. The study indicates that the activated ORX system might promote adaptive responses to PSS probably via stimulation of BDNF and NPY secretion, and early intervention with ORX-A reduces the prevalence of the PTSD phenotype and increases the prevalence of adaptive phenotypes. The findings provide some insights into the mechanisms underlying the involvement of the ORX system in stress-related disorders. Topics: Animals; Disease Models, Animal; Neuropeptide Y; Prospective Studies; Rats; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic | 2020 |
Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio).
Neuropeptide Y (NPY) controls energy homeostasis including orexigenic actions in mammalians and non-mammalians. Recently, NPY has attracted attention as a mediator of emotional behaviour and psychosomatic diseases. However, its functions are not fully understood. We established npy gene-deficient (NPY-KO) zebrafish (Danio rerio) to assess the relationship between NPY and emotional behaviours. The NPY-KO zebrafish exhibited similar growth, but pomc and avp mRNA levels in the brain were higher as compared to wild-type fish. NPY-KO zebrafish exhibited several anxiety-like behaviours, such as a decrease in social interaction in mirror test and decreased locomotion in black-white test. The acute cold stress-treated NPY-KO zebrafish exhibited anxiety-like behaviours such as remaining stationary and swimming along the side of the tank in the mirror test. Moreover, expression levels of anxiety-associated genes (orx and cck) and catecholamine production (gr, mr, th1 and th2) were significantly higher in NPY-KO zebrafish than in wild-type fish. We demonstrated that NPY-KO zebrafish have an anxiety phenotype and a stress-vulnerability like NPY-KO mice, whereby orx and/or catecholamine signalling may be involved in the mechanism actions. Topics: Animals; Animals, Genetically Modified; Anxiety; Behavior, Animal; Catecholamines; Disease Models, Animal; Energy Metabolism; Female; Gene Knockout Techniques; Humans; Male; Neuropeptide Y; Orexins; Receptors, Neuropeptide Y; Signal Transduction; Stress, Psychological; Zebrafish; Zebrafish Proteins | 2020 |
Ginkgolide-Platinum(II) Complex GPt(II) Exhibits Therapeutic Effect on Depression in Mice via Upregulation of DA and 5-HT Neurotransmitters.
BACKGROUND Depression is the 5th most prevalent disorder adversely affecting the health of humans worldwide. The present study evaluated the antidepressant effect of ginkgolide-platinum(II) complex in vivo in a mice model of CMS-induced depression. MATERIAL AND METHODS Depression was induced in mice by social isolation followed by chronic mild stress. After stress, the mice were assigned randomly to a model group, a 3 mg/kg group, a 6 mg/kg group, and a 12 mg/kg group. The mice in the 3 treatment groups were intraperitoneally injected with a single dose of 3.0, 6.0, or 12.0 mg/kg GPt(II) on day 11 of stress. The behavioral changes in mice were analyzed on day 21 of GPt(II) treatment by suspension and open field tests. RESULTS The GPt(II) treatment significantly increased the numbers of crossings and rearings in CMS mice. Treatment of mice with GPt(II) significantly elevated dopamine, BDNF, and serotonin levels in hippocampus tissues. The CMS-mediated reduction of neuropeptide production in the hippocampus tissues was significantly alleviated by GPt(II) treatment (P<0.05). The GPt(II) treatment suppressed the effect on CMS-induced elevated level of MAO-A in hippocampus tissues. Treatment with GPt(II) significantly repressed caspase-3 activation induced by CMS in the hippocampus tissues of mice. The GPt(II) treatment significantly (P<0.05) upregulated Hsp70 mRNA level in depression model mice. The levels of dopamine, serotonin, and BDNF were increased from 187.83±8.53, 289.65±10.76, and 7.98±1.87 ng/g, respectively, in the model group to 657.63±24.47, 720.54±28.09, and 22.56±3.11 ng/g, respectively, in the 12 mg/kg GPt(II) treatment group. CONCLUSIONS GPt(II) treatment significantly relieved characteristics of depression in the mice through upregulation of neurotransmitter, neuropeptide, and Hsp70 expression. Moreover, GPt(II) downregulated monoamine oxidase-A levels in the mouse hippocampus tissues. Therefore, further research is warranted on the possible therapeutic effect of GPt(II) in the treatment of depression. Topics: Animals; Antidepressive Agents; Behavior, Animal; Berberine; Depression; Disease Models, Animal; Dopamine; Drugs, Chinese Herbal; Ginkgolides; Hippocampus; HSP70 Heat-Shock Proteins; Male; Mice; Mice, Inbred C57BL; Monoamine Oxidase; Neuropeptide Y; Neurotransmitter Agents; Organoplatinum Compounds; Serotonin; Stress, Psychological | 2020 |
Cardiac sympathetic activation circumvents high-dose beta blocker therapy in part through release of neuropeptide Y.
The sympathetic nervous system plays an important role in the occurrence of ventricular tachycardia (VT). Many patients, however, experience VT despite maximal doses of beta blocker therapy, possibly due to the effects of sympathetic cotransmitters such as neuropeptide Y (NPY). The purpose of this study was to determine, in a porcine model, whether propranolol at doses higher than clinically recommended could block ventricular electrophysiological effects of sympathoexcitation via stellate ganglia stimulation, and if any residual effects are mediated by NPY. Greater release of cardiac NPY was observed at higher sympathetic stimulation frequencies (10 and 20 vs. 4 Hz). Despite treatment with even higher doses of propranolol (1.0 mg/kg), electrophysiological effects of sympathetic stimulation remained, with residual shortening of activation recovery interval (ARI), a surrogate of action potential duration (APD). Adjuvant treatment with the NPY Y1 receptor antagonist BIBO 3304, however, reduced these electrophysiological effects while augmenting inotropy. These data demonstrate that high-dose beta blocker therapy is insufficient to block electrophysiological effects of sympathoexcitation, and a portion of these electrical effects in vivo are mediated by NPY. Y1 receptor blockade may represent a promising adjuvant therapy to beta-adrenergic receptor blockade. Topics: Action Potentials; Adrenergic beta-Antagonists; Animals; Arginine; Disease Models, Animal; Neuropeptide Y; Receptors, Neuropeptide Y; Sus scrofa; Sympathetic Nervous System; Tachycardia, Ventricular | 2020 |
A role for NPY-NPY2R signaling in albuminuric kidney disease.
Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Topics: Albuminuria; Animals; Arginine; Benzazepines; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Disease Models, Animal; Down-Regulation; Doxorubicin; Humans; Insulin; Kidney Diseases; Kidney Glomerulus; Male; Mice; Mice, Inbred BALB C; Mice, Knockout; Neuropeptide Y; Podocytes; Proteomics; Receptors, Neuropeptide Y; Signal Transduction | 2020 |
Effect of intranasal administration of neuropeptide Y and single prolonged stress on food consumption and body weight in male rats.
Emerging evidence indicates that intranasal delivery of neuropeptide Y (NPY) to the brain has therapeutic potential for management of stress-triggered neuropsychiatric disorders. Here we aimed to determine how intranasal administration of NPY, either before or immediately after, traumatic stress in single prolonged stress (SPS) rodent model of Post-traumatic stress disorder (PTSD) impacts food consumption and body weight. SPS stressors suppressed food consumption for at least two days in the vehicle-treated animals. When given prior to SPS stressors, intranasal NPY prevented the SPS-elicited reduction in food intake only for several hours afterwards. When given after the SPS stressors, under conditions shown to prevent behavioral and biochemical impairments, intranasal NPY had no effect on food intake. Although all groups showed circadian variation, the SPS-exposed rats ate less than unstressed animals during the dark (active) phase. Seven days after exposure to SPS stressors, there were no differences in food intake, although body weight was still lower than unstressed controls in all the experimental groups. Thus, traumatic stress has pronounced effect on food consumption during the rodent's active phase, and a prolonged effect on body weight. Single intranasal infusion of NPY, which was previously shown to prevent development of several PTSD associated behavioral and neuroendocrine impairments, did not elicit prolonged changes in stress triggered food consumption nor regulation of body weight. Topics: Administration, Intranasal; Animals; Body Weight; Disease Models, Animal; Eating; Male; Neuropeptide Y; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Stress, Psychological | 2020 |
Altered metabolic gene expression in the brain of a triprolyl-human amylin transgenic mouse model of type 2 diabetes.
Type 2 diabetes mellitus is a major health concern worldwide; however, the molecular mechanism underlying its development is poorly understood. The hormone amylin is postulated to be involved, as human amylin forms amyloid in the pancreases of diabetic patients, and oligomers have been shown to be cytotoxic to β-cells. As rodent amylin is non-amyloidogenic, mice expressing human amylin have been developed to investigate this hypothesis. However, it is not possible to differentiate the effects of amylin overexpression from β-cell loss in these models. We have developed transgenic mice that overexpress [ Topics: Animals; Blood Glucose; Body Weight; Brain; Diabetes Mellitus, Type 2; Disease Models, Animal; Gene Expression Profiling; Gene Expression Regulation; Humans; Insulin; Islet Amyloid Polypeptide; Leptin; Male; Mice; Mice, Transgenic; Nerve Tissue Proteins; Neuropeptide Y; Obesity; Phenotype; Phosphorylation; Pro-Opiomelanocortin; Proto-Oncogene Proteins c-fos; RNA, Messenger; Signal Transduction; STAT3 Transcription Factor; Suppressor of Cytokine Signaling 3 Protein | 2019 |
Physical exercise inhibits atherosclerosis development by regulating the expression of neuropeptide Y in apolipoprotein E-deficient mice.
Population-based studies have shown that exercise has anti-atherosclerotic effects, but the mechanisms underlying this cardiac protection are poorly understood. The aim of this study was to investigate if the anti-atherosclerotic effects of exercise are associated with changes in neuropeptide Y (NPY) expression in apolipoprotein E-deficient (ApoE. Eight weeks of occasional exercise was equally effective as regular exercise at preventing atherosclerotic plaque formation and enhancing atherosclerotic plaque stability. This was shown by increased plaque collagen and smooth muscle cell content and decreased plaque lipid and macrophage content. The expression of NPY and its receptors in the vasculature was decreased in the regular exercise and occasional exercise groups, and this expression was significantly correlated with the progress of atherosclerosis. Moreover, exercise may reduce the activity of macrophages by down-regulating the expression of NPY Y1 receptors, thereby reducing the release of inflammatory cytokines.. These results suggest that exercise training can attenuate plaque burden and enhance atherosclerotic plaque stability. The anti-atherosclerotic effect of exercise appears to be, at least in part, dependent on down-regulation of the expression of NPY and its receptors (especially Y1 receptors) in the aorta. Topics: Animals; Aorta; Apolipoproteins E; Atherosclerosis; Cytokines; Disease Models, Animal; Gene Expression Regulation; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Myocytes, Smooth Muscle; Neuropeptide Y; Physical Conditioning, Animal | 2019 |
Leptin and Adiponectin Signaling Pathways Are Involved in the Antiobesity Effects of Peanut Skin Extract.
Excessive food intake and metabolic disorder promote obesity and diabetes. In China, peanut skin is used as a herbal medicine to treat hemophilia, thrombocytopenic purpura, and hepatic hemorrhage. In the present study, we demonstrated that peanut skin extract (PSE) safely reduced appetite, body weight, fat tissue, plasma TG and TC, and blood glucose level in mice with diet-induced obesity (DIO). Moreover, the leptin/leptin receptor/neuropeptide Y (NPY) and adiponectin signaling pathways involved in the antiobesity effects of PSE are confirmed through leptin and adiponectin overexpression and leptin receptor silencing in mice. PSE consisted of oligosaccharide and polyphenol in a mass ratio of 45 : 55, and both parts were important for the antiobesity function of PSE. Our results suggested that PSE can be developed as functional medical food to treat metabolic disorders and obesity. Topics: Adiponectin; Adipose Tissue; Animals; Anti-Obesity Agents; Arachis; Body Weight; China; Diet, High-Fat; Disease Models, Animal; Humans; Leptin; Mice; Mice, Inbred ICR; Neuropeptide Y; Obesity; Plant Extracts; Receptors, Leptin; Signal Transduction | 2019 |
Norepinephrine turnover in the left ventricle of subtotally nephrectomized rats.
Increased activity of the sympathetic nervous system (SNS) has been proposed as a risk factor for increased cardiovascular mortality in patients with chronic kidney disease (CKD). Information on the activity of cardiac sympathetic innervation is non-homogeneous and incomplete. The aim of our study was to evaluate the tonic effect of SNS on heart rate, norepinephrine turnover and direct and indirect effects of norepinephrine in left ventricles of subtotally nephrectomized rats (SNX) in comparison with sham-operated animals (SHAM). Renal failure was verified by measuring serum creatinine and urea levels. SNX rats developed increased heart rates and blood pressure (BP). The increase in heart rate was not caused by sympathetic overactivity as the negative chronotropic effect of metipranolol did not differ between the SNX and SHAM animals. The positive inotropic effects of norepinephrine and tyramine on papillary muscle were not significantly different. Norepinephrine turnover was measured after the administration of tyrosine hydroxylase inhibitor, pargyline, tyramine, desipramine, and KCl induced depolarization. The absolute amount of released norepinephrine was comparable in both groups despite a significantly decreased norepinephrine concentration in the cardiac tissue of the SNX rats. We conclude that CKD associated with renal denervation in rats led to adaptive changes characterized by an increased reuptake and intracellular norepinephrine turnover which maintained normal reactivity of the heart to sympathetic stimulation. Topics: Animals; Calcitonin Gene-Related Peptide; Cardiovascular Diseases; Disease Models, Animal; Heart Rate; Heart Ventricles; Kidney; Male; Nephrectomy; Neuropeptide Y; Norepinephrine; Rats, Wistar; Renal Insufficiency, Chronic; Sympathetic Nervous System | 2019 |
Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development.
Overnutrition due to a high-fat diet (HFD) can increase the vulnerability of the metabolic system to maladjustments. Estradiol has an inhibitory role on food intake and this hormone has demonstrated to be a crucial organizer during brain development.. Our aim was to determine whether increased levels of estradiol in the early postnatal period modulate the alterations in metabolism and brain metabolic circuits produced by overnutrition.. Twenty-four male and 24 female Wistar rats were submitted to a HFD (34.9% fat) or a control diet (5% fat) from gestational day 6. From postnatal (P) 6 to P13, both control and HFD groups were administered a s.c. injection of vehicle or estradiol benzoate (0.4 mg/kg), resulting in eight experimental groups (n = 6 in each group). Body weight, food intake and subcutaneous, visceral, and brown fat pads were measured. Agouti-related peptide, neuropeptide Y, orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay and plasma estradiol levels were measured by ELISA.. Males fed a HFD showed an increase in body weight and the amount of visceral and subcutaneous fat, which was coincident with an increase in the number of kilocalories ingested. Neonatal estradiol treatment restored the body weight and subcutaneous fat of HFD males to control levels. Hypothalamic POMC mRNA levels in HFD females were increased with respect to control females. This increase was reverted with estradiol treatment during development.. HFD and estradiol treatment have different effects on males and females. Overnutrition affects physiological parameters, such as body weight, visceral, and subcutaneous fat content, in males, while females present alterations in hypothalamic POMC mRNA levels. Hence, the increase in estradiol levels during a period that is critical for the programing of the feeding system can modulate some of the alterations produced by the continuous intake of high-fat content food. Topics: Adiposity; Animals; Body Weight; Diet; Diet, High-Fat; Disease Models, Animal; Estradiol; Female; Hypothalamus; Male; Neuropeptide Y; Orexins; Overnutrition; Pro-Opiomelanocortin; Rats; Rats, Wistar; Sex Factors | 2019 |
Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry.
Microglia are highly sensitive to dietary influence, becoming activated acutely and long-term by high fat diet. However, their role in regulating satiety and feeding in healthy individuals remains unclear. Here we show that microglia are essential for the normal regulation of satiety and metabolism in rats. Short-term microglial depletion in a Cx3cr1-Dtr rat led to a dramatic weight loss that was largely accounted for by an acute reduction in food intake. This weight loss and anorexia were not likely due to a sickness response since the rats did not display peripheral or central inflammation, withdrawal, anxiety-like behavior, or nausea-associated pica. Hormonal and hypothalamic anatomical changes were largely compensatory to the suppressed food intake, which occurred in association with disruption of the gustatory circuitry at the paraventricular nucleus of the thalamus. Thus, microglia are important in supporting normal feeding behaviors and weight, and regulating preference for palatable food. Inhibiting this circuitry is able to over-ride strong compensatory drives to eat, providing a potential target for satiety control. Topics: Animals; Anorexia; Appetite; Body Weight; Brain; Diet; Disease Models, Animal; Eating; Energy Metabolism; Feeding Behavior; Ghrelin; Hypothalamus; Male; Microglia; Midline Thalamic Nuclei; Neuropeptide Y; Rats; Rats, Wistar; Satiety Response; Weight Loss | 2019 |
Essential Role of Histone Methyltransferase G9a in Rapid Tolerance to the Anxiolytic Effects of Ethanol.
Tolerance to ethanol-induced anxiolysis promotes alcohol intake, thus contributing to alcohol use disorder development. Recent studies implicate histone deacetylase-mediated histone H3K9 deacetylation in regulating neuropeptide Y expression during rapid ethanol tolerance to the anxiolytic effects of ethanol. Furthermore, the histone methyltransferase, G9a, and G9a-mediated H3K9 dimethylation (H3K9me2) have recently emerged as regulators of addiction and anxiety; however, their role in rapid ethanol tolerance is unknown. Therefore, we investigated the role of G9a-mediated H3K9me2 in neuropeptide Y expression during rapid ethanol tolerance.. Adult male rats were administered one injection of n-saline followed by single acute ethanol injection (1 g/kg) 24 hours later (ethanol group) or 2 injections (24 hours apart) of either n-saline (saline group) or ethanol (tolerance group). Anxiety-like behaviors and global and Npy-specific G9a and H3K9me2 levels in the amygdala were measured. Effects of G9a inhibitor (UNC0642) treatment on behavioral and epigenetic measures were also examined.. Acute ethanol produced anxiolysis and decreased global H3K9me2 and G9a protein levels in the central and medial nucleus of the amygdala as well as decreased occupancy levels of H3K9me2 and G9a near a putative binding site for cAMP-response element binding protein on the Npy gene. Two identical doses of ethanol produced no behavioral or epigenetic changes relative to controls, indicating development of rapid ethanol tolerance. Interestingly, treatment with UNC0642, before the second ethanol dose reversed rapid ethanol tolerance, decreased global H3K9me2 and increased neuropeptide Y levels in the central and medial nucleus of the amygdala.. These results implicate amygdaloid G9a-mediated H3K9me2 mechanisms in regulating rapid tolerance to the anxiolytic effects of ethanol via neuropeptide Y expression regulation. Topics: Amygdala; Animals; Anti-Anxiety Agents; Anxiety; Behavior, Animal; Disease Models, Animal; Drug Tolerance; Epigenesis, Genetic; Ethanol; Gene Expression Regulation; Histone-Lysine N-Methyltransferase; Male; Neuropeptide Y; Quinazolines; Rats; Rats, Sprague-Dawley | 2019 |
Medial prefrontal cortex neuropeptide Y modulates binge-like ethanol consumption in C57BL/6J mice.
Neuropeptide Y (NPY) signaling via limbic NPY1 and 2 receptors (NPY1R and NPY2R, respectively) is known to modulate binge-like ethanol consumption in rodents. However, the role of NPY signaling in the medial prefrontal cortex (mPFC), which provides top-down modulation of the limbic system, is unknown. Here, we used "drinking-in-the-dark" (DID) procedures in C57BL/6J mice to address this gap in the literature. First, the impact of DID on NPY immunoreactivity (IR) was assessed in the mPFC. Next, the role of NPY1R and NPY2R signaling in the mPFC on ethanol consumption was evaluated through site-directed pharmacology. Chemogenetic inhibition of NPY1R+ neurons in the mPFC was performed to further evaluate the role of this population. To determine the potential role of NPY1R+ neurons projecting from the mPFC to the basolateral amygdala (BLA) this efferent population was selectively silenced. Three, 4-day cycles of DID reduced NPY IR in the mPFC. Intra-mPFC activation of NPY1R and antagonism of NPY2R resulted in decreased binge-like ethanol intake. Silencing of mPFC NPY1R+ neurons overall, and specifically NPY1R+ neurons projecting to the BLA, significantly reduced binge-like ethanol intake. We provide novel evidence that (1) binge-like ethanol intake reduces NPY levels in the mPFC; (2) activation of NPY1R or blockade of NPY2R reduces binge-like ethanol intake; and (3) chemogenetic inhibition of NPY1R+ neurons in the mPFC and NPY1R+ mPFC neurons projecting to the BLA blunts binge-like drinking. These observations provide the first direct evidence that NPY signaling in the mPFC modulates binge-like ethanol consumption. Topics: Animals; Basolateral Nuclear Complex; Binge Drinking; Disease Models, Animal; Female; Male; Mice; Mice, Inbred C57BL; Neural Pathways; Neuropeptide Y; Prefrontal Cortex; Receptors, Neuropeptide Y | 2019 |
Inflammatory process in Parkinson disease: neuroprotection by neuropeptide Y.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the nigro-striatal pathway. Interestingly, it has already been shown that an intracerebral administration of neuropeptide Y (NPY) decreases the neurodegeneration induced by 6-hydroxydopamine (6-OHDA) in rodents and prevents loss of dopamine (DA) and DA transporter density. The etiology of idiopathic PD now suggest that chronic production of inflammatory mediators by activated microglial cells mediates the majority of DA-neuronal tissue destruction. In an animal experimental model of PD, the present study shows that NPY inhibited the activation of microglia evaluated by the binding of the translocator protein (TSPO) ligand [3H]PK11195 in striatum and substantia nigra of 6-OHDA rats. These results suggest a potential role for inflammation in the pathophysiology of the disease and a potential treatment by NPY in PD. Topics: Animals; Corpus Striatum; Disease Models, Animal; Dopamine; Dopamine Plasma Membrane Transport Proteins; Dopaminergic Neurons; Inflammation; Male; Microglia; Nerve Degeneration; Neuropeptide Y; Neuroprotection; Oxidopamine; Parkinson Disease; Rats; Rats, Wistar; Substantia Nigra | 2019 |
Relations of neuropeptide Y and heme oxygenase-1 expressions with fetal brain injury in rats with intrahepatic cholestasis of pregnancy.
To investigate the relations of neuropeptide Y (NPY) and heme oxygenase-1 (HO-1) expressions with fetal brain injury in rats with intrahepatic cholestasis of pregnancy (ICP).. Sixty rats pregnant for 15 days were randomly divided into experimental and control groups. The ICP model was established in experimental group. On the 21st day, the blood biochemical test, histopathological examination of pregnant rat liver and fetal brain tissues and immunohistochemical analysis of fetal rat brain tissues were performed.. On the 21st day, the alanineaminotransferase, aspartate aminotransferase and total bile acid levels in experimental group were significantly higher than control group (P<0.01). Compared with control group, there was obvious vacuolar degeneration in pregnant rat liver tissue and fetal brain tissue in experimental group. NPY expression in fetal brain tissue was negative in control group and positive in experimental group. HO-1 expression in fetal brain tissue was strongly positive in control group and positive in experimental group. There was significant difference of immunohistochemical staining optical density between two groups (P<0.01).. In fetal brain of ICP rats, the NPY expression is increased, and the HO-1 expression is decreased, which may be related to the fetal brain injury. Topics: Animals; Brain Injuries; Cholestasis, Intrahepatic; Disease Models, Animal; Female; Heme Oxygenase-1; Immunohistochemistry; Neuropeptide Y; Pregnancy; Pregnancy Complications; Rats; Rats, Sprague-Dawley | 2019 |
Cardiovascular responses to intranasal neuropeptide Y in single prolonged stress rodent model of post-traumatic stress disorder.
Delivery of neuropeptide Y (NPY) to the brain by intranasal administration shows promise as non-invasive means for preventing or treating PTSD symptoms. Here, radiotelemetry and echocardiography were used to determine effects of intranasal NPY on cardiovascular functions in absence and presence of stress. Male adult Sprague Dawley rats were implanted with radiotelemetric probes, and subjected to single prolonged stress (SPS), followed by intranasal vehicle (V) or NPY (150μg) under conditions shown to prevent development of many of the behavioral neuroendocrine and biochemical impairments. In both groups, mean arterial pressure (MAP) rose rapidly peaking at about 125mmHg, remaining near maximal levels for 1h. SPS also elicited robust rise in heart rate (HR) which was mitigated by intranasal NPY, and significantly lower than V-treated rats 12-50min after exposure to SPS stressors. In the first hr. after SPS, locomotor activity was elevated but only in the V-treated group. By 3h, MAP returned to pre-stress levels in both groups with no further change when monitored for 6days. HR remained elevated during the 6h remaining light phase after SPS. Subsequently HR was at pre-SPS levels during the remaining days. However dark phase HR was low following SPS, gradually recovered over 6days and was associated with reduced activity. When administered in the absence of further stress, intranasal NPY or V elicited similar much smaller, short-lived rises in MAP and HR. Echocardiography revealed no change in HR, stroke volume (SV) or cardiac output (Q) with intranasal NPY in the absence of stress. SPS led to reduced SV and Q but was not affected by NPY. Overall the results demonstrate no major cardiovascular effects of intranasal NPY and indicate possible benefit from transient amelioration of HR response in line with its translational potential to combat PTSD and comorbid impairments. Topics: Administration, Intranasal; Animals; Brain; Disease Models, Animal; Heart Rate; Hypothalamo-Hypophyseal System; Male; Maze Learning; Neuropeptide Y; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Stress, Psychological | 2018 |
Gene therapy mediated seizure suppression in Genetic Generalised Epilepsy: Neuropeptide Y overexpression in a rat model.
Neuropeptide Y (NPY) is an important 36 amino acid peptide that is abundantly expressed in the mammalian CNS and is known to be an endogenous modulator of seizure activity, including in rat models of Genetic Generalised Epilepsy (GGE) with absence seizures. Studies have shown that viral-mediated "gene therapy" with overexpression of NPY in the hippocampus can suppress seizures in acquired epilepsy animal models. This study investigated whether NPY gene delivery to the thalamus or somatosensory cortex, using recombinant adeno-associated viral vector (rAAV), could produce sustained seizure suppression in the GAERS model of GGE with absence seizures. Three cohorts of GAERS were injected bilaterally into the thalamus (short term n = 14 and long term n = 8) or the somatosensory cortex (n = 26) with rAAV-NPY or rAAV-empty. EEG recordings were acquired weekly post-treatment and seizure expression was quantified. Anxiety levels were tested using elevated plus maze and open field test. NPY and NPY receptor mRNA and protein expression were evaluated using quantitative PCR, immunohistochemistry and immunofluorescence. Viral overexpression of human NPY in the thalamus and somatosensory cortex in GAERS significantly reduced the time spent in seizure activity and number of seizures, whereas seizure duration was only reduced after thalamic NPY overexpression. Human and rat NPY and rat Y2 receptor mRNA expression was significantly increased in the somatosensory cortex. NPY overexpression in the thalamus was observed in rAAV-NPY treated rats compared to controls in the long term cohort. No effect was observed on anxiety behaviour. We conclude that virally-mediated human NPY overexpression in the thalamus or somatosensory cortex produces sustained anti-epileptic effects in GAERS. NPY gene therapy may represent a novel approach for the treatment of patients with genetic generalised epilepsies. Topics: Animals; Disease Models, Animal; Epilepsy, Generalized; Gene Expression; Genetic Therapy; Male; Neuropeptide Y; Rats; Rats, Transgenic; Seizures | 2018 |
Alterations of in vivo CA1 network activity in Dp(16)1Yey Down syndrome model mice.
Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on Topics: Action Potentials; Animals; CA1 Region, Hippocampal; Disease Models, Animal; Down Syndrome; Memory; Mice; Neuropeptide Y | 2018 |
Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland.
Background Melatonin, an important neurohormone released from the pineal gland, is generally accepted to exercise an inhibitor effect on the thyroid gland. Zinc mediates the effects of many hormones and is found in the structure of numerous hormone receptors. Aim The present study aims to examine the effect of melatonin supplementation and pinealectomy on leptin, neuropeptide Y (NPY), melatonin and zinc levels in rats with hypothyroidism and hyperthyroidism. Methods This study was performed on the 70 male rats. Experimental animals in the study were grouped as follows: control (C); hypothyroidism (PTU); hypothyroidism + melatonin (PTU + M); hypothyroidism + pinealectomy (PTU + Pnx); hyperthyroidism (H); hyperthyroidism + melatonin (H + M) and hyperthyroidism + pinealectomy (H + Pnx). Blood samples collected at the end of 4-week procedures were analyzed to determine melatonin, leptin, NPY and zinc levels. Results It was found that thyroid parameters thyroid stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), total T3 (TT3) and total T4 (TT4) decreased in hypothyroidism groups and increased in the groups with hyperthyroidism. The changes in these hormones remained unaffected by melatonin supplementation and pinealectomy. Melatonin levels rose in hyperthyroidism and fell in hypothyroidism. Leptin and NPY levels increased in both hypothyroidism and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and pinealectomy, but increased in hyperthyroidism. Conclusion The results of the study demonstrate that hypothyroidism and hyperthyroidism affect leptin, NPY, melatonin and zinc values in different ways in rats. However, melatonin supplementation and pinealectomy do not have any significant influence on the changes occurring in leptin, NPY and zinc levels in thyroid dysfunction. Topics: Animals; Biomarkers; Dietary Supplements; Disease Models, Animal; Hyperthyroidism; Hypothyroidism; Leptin; Male; Melatonin; Neuropeptide Y; Pineal Gland; Rats; Thyroid Function Tests; Zinc | 2018 |
Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism.
To determine whether age and neuropeptide Y (NPY) were involved in the skeletal response to extended periods of diet-induced obesity.. Male wild-type (WT) and NPY null (NPYKO) mice were fed a mild (23% fat) high-fat diet for 10 weeks from 6 or 16 weeks of age. Metabolism and bone density were assessed during feeding. Skeletal changes were assessed by microCT and histomorphometry.. High-fat feeding in 6-week-old WT mice led to significantly increased body weight, adiposity and serum leptin levels, accompanied with markedly suppressed cortical bone accrual. NPYKO mice were less susceptible to fat accrual but, importantly, displayed a complete lack of suppression of bone accrual or cortical bone loss. In contrast, when skeletally mature (16 week old) mice underwent 10 weeks of fat feeding, the metabolic response to HFD was similar to younger mice, however bone mass was not affected in either WT or NPYKO. Thus, growing mice are particularly susceptible to the detrimental effects of HFD on bone mass, through suppression of bone accrual involving NPY signalling.. This study provides new insights into the relationship between the opposing processes of a positive weight/bone relationship and the negative 'metabolic' effect of obesity on bone mass. This negative effect is particularly active in growing skeletons, which have heightened sensitivity to changes in obesity. In addition, NPY is identified as a fundamental driver of this negative 'metabolic' pathway to bone. Topics: Animals; Bone Density; Bone Remodeling; Cortical Bone; Diet, High-Fat; Disease Models, Animal; Mice; Mice, Inbred Strains; Neuropeptide Y; Obesity; Weight Gain | 2018 |
An estradiol-independent BDNF-NPY cascade is involved in the antidepressant effect of mechanical acupuncture instruments in ovariectomized rats.
Menopause-related depression devastates women's quality of life after middle age. Previous research has shown that estrogen hormone therapy has serious adverse effects; thus, complementary and integrative therapies have been considered clinically. The present study investigates whether stimulation of an acupoint using a mechanical acupuncture instrument (MAI) can mitigate depression-like behavior caused by estrogen deficiency in ovariectomized (OVX) rats. The animals were divided into Sham OVX, OVX, OVX + Sameumgyo (SP6) and OVX + NonAcu (non-acupuncture point) groups. MAI stimulation significantly increased the total distance traveled in the open-field test and the number of open-arm entries in the elevated plus maze and decreased the duration of immobility in the forced swim test. In addition to this decrease in depression-like behavior, brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY) release increased in the hippocampus in response to MAI treatment, but estradiol levels did not recover. Furthermore, microinjection of the BDNF receptor antagonist ANA-12 (0.1 pmol/1 μl) into the hippocampus before MAI stimulation significantly suppressed the recovery of NPY levels. Taken together, these findings indicate that MAI stimulation at SP6 facilitates an estradiol-independent BDNF-NPY cascade, which may contribute to its antidepressant effects in OVX rats, an animal model of menopausal disorders. Topics: Acupuncture Points; Animals; Brain-Derived Neurotrophic Factor; Depression; Disease Models, Animal; Estradiol; Female; Hippocampus; Humans; Menopause; Neuropeptide Y; Ovariectomy; Rats; Treatment Outcome | 2018 |
An insurmountable NPY Y5 receptor antagonist exhibits superior anti-obesity effects in high-fat diet-induced obese mice.
Neuropeptide Y (NPY) Y5 receptor plays a key role in the effects of NPY, an important neurotransmitter in the control of energy homeostasis including stimulation of food intake and inhibition of energy expenditure. The NPY-Y5 receptor system has been an attractive drug target for potential use in treating obesity. Here we report the discovery and characterization of two novel Y5 receptor antagonists, S-2367 and S-234462. Both compounds displayed high affinity for the Y5 receptor in the radio-ligand binding assay, while in the cell-based functional assay, S-2367 and S-234462 showed, respectively, surmountable and insurmountable antagonism. In cell-based washout experiments, S-234462 dissociated from the Y5 receptor more slowly than S-2367. In vivo study showed that S-234462 effectively suppressed food intake induced by acute central injection of a selective Y5 receptor agonist. Furthermore, high-fat diet-induced obese (DIO) mice treated with S-234462 for 5 weeks showed a significant decrease in body weight gain and food intake compared to those treated with S-2367. In conclusion, S-234462 exhibits insurmountable antagonism of NPY Y5 receptor in vitro and superior anti-obesity effects to the surmountable NPY Y5 antagonist S-2367 in DIO mice. Topics: Animals; Diet, High-Fat; Disease Models, Animal; Eating; Energy Metabolism; Injections, Intraventricular; Male; Mice, Inbred C57BL; Mice, Obese; Neuropeptide Y; Obesity; Receptors, Neuropeptide Y | 2018 |
Neuropeptide Y affects thalamic reticular nucleus neuronal firing and network synchronization associated with suppression of spike-wave discharges.
Neuropeptide Y (NPY) potently suppresses spike-wave discharges (SWDs) in a genetic rat model of absence epilepsy (GAERS), but the underlying neurophysiologic mechanisms are not clear. We therefore sought to determine the in vivo effects of NPY on neuronal firing in the cortico-thalamo-cortical network activity, known to play a critical role in the generation of SWDs in these rats.. NPY was administered intracerebroventricularly (ICV) or in separate experiments locally on the neurons of caudal thalamic reticular nucleus (NRT) by use of juxtacellular iontophoresis in triple-barrel electrodes in male GAERS aged 12-15 weeks, in vivo under neuroleptic anesthesia. Drug infusions and electroencephalography (EEG) monitoring were performed simultaneously with juxtacellular single neuronal recordings. Effect of NPY on electrically induced SWD induction threshold were also measured.. NPY administration ICV led to a decrease in the total length of SWDs in EEG recordings. Both ICV administration and iontophoresis of NPY on NRT neurons led to an increase in interictal neuronal firing of NRT neurons. During ictal periods, ICV NPY administration reduced the number of thalamic action potentials per SWDs, as well as reduced waveform correlations between field potentials within the NRT and the cortical EEG. NPY administration ICV did not significantly alter the firing patterns of relay thalamic neurons interictally and cortical neurons during ictal and interictal periods. In addition, SWD induction threshold in the S2 region of the cortex was significantly increased after NPY administration.. Our results show alterations in cortico-thalamo-cortical local and network properties following ICV administration of NPY, suggesting mechanisms of SWD suppression in GAERS. Cellular and network alteration of NRT activity, resulting from a direct action of NPY, may be a contributor to this effect. Topics: Animals; Cerebral Cortex; Disease Models, Animal; Electrodes, Implanted; Electroencephalography; Epilepsy, Absence; Evoked Potentials; Intralaminar Thalamic Nuclei; Male; Nerve Net; Neurons; Neuropeptide Y; Rats; Thalamic Nuclei | 2018 |
Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish.
Overweight and obesity are important risk factors for diabetes, cardiovascular diseases, and premature death in modern society. Recently, numerous natural and synthetic compounds have been tested in diet-induced obese animal models, to counteract obesity. Melatonin is a circadian hormone, produced by pineal gland and extra-pineal sources, involved in processes which have in common a rhythmic expression. In teleost, it can control energy balance by activating or inhibiting appetite-related peptides. The study aims at testing effects of melatonin administration to control-fed and overfed zebrafish, in terms of expression levels of orexigenic (Ghrelin, orexin, NPY) and anorexigenic (leptin, POMC) genes expression and morphometry of visceral and subcutaneous fat depots.. Adult male zebrafish (n = 56) were divided into four dietary groups: control, overfed, control + melatonin, overfed + melatonin. The treatment lasted 5 weeks and BMI levels of every fish were measured each week. After this period fishes were sacrificed; morphological and morphometric studies have been carried out on histological sections of adipose tissue and adipocytes. Moreover, whole zebrafish brain and intestine were used for qRT-PCR.. Our results demonstrate that melatonin supplementation may have an effect in mobilizing fat stores, in increasing basal metabolism and thus in preventing further excess fat accumulation. Melatonin stimulates the anorexigenic and inhibit the orexigenic signals.. It seems that adequate melatonin treatment exerts anti-obesity protective effects, also in a diet-induced obesity zebrafish model, that might be the result of the restoration of many factors: the final endpoint reached is weight loss and stabilization of weight gain. Topics: Adipocytes; Adipose Tissue; Animals; Appetite; Body Mass Index; Brain Chemistry; Cell Count; Cell Size; Diet; Disease Models, Animal; Gene Expression; Male; Melatonin; Neuropeptide Y; Obesity; Orexins; Pro-Opiomelanocortin; RNA, Messenger; Zebrafish | 2018 |
Resistance to retinopathy development in obese, diabetic and hypertensive ZSF1 rats: an exciting model to identify protective genes.
Diabetic retinopathy (DR) is one of the major complications of diabetes, which eventually leads to blindness. Up to date, no animal model has yet shown all the co-morbidities often observed in DR patients. Here, we investigated whether obese 42 weeks old ZSF1 rat, which spontaneously develops diabetes, hypertension and obesity, would be a suitable model to study DR. Although arteriolar tortuosity increased in retinas from obese as compared to lean (hypertensive only) ZSF1 rats, vascular density pericyte coverage, microglia number, vascular morphology and retinal thickness were not affected by diabetes. These results show that, despite high glucose levels, obese ZSF1 rats did not develop DR. Such observations prompted us to investigate whether the expression of genes, possibly able to contain DR development, was affected. Accordingly, mRNA sequencing analysis showed that genes (i.e. Npy and crystallins), known to have a protective role, were upregulated in retinas from obese ZSF1 rats. Lack of retina damage, despite obesity, hypertension and diabetes, makes the 42 weeks of age ZSF1 rats a suitable animal model to identify genes with a protective function in DR. Further characterisation of the identified genes and downstream pathways could provide more therapeutic targets for the treat DR. Topics: Animals; Blood Glucose; Crystallins; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Diabetic Retinopathy; Disease Models, Animal; Gene Expression Profiling; Hypertension; Male; Metabolic Syndrome; Neuropeptide Y; Obesity; Rats; Retina | 2018 |
iTRAQ-based proteomics suggests LRP6, NPY and NPY2R perturbation in the hippocampus involved in CSDS may induce resilience and susceptibility.
Although decades of research have revealed numerous molecular abnormalities in the hippocampus associated with depression, the different mechanisms involved in the susceptibility and resilience of mice to chronic social defeat stress (CSDS)-induced depression remain poorly understand. Through the social defeat model, we can study the differences in molecular changes between the susceptible and resilient mice.. We used a proteomic-based platform to compare hippocampal proteins in CSDS mice with those in control mice. Differentially expressed proteins were identified through isobaric tags for relative and absolute quantitation (iTRAQ) combined with LC-MS/MS. We then analyzed the results by ingenuity pathway analysis (IPA) and verified five proteins by western blotting.. Mice were exposed to 10 days of CSDS, which successfully induced stress-susceptible and -resilient phenotypes. 161 and 134 proteins were significantly differentially expressed in the susceptible and resilient groups, respectively, compared with the levels in the control group. The Rac signaling and the GABA receptors signaling pathways were the common top-ranking pathways. We found that low-density lipoprotein receptor-related protein 6 (LRP6) was upregulated in resilient mice and neuropeptide Y (NPY) was downregulated in susceptible mice compared with the levels in control mice. Moreover, neuropeptide Y receptor type 2 (NPY2R) protein expression in susceptible mice was downregulated compared with that in the resilient group.. Our findings in the three groups potentially reveal the differences in molecular mechanisms underlying depression between susceptible and resilient mice. The results provide insight into molecular abnormalities of the hippocampus in CSDS mice and some potential drug targets for treating depression. Topics: Animals; Depressive Disorder; Disease Models, Animal; Disease Susceptibility; Hippocampus; Isotope Labeling; Low Density Lipoprotein Receptor-Related Protein-6; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; Proteomics; Receptors, Neuropeptide Y; Social Behavior; Stress, Psychological | 2018 |
The neuropathological investigation of the brain in a monkey model of autism spectrum disorder with ABCA13 deletion.
The precise biological etiology of autism spectrum disorder (ASD) remains unknown. In this study, we investigated the neuropathology of a monkey model of autism Human ABCA13 is the largest ABC transporter protein, with a length of 5058 amino acids and a predicted molecular weight of >450 kDa. However, the function of this protein remains to be elucidated. This protein is thought to be associated with major psychiatric disease. Using this monkey model of autism with an ABCA13 deletion and a mutation of 5HT2c, we neuropathologically investigated the changes in the neuronal formation in the frontal cortex. As a result, the neuronal formation in the cortex was found to be disorganized with regard to the neuronal size and laminal distribution in the ABCA13 deletion monkey. The catecholaminergic and GABAergic neuronal systems, serotoninergic neuronal formation (5HT2c) were also found to be impaired by an immunohistochemical evaluation. This study suggested that ABCA13 deficit induces the impairment of neuronal maturation or migration, and the function of the neuronal network. This protein might thus play a role in the neurodevelopmental function of the central nervous system and the dysfunction of this protein may be a pathophysiological cause of mental disorders including autism. Topics: Animals; ATP-Binding Cassette Transporters; Autism Spectrum Disorder; Brain; Disease Models, Animal; Haplorhini; Nerve Tissue Proteins; Neural Pathways; Neurons; Neuropeptide Y; Neurotransmitter Agents; Rats; Sequence Deletion | 2018 |
Neuropeptide Y treatment induces retinal vasoconstriction and causes functional and histological retinal damage in a porcine ischaemia model.
To investigate the effects of intravitreal neuropeptide Y (NPY) treatment following acute retinal ischaemia in an in vivo porcine model. In addition, we evaluated the vasoconstrictive potential of NPY on porcine retinal arteries ex vivo.. Twelve pigs underwent induced retinal ischaemia by elevated intraocular pressure clamping the ocular perfusion pressure at 5 mmHg for 2 hr followed by intravitreal injection of NPY or vehicle. After 4 weeks, retinas were evaluated functionally by standard and global-flash multifocal electroretinogram (mfERG) and histologically by thickness of retinal layers and number of ganglion cells. Additionally, the vasoconstrictive effects of NPY and its involved receptors were tested using wire myographs and NPY receptor antagonists on porcine retinal arteries.. Intravitreal injection of NPY after induced ischaemia caused a significant reduction in the mean induced component (IC) amplitude ratio (treated/normal eye) compared to vehicle-treated eyes. This reduction was accompanied by histological damage, where NPY treatment reduced the mean thickness of inner retinal layers and number of ganglion cells. In retinal arteries, NPY-induced vasoconstriction to a plateau of approximately 65% of potassium-induced constriction. This effect appeared to be mediated via Y1 and Y2, but not Y5.. In seeming contrast to previous in vitro studies, intravitreal NPY treatment caused functional and histological damage compared to vehicle after a retinal ischaemic insult. Furthermore, we showed for the first time that NPY induces Y1- and Y2- but not Y5-mediated vasoconstriction in retinal arteries. This constriction could explain the worsening in vivo effect induced by NPY treatment following an ischaemic insult and suggests that future studies on exploring the neuroprotective effects of NPY might focus on other receptors than Y1 and Y2. Topics: Acute Disease; Animals; Disease Models, Animal; Electroretinography; Female; Intravitreal Injections; Ischemia; Neuropeptide Y; Retinal Diseases; Retinal Ganglion Cells; Retinal Vessels; Swine; Vasoconstriction | 2018 |
The central mechanism of risperidone-induced hyperprolactinemia.
Risperidone is known to increase prolactin secretion in treating mental illness patients. This side-effect is thought to be mediated via central signaling pathway. However, the exact pathway involved between risperidone and hyperprolactinemia are still unknown. Therefore, we have treated mice with risperidone and investigated the central mechanisms. The present study showed that in risperidone treated group, the level of the serum prolactin significantly increased, which was consistent with increased positive prolactin staining in pituitary gland. Elevated c-fos expression was observed in the arcuate hypothalamic nucleus (Arc) where we found 65% c-fos positive neurons co-localised with neuropeptide Y (NPY) in mice treated with risperidone. In addition, the results from in situ hybridization showed that the NPY mRNA in the Arc was significantly increased, whereas the tyrosine hydroxylase (TH) mRNA dramatically decreased compared with control group in the paraventricular hypothalamic nucleus (PVN). These findings revealed that risperidone may mediate the transcriptional regulation of Arc NPY and TH in the PVN. Furthermore, risperidone induced a decreased dopamine synthesis in the PVN and thus reduced the dopamine-induced inhibition of prolactin release, ultimately lead to hyperprolactinemia. Therefore, insights into these neuronal mechanisms open up potential new ways to treat schizophrenia patients in order to ameliorate hyperprolactinemia. Topics: Animals; Antipsychotic Agents; Arcuate Nucleus of Hypothalamus; Disease Models, Animal; Female; Hyperprolactinemia; Male; Mice, Inbred C57BL; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Risperidone; Tyrosine 3-Monooxygenase | 2017 |
Spinal activation of the NPY Y1 receptor reduces mechanical and cold allodynia in rats with chronic constriction injury.
Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However, their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study, we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist Leu Topics: Analysis of Variance; Animals; Chronic Pain; Cold Temperature; Constriction, Pathologic; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Injections, Spinal; Male; Neuralgia; Neuropeptide Y; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Sciatic Nerve; Sciatic Neuropathy; Spinal Cord | 2017 |
Neuropeptide Y suppresses epileptiform discharges by regulating AMPA receptor GluR2 subunit in rat hippocampal neurons.
The present study aimed to investigate the effects of neuropeptide Y (NPY) on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor glutamate receptor 2 (GluR2) subunit in epileptiform discharge hippocampal neurons. Hippocampal neurons were harvested from neonatal Sprague‑Dawley rats aged <24 h and primarily cultured in vitro. At day 12 following culture, hippocampal neurons were divided into the following groups: Control, Mg2+‑free, NPY+Mg2+‑free and BIBP3226+NPY+Mg2+‑free. The action potential of neurons was measured using the whole cell patch clamp technique in the control, Mg2+‑free and NPY+Mg2+‑free groups. AMPA current (IAMPA) was detected and peak current density was calculated in each group. Alterations in total protein and phosphorylation of the GluR2 subunit were detected by western blot analysis, and GluR2 mRNA expression levels were detected by reverse transcription‑quantitative polymerase chain reaction, in each group. The whole cell patch clamp technique demonstrated an abnormal action potential in the Mg2+‑free group. The frequency and amplitude of the action potential were significantly greater in the Mg2+‑free group compared with the control group, and significantly reduced in the NPY+Mg2+‑free group compared with the Mg2+‑free group (P<0.05). In the Mg2+‑free group, compared with the control group, peak current density was significantly reduced (P<0.05), GluR2 subunit protein content was slightly reduced (P>0.05), phosphorylation levels of GluR2 subunit were significantly greater (P<0.05) and GluR2 mRNA was significantly reduced (P<0.05). In the NPY+Mg2+‑free group, compared with the Mg2+‑free group, peak current density was significantly greater (P<0.05), phosphorylation levels of GluR2 subunit were significantly reduced (P<0.05) and GluR2 mRNA expression was significantly greater (P<0.05). In the BIBP3226+NPY+Mg2+‑free group, compared with the NPY+Mg2+‑free group, peak current density was significantly reduced (P<0.05), phosphorylation levels of GluR2 subunit were significantly greater (P<0.05) and GluR2 mRNA expression was significantly reduced (P<0.05). After 3 h of treatment with Mg2+‑free extracellular fluid, epileptiform discharge was detected in the cells. NPY inhibited the discharge and its underlying mechanism may be that epileptiform discharge suppressed the function of the AMPA receptor GluR2 subunit. NPY relieved the inhibition of the GluR2 subunit via the Y1 receptor. This may provide a novel direction fo Topics: Action Potentials; Animals; Biomarkers; Cells, Cultured; Disease Models, Animal; Epilepsy; Fluorescent Antibody Technique; Gene Expression; Male; Neuropeptide Y; Patch-Clamp Techniques; Phosphorylation; Pyramidal Cells; Rats; Receptors, AMPA | 2017 |
Intraventricular administration of Tenebrio molitor larvae extract regulates food intake and body weight in mice with high-fat diet-induced obesity.
We recently reported the in vitro and in vivo antiobesity effects of Tenebrio molitor larvae, a traditional food in many countries, but it remains unknown how the larvae affect appetite regulation in mice with diet-induced obesity. We hypothesized that the extract of T molitor larvae mediates appetite by regulating neuropeptide expression. We investigated T molitor larvae extract's (TME's) effects on anorexigenesis and endoplasmic reticulum (ER) stress-induced orexigenic neuropeptide expression in the hypothalami of obese mice. Intracerebroventricular TME administration suppressed feeding by down-regulating the expression of the orexigenic neuropeptides neuropeptide Y and agouti-related protein. T molitor larvae extract significantly reduced the expression of ER stress response genes. These results suggest that TME and its bioactive components are potential therapeutics for obesity and ER stress-driven disease states. Topics: Agouti-Related Protein; Animals; Biological Products; Body Weight; Cell Line; Diet; Diet, High-Fat; Disease Models, Animal; Endoplasmic Reticulum Stress; Gene Expression Regulation; Ghrelin; Hypothalamus; Larva; Leptin; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Mitogen-Activated Protein Kinases; Neuropeptide Y; Obesity; Tenebrio; TOR Serine-Threonine Kinases | 2017 |
Loss of Female Sex Hormones Exacerbates Cerebrovascular and Cognitive Dysfunction in Aortic Banded Miniswine Through a Neuropeptide Y-Ca
Postmenopausal women represent the largest cohort of patients with heart failure with preserved ejection fraction, and vascular dementia represents the most common form of dementia in patients with heart failure with preserved ejection fraction. Therefore, we tested the hypotheses that the combination of cardiac pressure overload (aortic banding [AB]) and the loss of female sex hormones (ovariectomy [OVX]) impairs cerebrovascular control and spatial memory.. Female Yucatan miniswine were separated into 4 groups (n=7 per group): (1) control, (2) AB, (3) OVX, and (4) AB-OVX. Pigs underwent OVX and AB at 7 and 8 months of age, respectively. At 14 months, cerebral blood flow velocity and spatial memory (spatial hole-board task) were lower in the OVX groups (. Mechanistically, impaired cerebral blood flow control in experimental heart failure may be the result of heightened neuropeptide Y-induced vasoconstriction along with reduced vasodilation associated with decreased Ca Topics: Animals; Aorta; Arterial Pressure; Behavior, Animal; Cerebral Arteries; Cerebrovascular Circulation; Cerebrovascular Disorders; Cognition; Cognition Disorders; Disease Models, Animal; Female; Gonadal Steroid Hormones; Heart Failure; Ligation; Neuropeptide Y; Nitric Oxide; Ovariectomy; Pia Mater; Potassium Channels, Calcium-Activated; Signal Transduction; Spatial Memory; Swine; Swine, Miniature; Time Factors; Vasoconstriction; Vasodilation | 2017 |
The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-Α, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model.
The objective of this study is to examine the effects of the endogenous ligands leptin, ghrelin, and neuropeptide Y (NPY) on seizure generation, the oxidant/antioxidant balance, and cytokine levels, which are a result of immune response in a convulsive seizure model. With this goal, Wistar rats were divided into 5 groups-Group 1: Saline, Group 2: Saline+PTZ (65mg/kg), Group 3: leptin (4mg/kg)+PTZ, Group 4: ghrelin (80μg/kg)+PTZ, and Group 5: NPY (60μg/kg)+PTZ. All injections were delivered intraperitoneally, and simultaneous electroencephalography (EEG) records were obtained. Seizure activity was scored by observing seizure behavior, and the onset time, latency, and seizure duration were determined according to the EEG records. At the end of the experiments, blood samples were obtained in all groups to assess the serum TNF-α, IL-1β, IL-6, FGF-2, galanin, nitric oxide (NOֹ), malondialdehyde (MDA), and glutathione (GSH) levels. The electrophysiological and biochemical findings (p<0.05) of this study show that all three peptides have anticonvulsant effects in the pentylenetetrazol (PTZ)-induced generalized tonic-clonic convulsive seizure model. The reduction of the levels of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 caused by leptin, ghrelin, and NPY shows that these peptides may have anti-inflammatory effects in epileptic seizures. Also, leptin significantly increases the serum levels of the endogenous anticonvulsive agent galanin. The fact that each one of these endogenous peptides reduces the levels of MDA and increases the serum levels of GSH leads to the belief that they may have protective effects against oxidative damage that is thought to play a role in the pathogenesis of epilepsy. Our study contributes to the clarification of the role of these peptides in the brain in seizure-induced oxidative stress and immune system physiology and also presents new approaches to the etiology and treatment of tendency to epileptic seizures. Topics: Animals; Cytokines; Disease Models, Animal; Fibroblast Growth Factor 2; Galanin; Ghrelin; Interleukin-1beta; Interleukin-6; Leptin; Malondialdehyde; Neuropeptide Y; Oxidative Stress; Pentylenetetrazole; Rats; Rats, Wistar; Seizures; Tumor Necrosis Factor-alpha | 2017 |
Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats.
Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals. Topics: Animals; Calbindin 2; Calbindins; Cell Count; Cholecystokinin; Depression; Disease Models, Animal; Food Preferences; GABAergic Neurons; Gene Expression Regulation; Male; Neuropeptide Y; Parvalbumins; Prefrontal Cortex; Rats; Rats, Wistar; Somatostatin; Stress, Psychological; Sucrose | 2017 |
Medial Ganglionic Eminence Cells Freshly Obtained or Expanded as Neurospheres Show Distinct Cellular and Molecular Properties in Reducing Epileptic Seizures.
Medial ganglionic eminence (MGE) progenitors give rise to inhibitory interneurons and may serve as an alternative cell source for large-scale cell transplantation for epilepsy after in vitro expansion. We investigated whether modifications in the culture medium of MGE neurospheres affect neuronal differentiation and expression of MGE-specific genes. In vivo, we compared anticonvulsant effects and cell differentiation pattern among neurospheres grown in different culture media and compared them with freshly harvested MGE cells.. We used four variations of cell culture: standard, containing growth factors (EGF/FGF-2) (GF); addition of retinoic acid (GF-RA); withdrawal of EGF/FGF-2 (WD); and addition of retinoic acid and withdrawal of EGF/FGF-2 (WD-RA). Based on in vitro results neurosphere-grown (WD-RA or GF conditions) or fresh MGE cells were transplanted into the hippocampus.. In vitro WD-RA showed increased neuronal population and higher expression of Dlx1, Nkx2.1, and Lhx6 genes in comparison with GF culture condition. After transplantation, fresh MGE cells and neurospheres (GF) showed anticonvulsant effects. However, fresh MGE cells differentiated preferentially into inhibitory neurons, while GF gave rise to glial cells.. We conclude that freshly isolated and neurosphere-grown MGE cells reduced seizures by different mechanisms (inhibitory interneurons vs. astrocytes). Fresh MGE cells appear more appropriate for cell therapies targeting inhibitory interneurons for conferring anticonvulsant outcomes. Topics: Animals; Cell Differentiation; Cells, Cultured; Creatine; Disease Models, Animal; Embryo, Mammalian; Epidermal Growth Factor; Epilepsy; Fibroblast Growth Factor 2; Glial Fibrillary Acidic Protein; LIM-Homeodomain Proteins; Median Eminence; Muscarinic Agonists; Neurons; Neuropeptide Y; Parvalbumins; Phosphopyruvate Hydratase; Pilocarpine; Rats; Rats, Sprague-Dawley; Tretinoin | 2017 |
High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons.
Consumption of dietary fat is one of the key factors leading to obesity. High-fat diet (HFD)-induced obesity is characterized by induction of inflammation in the hypothalamus; however, the temporal regulation of proinflammatory markers and their impact on hypothalamic appetite-regulating neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons remains undefined.. Mice were injected with an acute lipid infusion for 24 h or fed a HFD over 8-20 weeks. Characterized mouse NPY/AgRP hypothalamic cell lines were used for in vitro experimentation. Immunohistochemistry in brain slices or quantitative real-time PCR in cell lines, was performed to determine changes in the expression of key inflammatory markers and neuropeptides.. Hypothalamic inflammation, indicated by tumor necrosis factor (TNF)-α expression and astrocytosis in the arcuate nucleus, was evident following acute lipid infusion. HFD for 8 weeks suppressed TNF-α, while significantly increasing heat-shock protein 70 and ciliary neurotrophic factor, both neuroprotective components. HFD for 20 weeks induced TNF-α expression in NPY/AgRP neurons, suggesting a detrimental temporal regulatory mechanism. Using NPY/AgRP hypothalamic cell lines, we found that palmitate provoked a mixed inflammatory response on a panel of inflammatory and endoplasmic reticulum (ER) stress genes, whereas TNF-α significantly upregulated IκBα, nuclear factor (NF)-κB and interleukin-6 mRNA levels. Palmitate and TNF-α exposure predominantly induced NPY mRNA levels. Utilizing an I kappa B kinase β (IKKβ) inhibitor, we demonstrated that these effects potentially occur via the inflammatory IKKβ/NF-κB pathway.. These findings indicate that acute lipid and chronic HFD feeding in vivo, as well as acute palmitate and TNF-α exposure in vitro, induce markers of inflammation or ER stress in the hypothalamic appetite-stimulating NPY/AgRP neurons over time, which may contribute to a dramatic alteration in NPY/AgRP content or expression. Acute and chronic HFD feeding in vivo temporally regulates arcuate TNF-α expression with reactive astrocytosis, which suggests a time-dependent neurotrophic or neurotoxic role of lipids. Topics: Animals; Appetite; Arcuate Nucleus of Hypothalamus; Diet, High-Fat; Disease Models, Animal; Gene Expression Regulation; Hypothalamus; Inflammation; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Neurons; Neuropeptide Y; Obesity; Palmitates; Tumor Necrosis Factor-alpha | 2017 |
Diabetes mellitus influences the expression of NPY and VEGF in neurons of rat trigeminal ganglion.
Diabetes mellitus (DM) influences the trigeminal nerve function by changing the pain response and transduction of the orofacial sensory pathways. It affects the inflammatory response via neuropeptide Y (NPY) and vascular endothelial growth factor (VEGF), which could potentially have a relevant role in the pathophysiology of diabetic neuropathy. The aim was to investigate expression of VEGF and NPY in subpopulations of trigeminal ganglion (TG) neurons in rat models of early DM1 and DM2.. DM1 model was induced by an intraperitoneal (i.p.) injection of streptozotocin (STZ) (55mg/kg). DM2 rats were fed with a high fat diet (HFD) for two weeks and then received 35mg/kg of STZ i.p. Two weeks and 2months after the STZ-diabetes induction, rats were sacrificed and TG was immunohistochemically analyzed for detection of VEGF and NPY expression, and also double immunofluorescence labeling with isolectin (IB4) was completed.. An increased percentage of NPY+ neurons was observed 2weeks after DM1 and 2months post DM2 induction. NPY immunoreactivity was restricted to IB4-negative small-diameter and IB4+ neurons. Two weeks post induction, DM1 rats showed an increased percentage of VEGF/IB4- large neurons and DM2 rats showed an increased percentage of VEGF/IB4+ neurons. Two months after DM induction, the DM1 group showed a reduced percentage of VEGF/IB4- small neurons.. The observed changes may play a critical role in the modulation of nociceptor activity and plasticity of primary sensory trigeminal neurons. The results contribute to the understanding of the basic pathophysiology of trigeminal diabetic neuropathy. Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Male; Neurons; Neuropeptide Y; Rats, Sprague-Dawley; Trigeminal Ganglion; Vascular Endothelial Growth Factor A | 2017 |
Antidepressant-like activity of the neuropeptide Y Y5 receptor antagonist Lu AA33810: behavioral, molecular, and immunohistochemical evidence.
It has recently been found that chronic treatment with the highly selective, brain-penetrating Y5 receptor antagonist, Lu AA33810 [N-[[trans-4-[(4,5-dihydro [1] benzothiepino[5,4-d] thiazol-2-yl) amino] cyclohexyl]methyl]-methanesulfonamide], produces antidepressant-like effects in the rat chronic mild stress model.. In the present study, we investigated the possible antidepressant-like activity of Lu AA33810 in rats subjected to glial ablation in the prefrontal cortex (PFC) by the gliotoxin L-AAA, which is an astroglial degeneration model of depression.. We observed that Lu AA33810 administered intraperitoneally at a single dose of 10 mg/kg both reversed depressive-like behavioral changes in the forced swim test (FST) and prevented degeneration of astrocytes in the mPFC. The mechanism of antidepressant and glioprotective effects of Lu AA33810 has not been studied, so far. We demonstrated the contribution of the noradrenergic rather than the serotonergic pathway to the antidepressant-like action of Lu AA33810 in the FST. Moreover, we found that antidepressant-like effect of Lu AA33810 was connected with the influence on brain-derived neurotrophic factor (BDNF) protein expression. We also demonstrated the antidepressant-like effect of Lu AA33810 in the FST in rats which did not receive the gliotoxin. We found that intracerebroventricular injection of the selective MAPK/ERK inhibitor U0126 (5 μg/2 μl) and the selective PI3K inhibitor LY294002 (10 nmol/2 μl) significantly inhibited the anti-immobility effect of Lu AA33810 in the FST in rats, suggesting that MAPK/ERK and PI3K signaling pathways could be involved in the antidepressant-like effect of Lu AA33810.. Our results indicate that Lu AA33810 exerts an antidepressant-like effect and suggest the Y5 receptors as a promising target for antidepressant therapy. Topics: Animals; Antidepressive Agents; Behavior, Animal; Benzothiepins; Brain-Derived Neurotrophic Factor; Chromones; Depression; Disease Models, Animal; Enzyme Inhibitors; Male; Morpholines; Neuropeptide Y; Phosphoinositide-3 Kinase Inhibitors; Prefrontal Cortex; Rats; Signal Transduction; Sulfonamides; Swimming | 2017 |
Effect of botulinum toxin A on vasoconstriction and sympathetic neurotransmitters in a murine random pattern skin flap model.
Blood supply is the most important factor determining the survival of a skin flap. Botulinum toxin-A (Botox-A) is used as pharmacologic agent not only for aesthetic purposes, but also for its vasomotor actions. This study was conducted to establish whether local application of Botox-A increased survival of random pattern skin flaps in rats by changing the expression of neurotransmitters. Forty adult Sprague-Dawley rats with a caudally-based random pattern skin flap were divided into two groups: Botox-A group and saline group. Surviving flap area and cutaneous blood flow in the flap were evaluated on postoperative days 3 and 7. After injection of Botox-A, changes in vessels were analyzed using immunohistochemical staining. Levels of norepinephrine, neuropeptide-Y, nitric oxide, and endothelial nitric oxide synthase were analyzed quantitatively by high performance liquid chromatography, Western blot, and colorimetric assay. The survived area in the Botox-A group was significantly higher than that in the control group on postoperative days 3 and 7. Blood flow in the Botox-A group was significantly high in the proximal and middle areas immediately after the operation. The number of CD31-positive vessels in the Botox-A group was significant greater than that in the control group. Norepinephrine level in the Botox-A group decreased significantly immediately after flap elevation and at postoperative day 3. There were no significant differences in neuropeptide-Y level between the two groups. Nitric oxide level did not change significantly in either group despite the increase in endothelial nitric oxide synthase immediately after flap elevation and at 3 days postoperatively. In conclusion, Botox-A increased vascular blood flow and viable flap area in rats by reducing norepinephrine level. In contrast, neuropeptide-Y, another vasoconstrictor, was not affected by Botox-A. Nitric oxide, a vasodilator, was also not affected by Botox-A, despite the significant increase in endothelial nitric oxide synthase expression in the flaps. Topics: Animals; Botulinum Toxins, Type A; Cardiovascular Agents; Disease Models, Animal; Immunohistochemistry; Injections; Neuropeptide Y; Neurotransmitter Agents; Nitric Oxide; Nitric Oxide Synthase Type III; Norepinephrine; Rats; Rats, Sprague-Dawley; Skin; Surgical Flaps; Sympathomimetics; Vasoconstriction; Wound Healing | 2017 |
Neuropeptide Y-based recombinant peptides ameliorate bone loss in mice by regulating hematopoietic stem/progenitor cell mobilization.
Ovariectomy-induced bone loss is related to an increased deposition of osteoclasts on bone surfaces. We reported that the 36-amino-acid-long neuropeptide Y (NPY) could mobilize hematopoietic stem/progenitor cells (HSPCs) from the bone marrow to the peripheral blood by regulating HSPC maintenance factors and that mobilization of HSPCs ameliorated low bone density in an ovariectomy-induced osteoporosis mouse model by reducing the number of osteoclasts. Here, we demonstrated that new NPY peptides, recombined from the cleavage of the full-length NPY, showed better functionality for HSPC mobilization than the full-length peptide. These recombinant peptides mediated HSPC mobilization with greater efficiency by decreasing HSPC maintenance factors. Furthermore, treatment with these peptides reduced the number of osteoclasts and relieved ovariectomy-induced bone loss in mice more effectively than treatment with full-length NPY. Therefore, these results suggest that peptides recombined from full-length NPY can be used to treat osteoporosis. [BMB Reports 2017; 50(3): 138-143]. Topics: Animals; Bone Marrow; Bone Marrow Cells; Disease Models, Animal; Granulocyte Colony-Stimulating Factor; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cells; Humans; Mice; Neuropeptide Y; Osteoclasts; Osteoporosis; Osteoporosis, Postmenopausal; Ovariectomy | 2017 |
Long-Term Energy Deficit in Mice Causes Long-Lasting Hypothalamic Alterations after Recovery.
Although the short-term effects of fasting or energy deficit on hypothalamic neuropeptide circuitries are now better understood, the effects of long-term energy deficit and refeeding remain to be elucidated. We showed that after a long-term energy deficit, mice exhibited persistent hypoleptinemia following the refeeding period despite restoration of fat mass, ovarian activity, and feeding behavior. We aimed to examine the hypothalamic adaptations after 10 weeks of energy deficit and after 10 further weeks of nutritional recovery. To do so, we assessed the mRNA levels of the leptin receptor and the main orexigenic and anorexigenic peptides, and their receptors regulated by leptin. Markers of hypothalamic inflammation were assessed as leptin can also participate in this phenomenon. Long-term time-restricted feeding and separation induced significant increase in mRNA levels of hypothalamic orexigenic peptides, while both Y1 and Y5 receptor mRNAs were downregulated. No changes occurred in the mRNA levels of orexin (OX), melanin-concentrating hormone, pro-opiomelanocortin, 26RFa (26-amino acid RF-amide peptide), and their receptors despite an increase in the expression of melanocortin receptors (MC3-R and MC4-R) and OXR1 (OX receptor 1). The refeeding period induced an overexpression of leptin receptor mRNA in the hypothalamus. The other assessed mRNA levels were normalized except for Y2, Y5, MC3-R, and MC4-R, which remained upregulated. No convincing changes were observed in neuroinflammatory markers, even if interleukin-1β mRNA levels were increased in parallel with those of Iba1 (ionized calcium-binding adaptor molecule 1), a marker of microglial activation. Normalization of leptin-regulated functions and hypothalamic gene expressions in refed mice with low plasma leptin levels could be sustained by recalibration of hypothalamic sensitivity to leptin. Topics: Agouti-Related Protein; Animals; Body Weight; Cytokines; Disease Models, Animal; Eating; Female; Hypolipoproteinemias; Hypothalamic Hormones; Hypothalamus; Leptin; Melanins; Mice; Mice, Inbred C57BL; Neuropeptide Y; Neuropeptides; Orexins; Pituitary Hormones; Receptors, Leptin; Receptors, Neuropeptide; RNA, Messenger | 2017 |
Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy.
The intergeniculate leaflet (IGL) of the thalamus is a retinorecipient structure implicated in orchestrating circadian rhythmicity. The IGL network is highly GABAergic and consists mainly of neuropeptide Y-synthesising and enkephalinergic neurons. A high density of GFAP-immunoreactive astrocytes has been observed in the IGL, with a probable function in guarding neuronal inhibition. Interestingly, putatively enkephalinergic IGL neurons generate action potentials with an infra-slow oscillatory (ISO) pattern in vivo in urethane anesthetised Wistar rats, under light-on conditions only. Absence epilepsy (AE) is a disease characterised by spike-wave discharges present in the encephalogram, directly caused by hypersynchronous thalamo-cortical oscillations. Many pathologies connected with the arousal system, such as abnormalities in sleep architecture and an insufficient brain sleep-promoting system accompany the epileptic phenotype. We hypothesise that disturbances in the function of biological clock structures, controlling this rhythmic physiological process, may be responsible for the observed pathomechanism. To test this hypothesis, we performed an in vitro patch-clamp study on WAG/Rij rats, a well-validated genetic model of AE, in order to assess dampened GABAergic synaptic transmission in the IGL expressed as a lower IPSC amplitude and reduced sIPSC frequency. Moreover, our in vivo extracellular recordings showed higher firing rate of ISO IGL neurons with an abnormal reaction to a change in constant illumination (maintenance of rhythmic neuronal activity in darkness) in the AE model. Additional immunohistochemical experiments indicated astrogliosis in the area of the IGL, which may partially underlie the observed changes in inhibition. Altogether, the data presented here show for the first time the disinhibition of IGL neurons in a model of AE, thereby proposing the possible involvement of circadian-related brain structures in the epileptic phenotype. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; Animals; Animals, Newborn; Disease Models, Animal; Epilepsy, Absence; Excitatory Amino Acid Antagonists; GABA Agents; Geniculate Bodies; Inhibitory Postsynaptic Potentials; Male; Nerve Net; Neural Inhibition; Neuropeptide Y; Rats; Rats, Mutant Strains; Rats, Wistar; Sodium Channel Blockers; Tetrodotoxin; Valine | 2017 |
Neuropeptide Y neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia.
Neuropeptide Y (NPY) has been found to play a critical role in various mental functions as a neurotransmitter and is involved in the development of schizophrenia, a particularly intractable psychiatric disease whose precise etiology remains unknown. Recent molecular biological investigations have identified several candidate genes which may be associated with this disease, including disrupted-in-schizophrenia 1 (DISC1). The role of DISC1 would involve neurogenesis and neuronal migration. However, the functional consequences of this gene defect have not yet been fully clarified in neuronal systems. In the present study, to clarify the neuropathological changes associated with the function of DISC1, we explored how DISC1 dysfunction can induce abnormalities in the NPY neuronal network in the central nervous system. We performed immunohistochemical analyses (including the observation of the distribution and density) of prefrontal cortex specimens from DISC1-knockout (KO) mice, which are considered to be a novel animal model of schizophrenia. We then evaluated the number and size of NPY-immunoreactive (NPY-IR) neurons and the length of NPY-IR fibers. The number of NPY-IR neurons and the length of the fibers were decreased in the prefrontal cortex of DISC1-KO mice. The decrease was particularly prominent in the superficial regions, and the distribution of NPY-IR neurons differed between wild-type and DISC1-KO mice. However, the size of the neurons in the cortices of the DISC1-KO and wild-type mice did not differ markedly. Our findings suggest that dysfunction of DISC1 may lead to the alteration of NPY neurons and neurotransmission issues in NPY-containing neuron systems, which seem to play important roles in both the mental function and neuronal development. DISC1 dysfunction may be involved in the pathogenesis of schizophrenia through the impairment of the NPY neuronal network. Topics: Animals; Disease Models, Animal; Female; Frontal Lobe; Male; Mice, Knockout; Nerve Net; Nerve Tissue Proteins; Neurogenesis; Neurons; Neuropeptide Y; Prefrontal Cortex; Schizophrenia | 2017 |
Resolvin RvD2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity.
Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice.. Male Swiss mice were fed either chow or a high-fat diet. RvD2 receptor and synthetic enzymes were evaluated by real-time PCR and immunofluorescence. RvD2 was determined by mass spectrometry. Dietary and pharmacological approaches were used to modulate the RvD2 system in the hypothalamus, and metabolic phenotype consequences were determined.. All enzymes involved in the synthesis of RvD2 were detected in the hypothalamus and were modulated in response to the consumption of dietary saturated fats, leading to a reduction of hypothalamic RvD2. GPR18, the receptor for RvD2, which was detected in POMC and NPY neurons, was also modulated by dietary fats. The substitution of saturated by polyunsaturated fats in the diet resulted in increased hypothalamic RvD2, which was accompanied by reduced body mass and improved glucose tolerance. The intracerebroventricular treatment with docosahexaenoic acid resulted in increased expression of the RvD2 synthetic enzymes, increased expression of anti-inflammatory cytokines and improved metabolic phenotype. Finally, intracerebroventricular treatment with RvD2 resulted in reduced adiposity, improved glucose tolerance and increased hypothalamic expression of anti-inflammatory cytokines.. Thus, RvD2 is produced in the hypothalamus, and its receptor and synthetic enzymes are modulated by dietary fats. The improved metabolic outcomes of RvD2 make this substance an attractive approach to treat obesity. Topics: Animals; Anti-Inflammatory Agents; Calcium-Binding Proteins; Cytokines; Diet, High-Fat; Disease Models, Animal; Docosahexaenoic Acids; Encephalitis; Gene Expression Regulation; Glucose Tolerance Test; Hypothalamus; Male; Mice; Microfilament Proteins; Neurons; Neuropeptide Y; Obesity; Oxygen Consumption; Pro-Opiomelanocortin; Receptors, G-Protein-Coupled | 2017 |
RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.
The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits α Topics: Angiotensin II; Animals; Cell Membrane; Cells, Cultured; Disease Models, Animal; GTP-Binding Protein beta Subunits; GTP-Binding Protein gamma Subunits; GTP-Binding Proteins; Hypertension; Juxtaglomerular Apparatus; Male; Microvessels; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neuropeptide Y; Phospholipase C beta; Protein Binding; Protein Transport; Rats, Inbred SHR; Rats, Inbred WKY; Receptors for Activated C Kinase; RNA Interference; Signal Transduction; Transfection; Vasoconstriction; Vasoconstrictor Agents | 2017 |
Effects of Renal Artery Denervation on Ventricular Arrhythmias in a Postinfarct Model.
The therapeutic potential of renal denervation (RDN) for arrhythmias has not been fully explored. Detailed mechanistic evaluation is in order. The objective of the present study was to determine the antiarrhythmic potential of RDN in a postinfarct animal model and to determine whether any benefits relate to RDN-induced reduction of sympathetic effectors on the myocardium.. Pigs implanted with single-chamber implantable cardioverter defibrillators to record ventricular arrhythmias (VAs) were subjected to percutaneous coronary occlusion to induce myocardial infarction. Two weeks later, a sham or real RDN treatment was performed bilaterally using the St Jude EnligHTN basket catheter. Parameters of ventricular remodeling and modulation of cardio-renal sympathetic axis were monitored for 3 weeks after myocardial infarction. Histological analysis of renal arteries yielded a mean neurofilament score of healthy nerves that was significantly lower in the real RDN group than in sham controls; damaged nerves were found only in the real RDN group. There was a 100% reduction in the rate of spontaneous VAs after real RDN and a 75% increase in the rate of spontaneous VAs after sham RDN (. RDN in the infarcted pig model leads to reduction of postinfarction VAs and myocardial sympathetic effectors. This may form the basis for a potential therapeutic role of RDN in postinfarct VAs. Topics: Animals; Disease Models, Animal; Female; Heart; Heart Rate; Kidney; Male; Myocardial Infarction; Myocardium; Nerve Growth Factor; Neuropeptide Y; Renal Artery; Sus scrofa; Sympathectomy; Sympathetic Nervous System; Tachycardia, Ventricular; Time Factors | 2017 |
Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1
Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cortical inhibitory interneurons, however, the exact cell types responsible are yet to be identified. In this study we demonstrate dynamic changes in the number of calretinin- (CR) and neuropeptide Y-expressing (NPY) interneurons in the motor cortex of the familial hSOD1 Topics: Amyotrophic Lateral Sclerosis; Animals; Calbindin 2; Disease Models, Animal; Humans; Interneurons; Mice; Mice, Transgenic; Motor Cortex; Motor Neurons; Mutation; Neuropeptide Y; Superoxide Dismutase-1 | 2017 |
Neuropeptide Y system in accumbens shell mediates ethanol self-administration in posterior ventral tegmental area.
Although modulatory effects of neuropeptide Y (NPY) on ethanol consumption are well established, its role in ethanol reward, in the framework of mesolimbic dopaminergic system, has not been studied. We investigated the influence of nucleus accumbens shell (AcbSh) NPYergic system on ethanol self-administration in posterior ventral tegmental area (p-VTA) using intracranial self-administration paradigm. Rats were stereotaxically implanted with cannulae targeted unilaterally at the right p-VTA and trained to self-administer ethanol (200 mg%) in standard two-lever (active/inactive) operant chamber, an animal model with high predictive validity to test the rewarding mechanisms. Over a period of 7 days, these rats showed a significant increase in the number of lever presses for ethanol self-administration suggesting reinforcement. While intra-AcbSh NPY (1 or 2 ng/rat) or [Leu(31) , Pro(34) ]-NPY (0.5 or 1 ng/rat) dose-dependently increased ethanol self-administration, BIBP3226 (0.4 or 0.8 ng/rat) produced opposite effect. The rats conditioned to self-administer ethanol showed significant increase in the population of NPY-immunoreactive cells and fibres in the AcbSh, central nucleus of amygdala (CeA), hypothalamic arcuate nucleus (ARC) and lateral part of bed nucleus of stria terminalis as compared with that in the naïve rats. Neuronal tracing studies showed that NPY innervations in the AcbSh may derive from the neurons of ARC and CeA. As NPY and dopamine systems in reward areas are known to interact, we suggest that NPY inputs from ARC and CeA may play an important role in modulation of the dopaminergic system in the AcbSh and consequently influence the ethanol induced reward and addiction. Topics: Animals; Central Nervous System Depressants; Disease Models, Animal; Ethanol; Male; Neuropeptide Y; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Reward; Self Administration; Ventral Tegmental Area | 2016 |
Chronic gastric electrical stimulation leads to weight loss via modulating multiple tissue neuropeptide Y, orexin, α-melanocyte-stimulating hormone and oxytocin in obese rats.
Gastric electrical stimulation (GES) has great potential for the treatment of obesity. We investigated the impact of chronic GES on the alteration of adipose tissue and the regulation of neuropeptide Y (NPY), orexin (OX), α-melanocyte-stimulating hormone (α-MSH) and oxytocin (OXT), and their receptors in several tissues.. Most of the experiments included three groups of diet-induced obesity rats: (1) sham-GES (SGES); (2) GL-6mA (GES with 6 mA, 4 ms, 40 Hz, 2 s on, 3 s off at lesser curvature); and (3) SGES-PF (SGES rats receiving pair feeding to match the consumption of GL-6mA rats). Chronic GES was applied for 2 h every day for 4 weeks. During treatment with GES, food intake and body weight were monitored weekly. The alteration of epididymal fat weight, gastric emptying, and expression of peptides and their receptors in several tissues were determined.. GL-6mA was more potent than SGES-PF in decreasing body weight gain, epididymal fat tissue weight, adipocyte size and gastric emptying. Chronic GES significantly altered NPY, OX, α-MSH and OXT and their receptors in the hypothalamus, adipose tissue and stomach.. Chronic GES effectively leads to weight loss by reducing food intake, fat tissue weight and gastric emptying. NPY, α-MSH, orexin and OXT, and their receptors in the hypothalamus, adipose tissue and stomach appear to be involved in the anti-obesity effects of chronic GES. Topics: Adipocytes; alpha-MSH; Animals; Disease Models, Animal; Eating; Electric Stimulation Therapy; Electrodes, Implanted; Epididymis; Gastric Emptying; Gastric Mucosa; Ghrelin; Hypothalamus; Intra-Abdominal Fat; Leptin; Male; Neuropeptide Y; Obesity; Orexin Receptors; Orexins; Oxytocin; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 3; Receptors, G-Protein-Coupled; Receptors, Melanocortin; Receptors, Neuropeptide; Receptors, Neuropeptide Y; Receptors, Oxytocin; RNA, Messenger; Weight Loss | 2016 |
Hypothyroidism Induces Hypophagia Associated with Alterations in Protein Expression of Neuropeptide Y and Proopiomelanocortin in the Arcuate Nucleus, Independently of Hypothalamic Nuclei-Specific Changes in Leptin Signaling.
Thyroid hormone and leptin are essential regulators of energy homeostasis. Both hormones stimulate energy expenditure but have opposite effects on appetite. The mechanisms behind food intake regulation in thyroid dysfunctions are poorly understood. It has been shown that hypothyroid rats exhibited impaired leptin anorexigenic effect and signaling in total hypothalamus, even though they were hypophagic. It was hypothesized that hypothyroidism modulates the expression of neuropeptides: orexigenic neuropeptide Y (NPY) and anorexigenic proopiomelanocortin (POMC), independently of inducing nuclei-specific changes in hypothalamic leptin signaling.. Adult male rats were rendered hypothyroid by administration of 0.03% methimazole in the drinking water for 21 days. Protein content of NPY, POMC, and leptin signaling (the signal transducer and activator of transcription 3 [STAT3] pathway) were evaluated by Western blot, and mRNA levels by real time reverse transcription polymerase chain reaction in arcuate (ARC), ventromedial (VMN), and paraventricular (PVN) hypothalamic nuclei isolated from euthyroid (eu) and hypothyroid (hypo) rats. Leptin anorexigenic effect was tested by recording food intake for two hours after intracerebroventricular (i.c.v.) administration of leptin. Statistical differences were considered significant at p ≤ 0.05.. Hypothyroidism was confirmed by decreased serum triiodothyronine, thyroxine, and increased thyrotropin, in addition to increased levels of pro-TRH mRNA in PVN and Dio2 mRNA in the ARC of hypo rats. Hypothyroidism decreased body weight and food intake associated with decreased protein content of NPY and increased content of POMC in the ARC. Conversely, hypothyroidism induced central resistance to the acute anorexigenic effect of leptin, since while euthyroid rats displayed reduced food intake after leptin i.c.v. injection, hypothyroid rats showed no response. Hypothyroid rats exhibited decreased leptin receptor (ObRb) protein content in ARC and VMN but not in PVN nucleus. ObRb protein changes were concomitant with decreased phosphorylated STAT3 in the ARC, and decreased total STAT3 in VMN and PVN. However, hypothyroidism did not affect mRNA levels of Lepr or Stat3 in the hypothalamic nuclei.. Experimental hypothyroidism induced a negative energy balance accompanied by decreased NPY and increased POMC protein content in the ARC, resulting in predominance of anorexigenic pathways, despite central leptin resistance and impairment of the leptin signaling cascade in a nuclei-specific manner. Topics: Animals; Appetite Regulation; Arcuate Nucleus of Hypothalamus; Disease Models, Animal; Eating; Energy Metabolism; Feeding Behavior; Hypothyroidism; Iodide Peroxidase; Iodothyronine Deiodinase Type II; Leptin; Male; Methimazole; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Phosphorylation; Pro-Opiomelanocortin; Rats, Wistar; Receptors, Leptin; Signal Transduction; STAT3 Transcription Factor; Thyrotropin-Releasing Hormone; Ventromedial Hypothalamic Nucleus; Weight Loss | 2016 |
Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats.
Neuropeptide Y (NPY) in the dorsomedial hypothalamus (DMH) plays an important role in the regulation of energy balance. While DMH NPY overexpression causes hyperphagia and obesity in rats, knockdown of NPY in the DMH via adeno-associated virus (AAV)-mediated RNAi (AAVshNPY) ameliorates these alterations. Whether this knockdown has a therapeutic effect on obesity and glycemic disorder has yet to be determined. The present study sought to test this potential using a rat model of high-fat diet (HFD)-induced obesity and insulin resistance, mimicking human obesity with impaired glucose homeostasis. Rats had ad libitum access to rodent regular chow (RC) or HFD. Six weeks later, an oral glucose tolerance test (OGTT) was performed for verifying HFD-induced glucose intolerance. After verification, obese rats received bilateral DMH injections of AAVshNPY or the control vector AAVshCTL, and OGTT and insulin tolerance test (ITT) were performed at 16 and 18 wk after viral injection (23 and 25 wk on HFD), respectively. Rats were killed at 26 wk on HFD. We found that AAVshCTL rats on HFD remained hyperphagic, obese, glucose intolerant, and insulin resistant relative to lean control RC-fed rats receiving DMH injection of AAVshCTL, whereas these alterations were reversed in NPY knockdown rats fed a HFD. NPY knockdown rats exhibited normal food intake, body weight, glucose tolerance, and insulin sensitivity, as seen in lean control rats. Together, these results demonstrate a therapeutic action of DMH NPY knockdown against obesity and impaired glucose homeostasis in rats, providing a potential target for the treatment of obesity and diabetes. Topics: Adiposity; Animals; Blood Glucose; Body Weight; Dependovirus; Diet, High-Fat; Disease Models, Animal; Down-Regulation; Eating; Energy Metabolism; Gene Knockdown Techniques; Genetic Vectors; Glucose Intolerance; Hypothalamus, Middle; Insulin; Insulin Resistance; Male; Neuropeptide Y; Obesity; Rats, Sprague-Dawley; RNA, Small Interfering; RNAi Therapeutics; Time Factors | 2016 |
Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder.
Single prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), induces alterations in the hypothalamic-pituitary-adrenal axis. Korean red ginseng, whose major active component is ginsenoside Rb1 (GRb1), is one of the widely used traditional anxiolytics. However, the efficacy of GRb1 in alleviating PTSD-associated anxiety-like abnormalities has not been investigated. The present study used several behavioral tests to examine the effects of GRb1 on symptoms of anxiety in rats after SPS exposure and on the central noradrenergic system. Male Sprague-Dawley rats received GRb1 (10 or 30 mg/kg, i.p., once daily) during 14 days of SPS. Daily GRb1 (30 mg/kg) administration significantly increased the number and duration of open-arm visits in the elevated plus maze (EPM) test, reduced the anxiety index, increased the risk assessment, reduced grooming behaviors in the EPM test, and increased the total number of line crossings of an open field after SPS. The higher dose of GRb1 also blocked SPS-induced decreases in hypothalamic neuropeptide Y expression, increases in locus coeruleus tyrosine hydroxylase expression, and decreases in hippocampal mRNA expression of brain-derived neurotrophic factor. These findings suggest that GRb1 has anxiolytic-like effects on both behavioral and biochemical symptoms similar to those observed in patients with PTSD. Topics: Animals; Anti-Anxiety Agents; Anxiety; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Ginsenosides; Humans; Hypothalamo-Hypophyseal System; Male; Maze Learning; Neuropeptide Y; Panax; Phytotherapy; Pituitary-Adrenal System; Plant Extracts; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic | 2016 |
Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.
Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Apolipoproteins B; Cell Proliferation; Central Nervous System; Disease Models, Animal; Gene Transfer Techniques; Genetic Therapy; Humans; Mice; Mice, Transgenic; Neural Stem Cells; Neurogenesis; Neurons; Neuropeptide Y; Rats | 2016 |
Short photoperiod condition increases susceptibility to stress in adolescent male rats.
The seasonality of depressive symptoms is prevalent in children and adolescents. However, the mechanisms that underlie such susceptibility to seasonal influences on mood disorders are unclear. We examined the effects of a short photoperiod condition on the susceptibility to subchronic unpredictable mild stress (SCUS) and rhythmic alterations of plasma corticosterone (CORT), melatonin, and neuropeptide Y (NPY) in adolescent male rats. Compared with the 12h/12h light/dark photoperiod control (CON) rats, the 8h/16h photoperiod SCUS rats exhibited significant anhedonia, a core symptom of human depression, together with a blunted diurnal rhythm and elevation of 24h CORT, melatonin, and NPY levels. The 8h/16h photoperiod condition also blunted the rhythmicity of CORT, caused a phase inversion of melatonin, and caused a phase delay of NPY compared with 12h/12h CON rats. Such abnormalities of plasma CORT, NPY, and melatonin might cause adolescent individuals to present higher stress reactivity and greater vulnerability to stress over their lifetimes. The present study provides evidence of the susceptibility to the seasonality of stress-related disorders in adolescence. Topics: Aging; Anhedonia; Animals; Circadian Rhythm; Corticosterone; Disease Models, Animal; Disease Susceptibility; Male; Melatonin; Neuropeptide Y; Photoperiod; Rats, Sprague-Dawley; Resilience, Psychological; Seasonal Affective Disorder; Seasons; Stress, Psychological; Uncertainty | 2016 |
An association between neuropeptide Y levels and leukocyte subsets in stress-exacerbated asthmatic mice.
Neuropeptide Y (NPY) was recently proposed to be associated with stress and airway inflammation; however, this has rarely been studied in animal models of asthma. Twenty-four C57BL/6 mice were randomly divided into 3 groups of 8 each: naive control group, asthma group (with an established asthma model), and stressed asthma group (with established asthma and stress models). Bronchoalveolar lavage (BAL) fluid was collected for total cell counts using a hemocytometer and for cytological examinations by Wright stain. Differential inflammatory cell counts were performed to identify eosinophils, macrophages, neutrophils, and lymphocytes. NPY and corticosterone serum levels were determined with enzyme immunoassay kits. Stress was associated with increased airway inflammatory response, which was manifested by the accumulation of total leukocytes and eosinophils in the BAL fluid in comparison with the asthma and the control groups. The levels of NPY (p<0.05) and corticosterone (p<0.01) were elevated in the stressed asthma group in comparison with the control and asthma groups. The concentration of NPY and corticosterone positively correlated with the total leukocyte count (r=0.892, p<0.05 and r=0.937, p<0.01 respectively) and eosinophil numbers (r=0.806, p=0.053 and r=0.885, p<0.01 respectively). Stress may be associated with elevated peripheral NPY level, which was observed to be associated with exacerbated airway inflammation in asthmatic mice. Topics: Animals; Asthma; Bronchoalveolar Lavage Fluid; Corticosterone; Disease Models, Animal; Inflammation; Leukocyte Count; Leukocytes; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; Stress, Psychological | 2016 |
Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication.
The High Drinking in the Dark (HDID) mice have been selectively bred for drinking to intoxicating blood alcohol levels and represent a genetic model of risk for binge-like drinking. Presently, little is known about the specific genetic factors that promote excessive intake in these mice. Previous studies have identified neuropeptide Y (NPY) as a potential target for modulating alcohol intake. NPY expression differs in some rodent lines that have been selected for high and low alcohol drinking phenotypes, as well as inbred mouse strains that differ in alcohol preference. Alcohol drinking and alcohol withdrawal also produce differential effects on NPY expression in the brain. Here, we assessed brain NPY protein levels in HDID mice of two replicates of selection and control heterogeneous stock (HS) mice at baseline (water drinking) and after binge-like alcohol drinking to determine whether selection is associated with differences in NPY expression and its sensitivity to alcohol. NPY levels did not differ between HDID and HS mice in any brain region in the water-drinking animals. HS mice showed a reduction in NPY levels in the nucleus accumbens (NAc) - especially in the shell - in ethanol-drinking animals vs. water-drinking controls. However, HDID mice showed a blunted NPY response to alcohol in the NAc core and shell compared to HS mice. These findings suggest that the NPY response to alcohol has been altered by selection for drinking to intoxication in a region-specific manner. Thus, the NPY system may represent a potential target for altering binge-like alcohol drinking in these mice. Topics: Alcohol Drinking; Analysis of Variance; Animals; Central Nervous System Depressants; Darkness; Disease Models, Animal; Ethanol; Male; Mice; Neuropeptide Y; Nucleus Accumbens; Time Factors | 2016 |
Increased Hypothalamic Levels of Endozepines, Endogenous Ligands of Benzodiazepine Receptors, in a Rat Model of Sepsis.
The mechanisms involved in septic anorexia are mainly related to the secretion of inflammatory cytokines. The term endozepines designates a family of neuropeptides, including the octadecaneuropeptide (ODN), originally isolated as endogenous ligands of benzodiazepine receptors. Previous data showed that ODN, produced and released by astrocytes, is a potent anorexigenic peptide. We have studied the effect of sepsis by means of a model of cecal ligation and puncture (CLP) on the hypothalamic expression of endozepines (DBI mRNA and protein levels), as well as on the level of neuropeptides controlling energy homeostasis mRNAs: pro-opiomelanocortin, neuropeptide Y, and corticotropin-releasing hormone. In addition, we have investigated the effects of two inflammatory cytokines, TNF-α and IL-1β, on DBI mRNA levels in cultured rat astrocytes.. Studies were performed on Sprague-Dawley male rats and on cultures of rat cortical astrocytes. Sepsis was induced using the CLP method. Sham-operated control animals underwent the same procedure, but the cecum was neither ligated nor incised.. Sepsis caused by CLP evoked an increase of DBI mRNA levels in ependymal cells bordering the third ventricle and in tanycytes of the median eminence. CLP-induced sepsis was also associated with stimulated ODN-like immunoreactivity (ODN-LI) in the hypothalamus. In addition, TNF-α, but not IL-1β, induced a dose-dependent increase in DBI mRNA in cultured rat astrocytes. An increase in the mRNA encoding the precursor of the anorexigenic peptide α-melanocyte stimulating hormone, the pro-opiomelanocortin, and the corticotropin-releasing hormone was observed in the hypothalamus.. These results suggest that during sepsis, hypothalamic mRNA encoding endozepines, anorexigenic peptide as well as stress hormone could play a role in the anorexia/cachexia associated with inflammation due to sepsis and we suggest that this hypothalamic mRNA expression could involve TNF-α. Topics: Animals; Anorexia; Corticotropin-Releasing Hormone; Diazepam Binding Inhibitor; Disease Models, Animal; Hypothalamus; In Vitro Techniques; Inflammation; Interleukin-18; Ligands; Male; Neuropeptide Y; Neuropeptides; Peptide Fragments; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Sepsis; Tumor Necrosis Factor-alpha | 2016 |
Neuropeptide Y Impairs Retrieval of Extinguished Fear and Modulates Excitability of Neurons in the Infralimbic Prefrontal Cortex.
Neuropeptide Y (NPY), a 36 aa peptide, regulates stress and emotional behaviors. Preclinical and clinical studies support an association of NPY with trauma-evoked syndromes such as posttraumatic stress disorder (PTSD), although the exact contribution of NPY is not clear. In the current study, we examined functional attributes of NPY in the infralimbic (IL) cortex, an area that regulates fear memories and is reported to be hypoactive in PTSD. Carriers of NPY gene polymorphism rs16147 have been reported to have elevated prefrontal NPY expression. Infusion of NPY into the IL cortex in rats significantly impaired fear extinction memory without affecting conditioned fear expression or acquisition of extinction. Neuroendocrine stress response, depression-like behavior, and working memory performance were not affected by NPY infusion into the IL. The NPY Y1 receptor antagonist BIBO3304 completely abolished NPY effects on fear extinction retrieval. Y1 receptor expression was localized on CaMKII-positive pyramidal projection neurons and GAD67-positive interneurons in the IL. Patch-clamp recordings revealed increased inhibitory synaptic transmission onto IL projection neurons in the presence of NPY. Thus, NPY dampens excitability of IL projection neurons and impairs retrieval of extinction memory by inhibiting consolidation of extinction. Of relevance to PTSD, elevation of prefrontal NPY attributable to the genetic polymorphism rs16147 may contribute to IL hypoactivity, resulting in impaired extinction memory and susceptibility to the disorder.. Neuropeptide Y (NPY), a stress modulatory transmitter, is associated with posttraumatic stress disorder (PTSD). Contribution of NPY to PTSD symptomology is unclear. PTSD patients have reduced activity in the infralimbic (IL) subdivision of the medial prefrontal cortex (mPFC), associated with compromised extinction memory. No information exists on fear modulation by NPY in the IL cortex, although NPY and NPY receptors are abundant in these areas. This study shows that IL NPY inhibits consolidation of extinction, resulting in impaired retrieval of extinction memory and modulates excitability of IL projection neurons. In addition to providing a novel perspective on extinction memory modulation by NPY, our findings suggest that elevated mPFC NPY in gene polymorphism rs16147 carriers or after chronic stress could increase susceptibility to PTSD. Topics: Animals; Arginine; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Corticosterone; Disease Models, Animal; Dose-Response Relationship, Drug; Extinction, Psychological; Fear; Glutamate Decarboxylase; Learning Disabilities; Male; Mental Recall; Neurons; Neuropeptide Y; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Synaptic Potentials | 2016 |
Prader-Willi Critical Region, a Non-Translated, Imprinted Central Regulator of Bone Mass: Possible Role in Skeletal Abnormalities in Prader-Willi Syndrome.
Prader-Willi Syndrome (PWS), a maternally imprinted disorder and leading cause of obesity, is characterised by insatiable appetite, poor muscle development, cognitive impairment, endocrine disturbance, short stature and osteoporosis. A number of causative loci have been located within the imprinted Prader-Willi Critical Region (PWCR), including a set of small non-translated nucleolar RNA's (snoRNA). Recently, micro-deletions in humans identified the snoRNA Snord116 as a critical contributor to the development of PWS exhibiting many of the classical symptoms of PWS. Here we show that loss of the PWCR which includes Snord116 in mice leads to a reduced bone mass phenotype, similar to that observed in humans. Consistent with reduced stature in PWS, PWCR KO mice showed delayed skeletal development, with shorter femurs and vertebrae, reduced bone size and mass in both sexes. The reduction in bone mass in PWCR KO mice was associated with deficiencies in cortical bone volume and cortical mineral apposition rate, with no change in cancellous bone. Importantly, while the length difference was corrected in aged mice, consistent with continued growth in rodents, reduced cortical bone formation was still evident, indicating continued osteoblastic suppression by loss of PWCR expression in skeletally mature mice. Interestingly, deletion of this region included deletion of the exclusively brain expressed Snord116 cluster and resulted in an upregulation in expression of both NPY and POMC mRNA in the arcuate nucleus. Importantly, the selective deletion of the PWCR only in NPY expressing neurons replicated the bone phenotype of PWCR KO mice. Taken together, PWCR deletion in mice, and specifically in NPY neurons, recapitulates the short stature and low BMD and aspects of the hormonal imbalance of PWS individuals. Moreover, it demonstrates for the first time, that a region encoding non-translated RNAs, expressed solely within the brain, can regulate bone mass in health and disease. Topics: Animals; Base Sequence; Bone and Bones; Bone Density; Disease Models, Animal; Female; Gene Expression Regulation, Developmental; Genomic Imprinting; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Molecular Sequence Data; Neurons; Neuropeptide Y; Prader-Willi Syndrome; Proprotein Convertases; RNA, Small Nucleolar; Sequence Deletion; Signal Transduction | 2016 |
High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia.
Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. Topics: Animals; Autonomic Nervous System; Blood Glucose; Blood Pressure; Body Weight; Cardiovascular System; Diabetes Complications; Diabetes Mellitus, Type 1; Disease Models, Animal; Disease Progression; Enzyme-Linked Immunosorbent Assay; Glucose Tolerance Test; Heart Rate; Hyperglycemia; Insulin; Male; Neuropeptide Y; Physical Conditioning, Animal; Rats; Rats, Sprague-Dawley; Sympathetic Nervous System | 2016 |
Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine.
Migraine is a painful neurologic disorder with premonitory symptomatology that can include disturbed appetite. Migraine pathophysiology involves abnormal activation of trigeminocervical complex (TCC) neurons. Neuropeptide Y (NPY) is synthesized in the brain and is involved in pain modulation. NPY receptors are present in trigeminal ganglia and trigeminal nucleus caudalis suggesting a role in migraine pathophysiology. The present study aimed to determine the effect of systemic administration of NPY on TCC neuronal activity in response to dural nociceptive trigeminovascular activation. We performed in vivo electrophysiology in anesthetized rats, administered NPY (10, 30, and 100 µg·kg), and investigated the receptors involved by studying NPY Y1 (30 µg·kg), Y2 (30 µg·kg), and Y5 receptor agonists (100·µg·kg), and NPY Y1 receptor antagonist (30 µg·kg). NPY (30 and 100 µg·kg) significantly reduced TCC neuronal firing in response to dural-evoked trigeminovascular activation, but only NPY (30 µg·kg) significantly reduced spontaneous trigeminal firing. NPY Y1 receptor agonist also significantly reduced dural-evoked and spontaneous TCC neuronal firing. NPY (10 µg·kg), NPY Y2, and Y5 receptor agonists, and the NPY Y1 receptor antagonist had no significant effects on nociceptive dural-evoked neuronal firing in the TCC or spontaneous trigeminal firing. This study demonstrates that NPY dose dependently inhibits dural-evoked trigeminal activity, through NPY Y1 receptor activation, indicating antinociceptive actions of NPY in a migraine animal model. Based on the role of NPY in appetite regulation, it is possible that disruption of the NPY system might explain changes of appetite in migraineurs. Topics: Action Potentials; Animals; Disease Models, Animal; Male; Migraine Disorders; Neurons; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Trigeminal Ganglion; Trigeminal Nuclei | 2016 |
Saxagliptin and Tadalafil Differentially Alter Cyclic Guanosine Monophosphate (cGMP) Signaling and Left Ventricular Function in Aortic-Banded Mini-Swine.
Cyclic guanosine monophosphate-protein kinase G-phosphodiesterase 5 signaling may be disturbed in heart failure (HF) with preserved ejection fraction, contributing to cardiac remodeling and dysfunction. The purpose of this study was to manipulate cyclic guanosine monophosphate signaling using the dipeptidyl-peptidase 4 inhibitor saxagliptin and phosphodiesterase 5 inhibitor tadalafil. We hypothesized that preservation of cyclic guanosine monophosphate cGMP signaling would attenuate pathological cardiac remodeling and improve left ventricular (LV) function.. We assessed LV hypertrophy and function at the organ and cellular level in aortic-banded pigs. Concentric hypertrophy was equal in all groups, but LV collagen deposition was increased in only HF animals. Prevention of fibrotic remodeling by saxagliptin and tadalafil was correlated with neuropeptide Y plasma levels. Saxagliptin better preserved integrated LV systolic and diastolic function by maintaining normal LV chamber volumes and contractility (end-systolic pressure-volume relationship, preload recruitable SW) while preventing changes to early/late diastolic longitudinal strain rate. Function was similar to the HF group in tadalafil-treated animals including increased LV contractility, reduced chamber volume, and decreased longitudinal, circumferential, and radial mechanics. Saxagliptin and tadalafil prevented a negative cardiomyocyte shortening-frequency relationship observed in HF animals. Saxagliptin increased phosphodiesterase 5 activity while tadalafil increased cyclic guanosine monophosphate levels; however, neither drug increased downstream PKG activity. Early mitochondrial dysfunction, evident as decreased calcium-retention capacity and Complex II-dependent respiratory control, was present in both HF and tadalafil-treated animals.. Both saxagliptin and tadalafil prevented increased LV collagen deposition in a manner related to the attenuation of increased plasma neuropeptide Y levels. Saxagliptin appears superior for treating heart failure with preserved ejection fraction, considering its comprehensive effects on integrated LV systolic and diastolic function. Topics: Adamantane; Animals; Atrial Natriuretic Factor; Cyclic GMP; Dipeptides; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Echocardiography; Hypertrophy, Left Ventricular; Male; Natriuretic Peptide, Brain; Neuropeptide Y; Phosphodiesterase 5 Inhibitors; Signal Transduction; Swine; Swine, Miniature; Tadalafil; Ventricular Function, Left | 2016 |
Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation.
This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation.. Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR.. Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-κB, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased.. High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms mediating a sustained 'perpetual cycle' of appetite enhancement were observed. The GlyR protein may constitute a novel treatment target for the reduction of central orexigenic signals in obesity. Topics: Animals; Anorexia; Appetite Regulation; Computational Biology; Diet, High-Fat; Disease Models, Animal; Down-Regulation; Hypothalamus; Inflammation; Insulin; Insulin Resistance; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; NF-kappa B; Obesity; Pro-Opiomelanocortin; Proteome; Receptor, Serotonin, 5-HT1B; Receptors, Glycine; RNA, Messenger | 2016 |
Rats with a truncated ghrelin receptor (GHSR) do not respond to ghrelin, and show reduced intake of palatable, high-calorie food.
Ghrelin, a peptide hormone produced by the stomach, is the endogenous ligand for the Growth Hormone Secretagogue Receptor (GHSR). Ghrelin acts on the GHSR to increase food intake, appetitive behaviors, and adiposity. Recently, a rat model with a null mutation to the GHSR gene (FHH-GHSR(m1/Mcwi)) was generated and used in behavioral studies, but the basic metabolic phenotype of this strain as well as that of the background strain (Fawn Hooded Hypertensive, FHH) has not been characterized in detail. Here we compared male FHH-GHSR(m1/Mcwi) rats with their wild-type littermates (FHH-WT) in a number of metabolic parameters. In the 24h of recovery following an acute overnight fast, FHH-GHSR(m1/Mcwi) rats consumed less food than FHH-WT animals, and relative to their body weights, adult FHH-GHSR(m1/Mcwi) rats consumed fewer calories when placed on a high-fat diet. Despite this, FHH-GHSR(m1/Mcwi) rats did not show a difference in diet-induced obesity or weight gain. Fasted FHH-GHSR(m1/Mcwi) rats exhibited increased Agouti-Related Peptide (AgRP) and Neuropeptide Y (NPY) expression in the Arcuate Nucleus (ARC), indicative of altered central regulation of feeding and energy balance. FHH-GHSR(m1/Mcwi) rats exhibited lower levels of home cage locomotor behavior over the entire light/dark cycle, and reduced levels of food anticipatory activity when placed on a restricted feeding schedule. Finally, FHH-GHSR(m1/Mcwi) rats consumed less of a palatable dessert (cookie dough) given after the completion of the scheduled meal. Altogether, our data show that rats lacking a functional GHSR tend to eat less than their wild-type counterparts in the face of acute fasts, chronic high-fat diet exposure, and exposure to a palatable dessert, despite not showing differences in body weight and glucose homeostasis that are characteristic of GHSR null mice. These data indicate that many, but not all responses to GHSR ablation are conserved between rats and mice. The FHH-GHSR(m1/Mcwi) rat thus represents a novel and useful model for studying GHSR function in rats. Topics: Agouti-Related Protein; Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Diet, High-Fat; Disease Models, Animal; Eating; Fasting; Feeding Behavior; Gene Expression Regulation; Ghrelin; Glucose Tolerance Test; Humans; Locomotion; Male; Mutation; Neuropeptide Y; Obesity; Rats; Rats, Transgenic; Receptors, Ghrelin | 2016 |
Evidence for the involvement of neuropeptide Y in the antidepressant effect of imipramine in type 2 diabetes.
Depression is a major comorbidity factor of diabetes and the outcome of one disorder influences the other. Our aim is to scrutinize the link between the two, if any. Since neuropeptide Y (NPY) system plays an important role in regulating central glucose sensing mechanisms, and also depression-related behavior, we test the involvement of NPY in the modulation of depression in type 2 diabetic mice. The mice were fed on high-fat diet and administered with low dose of streptozotocin to induce type 2 diabetes. These animals showed augmented plasma glucose and increased immobility time in tail suspension test (TST) suggesting induction of diabetes and depression. Intracerebroventricular (icv) treatment with NPY or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY and intraperitoneal treatment with imipramine decreased immobility time. However, opposite effect was produced by NPY Y1 receptor antagonist BIBP3226 (icv). Moreover, reduced immobility time by imipramine was potentiated by NPY and [Leu(31), Pro(34)]-NPY, but attenuated by BIBP3226. Immunohistochemical analysis of the different nuclei of the extended amygdala, the region primarily involved in affective disorders, was undertaken. A significant reduction in NPY immunoreactivity in the central nucleus of amygdala, nucleus accumbens shell and lateral division of bed nucleus of stria terminalis of the diabetic mice was noticed; the response was ameliorated in imipramine treated animals. The results suggest that decreased NPY expression in the extended amygdala might be causally linked with the depression induced following type 2 diabetes and that the antidepressant action of imipramine in diabetic mice might be mediated by NPY-NPY Y1 receptor system. Topics: Animals; Antidepressive Agents, Tricyclic; Arginine; Blood Glucose; Central Amygdaloid Nucleus; Depression; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Imipramine; Male; Mice; Motor Activity; Neuropeptide Y; Nucleus Accumbens; Receptors, Neuropeptide Y; Septal Nuclei; Streptozocin | 2016 |
Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents.
The intergeniculate leaflet (IGL) is a flat retinorecipient thalamic structure implicated in orchestrating circadian rhythm, historically considered to be a subdivision of the neighboring ventrolateral geniculate nucleus (VLG). IGL consists of two main neuronal subpopulations: enkephalinergic and neuropeptide Y (NPY)-synthesizing cells. These cell types have different functions, connectivity and firing pattern in vivo, which suggest that they have different membrane currents to support their functional differences. We therefore performed patch-clamp experiments combined with immunohistochemical staining to clarify possible differences in the subthreshold currents of IGL neurons. Our results suggest that IGL neurons can be divided into two subpopulations based on two ionic currents. A T-type calcium current (IT) was identified in neurons that do not synthesise NPY, whereas all NPY-positive neurons were found to express a marked A-type potassium current (IA). Due to the fact that the clear electrophysiological discriminants between IGL and VLG are lacking, we decided to compare the amplitudes of the identified currents between those two structures. Our data suggest that VLG neurons can be characterized by a high amplitude IT and a low IA. Finally, we compared both currents with WAG/Rij rats, a well-established model of absence epilepsy, with co-occurring retinal pathologies, sleep-onset disturbances, and seizures exhibiting circadian rhythmicity. Data presented in this study uncovered pathologies in the IT exhibiting neurons of the IGL and VLG. In conclusion, the data presented here suggest that different subthreshold current expression supports the functional differences of thalamic nuclei. Those differences are promising for possible pharmacological manipulations of specified cell types in pathophysiologies including absence epilepsy. Topics: Animals; Calcium; Disease Models, Animal; Epilepsy, Absence; Immunohistochemistry; Male; Membrane Potentials; Neurons; Neuropeptide Y; Patch-Clamp Techniques; Potassium; Rats, Wistar; Thalamic Nuclei | 2016 |
Cutaneous tissue damage induces long-lasting nociceptive sensitization and regulation of cellular stress- and nerve injury-associated genes in sensory neurons.
Tissue damage is one of the major etiological factors in the emergence of chronic/persistent pain, although mechanisms remain enigmatic. Using incision of the back skin of adult rats as a model for tissue damage, we observed sensitization in a nociceptive reflex enduring to 28days post-incision (DPI). To determine if the enduring behavioral changes corresponded with a long-term impact of tissue damage on sensory neurons, we examined the temporal expression profile of injury-regulated genes and the electrophysiological properties of traced dorsal root ganglion (DRG) sensory neurons. The mRNA for the injury/stress-hub gene Activating Transcription Factor 3 (ATF3) was upregulated and peaked within 4 DPI, after which levels declined but remained significantly elevated out to 28 DPI, a time when the initial incision appears healed and tissue-inflammation largely resolved. Accordingly, stereological image analysis indicated that some neurons expressed ATF3 only transiently (mostly medium-large neurons), while in others it was sustained (mostly small neurons), suggesting cell-type-specific responses. In retrogradely-traced ATF3-expressing neurons, Calcium/calmodulin-dependent protein kinase type IV (CAMK4) protein levels and isolectin-B4 (IB4)-binding were suppressed whereas Growth Associated Protein-43 (GAP-43) and Neuropeptide Y (NPY) protein levels were enhanced. Electrophysiological recordings from DiI-traced sensory neurons 28 DPI showed a significant sensitization limited to ATF3-expressing neurons. Thus, ATF3 expression is revealed as a strong predictor of single cells displaying enduring pain-related electrophysiological properties. The cellular injury/stress response induced in sensory neurons by tissue damage and indicated by ATF3 expression is positioned to contribute to pain which can occur after tissue damage. Topics: Animals; Calcium-Calmodulin-Dependent Protein Kinase Type 4; Disease Models, Animal; Female; Functional Laterality; Ganglia, Spinal; GAP-43 Protein; Glycoproteins; Lectins; Neuropeptide Y; Nociception; Nociceptive Pain; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sensory Receptor Cells; Skin Diseases; Transcription Factor 3; Up-Regulation; Versicans | 2016 |
Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome.
Short bowel syndrome (SBS) patients developing hyperphagia have a better outcome. Gastrointestinal endocrine adaptations help to improve intestinal functions and food behaviour. We investigated neuroendocrine adaptations in SBS patients and rat models with jejuno-ileal (IR-JI) or jejuno-colonic (IR-JC) anastomosis with and without parenteral nutrition. Circulating levels of ghrelin, PYY, GLP-1, and GLP-2 were determined in SBS rat models and patients. Levels of mRNA for proglucagon, PYY and for hypothalamic neuropeptides were quantified by qRT-PCR in SBS rat models. Histology and immunostaining for Ki67, GLP-1 and PYY were performed in SBS rats. IR-JC rats, but not IR-JI, exhibited significantly higher crypt depths and number of Ki67-positive cells than sham. Fasting and/or postprandial plasma ghrelin and PYY concentrations were higher, or tend to be higher, in IR-JC rats and SBS-JC patients than in controls. Proglucagon and Pyy mRNA levels were significantly enhanced in IR-JC rats. Levels of mRNA coding hypothalamic orexigenic NPY and AgRP peptides were significantly higher in IR-JC than in sham rats. We demonstrate an increase of plasma ghrelin concentrations, major changes in hypothalamic neuropeptides levels and greater induction of PYY in SBS-JC rats and patients suggesting that jejuno-colonic continuity creates a peculiar environment promoting further gut-brain adaptations. Topics: Adult; Aged; Agouti-Related Protein; Anastomosis, Surgical; Animals; Colon; Disease Models, Animal; Feeding Behavior; Female; Ghrelin; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Humans; Hyperphagia; Hypothalamus; Intestinal Mucosa; Jejunum; Ki-67 Antigen; Male; Middle Aged; Neuropeptide Y; Peptide YY; Proglucagon; Rats; Rats, Wistar; Real-Time Polymerase Chain Reaction; RNA, Messenger; Short Bowel Syndrome | 2016 |
Gastrodin reversed the traumatic stress-induced depressed-like symptoms in rats.
Exposure to severe stress can lead to the development of neuropsychiatric disorders such as depression and post-traumatic stress disorder (PTSD) in at-risk individuals. Gastrodin (GAS), a primary constituent of an Oriental herbal medicine, has been shown to effectively treat various mood disorders. Thus, the present study aimed to determine whether GAS would ameliorate stress-associated depression-like behaviors in a rat model of single prolonged stress (SPS)-induced PTSD. Following the SPS procedure, rats received intraperitoneal administration of GAS (20, 50, or 100 mg/kg) once daily for 2 weeks. Subsequently, the rats performed the forced swimming test, and norepinephrine (NE) levels in the hippocampus were measured. Daily GAS (100 mg/kg) significantly reversed depression-like behaviors and restored SPS-induced increases in hippocampal NE concentrations as well as tyrosine hydroxylase expression in the locus coeruleus. Furthermore, the administration of GAS attenuated SPS-induced decreases in the hypothalamic expression of neuropeptide Y and the hippocampal mRNA expression of brain-derived neurotrophic factor. These findings indicate that GAS possesses antidepressant effects in the PTSD and may be an effective herbal preparation for the treatment of PTSD. Topics: Animals; Antidepressive Agents; Benzyl Alcohols; Brain-Derived Neurotrophic Factor; Depression; Depressive Disorder; Disease Models, Animal; Gastrodia; Glucosides; Hippocampus; Locus Coeruleus; Male; Neuropeptide Y; Norepinephrine; Phytotherapy; Plant Extracts; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Swimming; Tyrosine 3-Monooxygenase | 2016 |
Seizures triggered by pentylenetetrazol in marmosets made chronically epileptic with pilocarpine show greater refractoriness to treatment.
The efficiency of most of the new antiepileptic drugs (AEDs) on clinical trials still falls short the success reported in pre-clinical studies, possibly because the validity of the animal models is insufficient to fully represent the human pathology. To improve the translational value for testing AEDs, we propose the use of non-human primates. Here, we suggest that triggering limbic seizures with low doses of PTZ in pilocarpine-treated marmosets might provide a more effective basis for the development of AED. Marmosets with epileptic background were more susceptible to seizures induced by PTZ, which were at least 3 times longer and more severe (about 6 times greater frequency of generalized seizures) in comparison to naïve peers. Accordingly, PTZ-induced seizures were remarkably less attenuated by AEDs in epileptic than naïve marmosets. While phenobarbital (40mg/kg) virtually abolished seizures regardless of the animal's background, carbamazepine (120mg/kg) and valproic acid (400mg/kg) could not prevent PTZ-induced seizures in epileptic animals with the same efficiency as observed in naïve peers. VPA was less effective regarding the duration of individual seizures in epileptic animals, as assessed in ECoG (p=0.05). Similarly following CBZ treatment, the behavioral manifestation of generalized seizures lasted longer in epileptic (p<0.05), which were also more frequent than in the naïve group (p<0.05). As expected, epileptic marmosets experiencing stronger seizures showed more NPY- and ΔFosB-immunostained neurons in a number of brain areas associated with the generation and spread of limbic seizures. Our results suggest that PTZ induced seizures over an already existing epileptic background constitutes a reliable and controllable mean for the screening of new AEDs. Topics: Animals; Anticonvulsants; Brain; Callithrix; Carbamazepine; Chronic Disease; Disease Models, Animal; Electrocorticography; Epilepsy; Female; Immunohistochemistry; Male; Neuropeptide Y; Pentylenetetrazole; Phenobarbital; Pilocarpine; Proto-Oncogene Proteins c-fos; Seizures; Valproic Acid | 2016 |
Aberrant changes of somatostatin and neuropeptide Y in brain of a genetic rat model for epilepsy: tremor rat.
Excessive excitation or loss of inhibitory neurotransmission has been closely related to epileptic activity. Somatostatin (SST) and Neuropeptide Y (NPY) are members of endogenous neuropeptides which are recognized as important modulator of classical neurotransmitter, distributed abundantly in mammalian central nervous system. Abnormal expression of these two neuropeptides evidenced in some epileptic models highlights the relevance of SST or NPY in the pathogenesis of epilepsy. The tremor rat (TRM) is a genetic epileptic animal model which can manifest tonic convulsions without any external stimuli. The present study aimed to investigate the distribution and expression of SST and NPY in TRM brains, including hippocampus, temporal lobe cortex and cerebellum. Our RT‑PCR data showed that up-regulated mRNA expression of SST and NPY was discovered in TRM hippocampus and temporal lobe cortex compared with control (Wistar) rats. The peptide levels of these neuropeptides in brain areas mentioned above were both apparently higher than that in normal Wistar rats as well. However, in cerebellums, neither SST nor NPY was significantly changed compared with control group. The immunohistochemical data showed that SST and NPY were widely present throughout CA1, CA3 and the hilus of hippocampus, the entorhinal cortex of temporal lobe cortex, as well as cerebellar Purkinje layer. In conclusion, our results discovered the aberrant changes of SST and NPY in several TRM brain regions, suggesting that the peptidergic system might be involved in TRM epileptiform activity. Topics: Animals; Brain; Disease Models, Animal; Epilepsy; Female; Gene Expression Regulation; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels; Male; Mutation; Neuropeptide Y; Potassium Channels; Rats; Rats, Mutant Strains; Rats, Wistar; RNA, Messenger; Somatostatin; Tremor | 2016 |
The wake-promoting drug modafinil stimulates specific hypothalamic circuits to promote adaptive stress responses in an animal model of PTSD.
Pharmacotherapeutic intervention during traumatic memory consolidation has been suggested to alleviate or even prevent the development of posttraumatic stress disorder (PTSD). We recently reported that, in a controlled, prospective animal model, depriving rats of sleep following stress exposure prevents the development of a PTSD-like phenotype. Here, we report that administering the wake-promoting drug modafinil to rats in the aftermath of a stressogenic experience has a similar prophylactic effect, as it significantly reduces the prevalence of PTSD-like phenotype. Moreover, we show that the therapeutic value of modafinil appears to stem from its ability to stimulate a specific circuit within the hypothalamus, which ties together the neuropeptide Y, the orexin system and the HPA axis, to promote adaptive stress responses. The study not only confirms the value of sleep prevention and identifies the mechanism of action of a potential prophylactic treatment after traumatic exposure, but also contributes to understanding mechanisms underlying the shift towards adaptive behavioral response. Topics: Adaptation, Psychological; Animals; Arousal; Benzhydryl Compounds; Corticosterone; Disease Models, Animal; Humans; Hypothalamo-Hypophyseal System; Hypothalamus; Male; Mental Recall; Modafinil; Nerve Net; Neuropeptide Y; Orexins; Pituitary-Adrenal System; Rats; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Wakefulness | 2016 |
Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder.
This study examined the effect of endurance exercise on dendritic arborization in the dentate gyrus subregion in rodents exposed to a predator scent stress (PSS).. Sprague-Dawley rats were randomly assigned to one of four treatment groups. In two of the groups, rats were unexposed to PSS but either remained sedentary (SED + UNEXP) or were exercised (EX + UNEXP). In the other two groups, rats were exposed to the PSS but either remained sedentary (SED + PSS) or were exercised (EX + PSS). After 6 wk of either exercise or sedentary lifestyle, rats were exposed to either the PSS or a sham protocol. During exercise, the animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. Eight days after exposure to either PSS or sham protocol, changes in the cytoarchitecture (dendritic number, dendritic length, and dendrite spine density) of the dentate gyrus subregion of the hippocampus were assessed.. No differences (P = 0.493) were noted in dendritic number between the groups. However, dendritic length and dendrite spine density for SED + PSS was significantly smaller (P < 0.001) than that observed in all other groups. In addition, neurons from animals in SED + PSS had significantly fewer (P < 0.001) dendritic intersections than all other groups.. The results of this study indicate that 6 wk of endurance training can protect dendritic length and complexity, suggesting a degree of resiliency to stress. This provides further evidence for supporting the inclusion of an exercise regimen for reducing the risk of posttraumatic stress disorder. Topics: Animals; Brain-Derived Neurotrophic Factor; Dendrites; Dentate Gyrus; Disease Models, Animal; Down-Regulation; Exercise Therapy; Humans; Male; Neuropeptide Y; Physical Conditioning, Animal; Random Allocation; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic | 2016 |
Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction.
Metabolism remodeling has been recognized as an early event following cardiac pressure overload. However, its temporal association with ventricular hypertrophy has not been confirmed. Moreover, whether trimetazidine could favorably affect this process also needs to be determined. The aim of the study was to explore the temporal changes of myocardial metabolism remodeling following pressure-overload induced ventricular hypertrophy and the potential favorable effect of trimetazidine on myocardial metabolism remodeling.. A rat model of abdominal aortic constriction (AAC)-induced cardiac pressure overload was induced. These rats were grouped as the AAC (no treatment) or TMZ group according to whether oral trimetazidine (TMZ, 40 mg/kg/d, for 5 days) was administered. Changes in cardiac structures were sequentially evaluated via echocardiography. The myocardial ADP/ATP ratio was determined to reflect the metabolic status, and changes in serum neuropeptide Y systems were evaluated.. Myocardial metabolic disorder was acutely induced as evidenced by an increased ADP/ATP ratio within 7 days of AAC before the morphological changes in the myocardium, accompanied by up-regulation of serum oxidative stress markers and expression of fetal genes related to hypertrophy. Moreover, the serum NPY and myocardial NPY-1R, 2R, and 5R levels were increased within the acute phase of AAC-induced cardiac pressure overload. Pretreatment with TMZ could partly attenuate myocardial energy metabolic homeostasis, decrease serum levels of oxidative stress markers, attenuate the induction of hypertrophy-related myocardial fetal genes, inhibit the up-regulation of serum NPY levels, and further increase the myocardial expression of NPY receptors.. Cardiac metabolic remodeling is an early change in the myocardium before the presence of typical morphological ventricular remodeling following cardiac pressure overload, and pretreatment with TMZ may at least partly reverse the acute metabolic disturbance, perhaps via regulation of the NPY system. Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Aorta, Abdominal; Arterial Pressure; Cardiovascular Agents; Constriction; Disease Models, Animal; Energy Metabolism; Gene Expression Regulation; Hypertrophy, Left Ventricular; Male; Myocardium; Neuropeptide Y; Oxidative Stress; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Neuropeptide Y; Signal Transduction; Trimetazidine; Ventricular Function, Left; Ventricular Remodeling | 2016 |
Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy.
Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy. Epileptogenesis was triggered in adult rats by status epilepticus (SE) (56 SE, 24 controls) or by traumatic brain injury (TBI) (45 TBI, 23 controls). The total number of hippocampal parvalbumin (PARV), cholecystokinin (CCK), calretinin (CR), somatostatin (SOM), or neuropeptide Y (NPY) positive neurons was estimated using unbiased stereology at 1 or 6 months post-insult. The rats with TBI had no spontaneous seizures but showed increased seizure susceptibility. Eleven of the 28 rats (39 %) in the SE group had spontaneous seizures. The most affected hippocampal area after TBI was the ipsilateral dentate gyrus, where 62 % of PARV-immunoreactive (ir) (p < 0.001 compared to controls), 77 % of CR-ir (p < 0.05), 46 % of SOM-ir (p < 0.001), and 59 % of NPY-ir (p < 0.001) cells remained at 1 month after TBI. At 6 months post-TBI, only 35 % of PARV-ir (p < 0.001 compared to controls), 63 % of CCK-ir (p < 0.01), 74 % of CR-ir (p < 0.001), 55 % of SOM-ir (p < 0.001), and 51 % of NPY-ir (p < 0.001) cells were remaining. Moreover, the reduction in PARV-ir, CCK-ir, and CR-ir neurons was bilateral (all p < 0.05). Substantial reductions in different neuronal populations were also found in subfields of the CA3 and CA1. In rats with epilepsy after SE, the number of PARV-ir neurons was reduced in the ipsilateral CA1 (80 % remaining, p < 0.05) and the number of NPY-ir neurons bilaterally in the dentate gyrus (33-37 %, p < 0.01) and the CA3 (54-57 %, p < 0.05). Taken together, interneuron loss was substantially more severe, widespread, progressive, and included more interneuron subclasses after TBI than after SE. Interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition. Unlike expected, we could not demonstrate any etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures. Topics: Animals; Brain Injuries; Brain Waves; Calbindin 2; Cell Death; Cholecystokinin; Convulsants; Disease Models, Animal; Electrodes, Implanted; Hippocampus; Interneurons; Male; Neuropeptide Y; Parvalbumins; Pentylenetetrazole; Rats; Rats, Sprague-Dawley; Somatostatin; Status Epilepticus | 2015 |
Distribution and neurochemical characterization of neurons in the rat ventrolateral medulla activated by glucoprivation.
Hypoglycemia elicits physiological and behavioral responses which are mediated in part by neurons within the ventrolateral medulla (VLM). The present study describes the neurochemistry of neurons activated by glucoprivation (2-deoxy-D-glucose, 2DG), specifically those within regions containing the A1, caudal C1 (cC1) and rostral C1 (rC1) cell groups. 2DG induced c-Fos immunoreactivity throughout the VLM. Activated neurons expressing prepro-cocaine and amphetamine-regulated transcript (PPCART), neuropeptide Y (NPY), glutamic acid decarboxylase (GAD67) or prepro-enkephalin (PPE) mRNA and/or immunoreactivity (-ir) for tyrosine hydroxylase (TH) were identified. TH(+) neurons were recruited in a dose-dependent manner. At high doses of 2DG [400 mg/kg, (n = 6)], 76 ± 1.2 % of activated neurons were TH(+) representing 52 ± 1.3 % of the total TH population. Virtually all activated neurons in the A1 and cC1 regions but only 60 % in the rC1 region were TH(+). Within the A1 region, TH(+), TH(+)NPY(+) and TH(+)NPY(+)PPE(+) subpopulations were activated and likely regulate vasopressin, oxytocin, and corticotrophin releasing hormone (CRH) from the hypothalamus. Within the cC1 region, non-TH neurons, TH(+)NPY(+), TH(+)NPY(+)PPCART(+), and TH(+)NPY(+)PPE(+) subpopulations were activated, likely regulating autonomic hypothalamic neurons or CRH and thyrotropin releasing hormone secretion. Within the rC1 region, non-TH neurons (40 % of those activated) were predominantly PPE(+) and were recruited by higher 2DG doses. Of the TH(+) activated neurons in the rC1 region, many expressed PPCART and half expressed NPY. The activated spinally projecting population was almost entirely TH(+)PPCART(+) and is likely to regulate adrenaline and glucagon release. These data indicate that glucoprivation activates at least nine phenotypically distinct populations of neurons in the VLM. Topics: Animals; Blood Glucose; Cell Count; Cholera Toxin; Deoxyglucose; Disease Models, Animal; Gene Expression Regulation; Glutamate Decarboxylase; Hypoglycemia; Male; Medulla Oblongata; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; RNA, Messenger; Tyrosine 3-Monooxygenase | 2015 |
Insulin ameliorating endotoxaemia-induced muscle wasting is associated with the alteration of hypothalamic neuropeptides and inflammation in rats.
Septic patients always develop muscle wasting, which delays the rehabilitation and contributes to the increased complications and mortality. Previous studies have implied the crucial role of central inflammation and neuropeptides in the energy balance and muscle metabolism. Insulin has been confirmed to attenuate muscle degradation and inhibit inflammation. We tested the hypothesis whether insulin ameliorating muscle wasting was associated with modulating hypothalamic inflammation and neuropeptides.. Thirty-two adult male Sprague-Dawley rats were in intraperitoneally injected with lipopolysaccharide (LPS) (5 mg/kg) or saline, followed by subcutaneous injection of insulin (5 IU/kg) or saline. Twenty-four hours after injection, skeletal muscle and hypothalamus tissues were harvested. Muscle wasting was measured by the mRNA expression of two E3 ubiquitin ligases, muscle ring finger 1 (MuRF-1) and muscle atrophy F-box (MAFbx), as well as 3-methylhistidine (3-MH) and tyrosine release. Hypothalamic inflammatory markers and neuropeptides expression were also measured in four groups.. LPS injection led to significant increase in hypothalamic inflammation as well as muscle wasting. Also, increased hypothalamic neuropeptides, proopiomelanocortin (POMC), cocaine and amphetamine-related transcript (CART) and neuropeptides Y (NPY) and decreased agouti-related protein (AgRP) were observed. Insulin treatment ameliorated endotoxaemia-induced muscle wasting and hypothalamic inflammation, and attenuated the alteration of neuropeptides, POMC, CART and AgRP.. Hypothalamic inflammation and neuropeptides are involved in the endotoxaemia-induced muscle wasting. Insulin treatment can reduce muscle wasting, which is associated with reduced hypothalamic inflammation and alteration of hypothalamic neuropeptides. Topics: Agouti-Related Protein; Animals; Cytokines; Disease Models, Animal; Endotoxemia; Gene Expression Regulation; Hypothalamus; Inflammation; Insulin; Lipopolysaccharides; Male; Muscles; Neuropeptide Y; Neuropeptides; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Sepsis; Wasting Syndrome | 2015 |
Food restriction does not relieve PTSD-like anxiety.
We used the inescapable foot shock paradigm (IFS) in rats as an animal model for post-traumatic stress disorder (PTSD). Previously we showed that exercise reversed the enhanced stress sensitivity induced by IFS. From literature it is known that food restriction has antidepressant and anxiolytic effects. Since both treatments influence energy expenditure, we questioned whether food restriction reduces anxiety in the IFS model via a comparable, NPY dependent mechanism as enrichment. Anxiety of IFS-exposed animals was measured as change in locomotion and freezing after sudden silence in an open field test, before and after two weeks of food restriction. In addition a forced swim test (FST) was performed. Next, using qPCR, the expression of neuropeptide Y (NPY) and the neuropeptide Y1 receptor (Y1 receptor) was measured in the amygdala. Food restriction increased locomotion and decreased freezing behavior both in control and IFS animals. These effects were small. IFS-induced anxiety was not abolished after two weeks of food restriction. IFS did not influence immobility or the duration of swimming in the FST of animals fed ad libitum. However, food restriction increased swimming and decreased the duration of immobility in IFS-exposed animals. Y1 receptor expression in the basolateral amygdala decreased after both IFS and food restriction. Although food restriction seems to induce a general anxiolytic effect, it does not operate via enhanced Y1 receptor expression and has no effect on the more pathogenic anxiety induced by IFS. Topics: Amygdala; Animals; Anxiety; Disease Models, Animal; Electric Stimulation; Food Deprivation; Immobility Response, Tonic; Locomotion; Male; Neuropeptide Y; Rats; Receptors, Neuropeptide Y; Stress Disorders, Post-Traumatic | 2015 |
A rodent model of traumatic stress induces lasting sleep and quantitative electroencephalographic disturbances.
Hyperarousal and sleep disturbances are common, debilitating symptoms of post-traumatic stress disorder (PTSD). PTSD patients also exhibit abnormalities in quantitative electroencephalography (qEEG) power spectra during wake as well as rapid eye movement (REM) and non-REM (NREM) sleep. Selective serotonin reuptake inhibitors (SSRIs), the first-line pharmacological treatment for PTSD, provide modest remediation of the hyperarousal symptoms in PTSD patients, but have little to no effect on the sleep-wake architecture deficits. Development of novel therapeutics for these sleep-wake architecture deficits is limited by a lack of relevant animal models. Thus, the present study investigated whether single prolonged stress (SPS), a rodent model of traumatic stress, induces PTSD-like sleep-wake and qEEG spectral power abnormalities that correlate with changes in central serotonin (5-HT) and neuropeptide Y (NPY) signaling in rats. Rats were implanted with telemetric recording devices to continuously measure EEG before and after SPS treatment. A second cohort of rats was used to measure SPS-induced changes in plasma corticosterone, 5-HT utilization, and NPY expression in brain regions that comprise the neural fear circuitry. SPS caused sustained dysregulation of NREM and REM sleep, accompanied by state-dependent alterations in qEEG power spectra indicative of cortical hyperarousal. These changes corresponded with acute induction of the corticosterone receptor co-chaperone FK506-binding protein 51 and delayed reductions in 5-HT utilization and NPY expression in the amygdala. SPS represents a preclinical model of PTSD-related sleep-wake and qEEG disturbances with underlying alterations in neurotransmitter systems known to modulate both sleep-wake architecture and the neural fear circuitry. Topics: Analysis of Variance; Animals; Brain Waves; Corticosterone; Disease Models, Animal; Electroencephalography; Electromyography; Fourier Analysis; Indoles; Male; Neuropeptide Y; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Serotonin; Sleep Wake Disorders; Stress Disorders, Post-Traumatic; Tacrolimus Binding Proteins; Time Factors | 2015 |
Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model.
The mechanisms underlying rheumatoid arthritis (RA)-induced pain are still not fully elucidated, and accumulating data indicate that peripheral inflammation is not the only factor driving pain in these patients. The focus of our work is to investigate the molecular basis for long-term alterations in nociceptive pathways induced by polyarthritis using the collagen antibody-induced arthritis (CAIA) mouse model. In this model, mechanical hypersensitivity outlasts the joint inflammation by weeks. Here we examined expression levels of neuropeptides, ion channels, and nerve injury markers associated with neuropathic and/or inflammatory pain in dorsal root ganglia (DRGs) and spinal cord both during the peak of inflammation (day 15) and when the inflammation has resolved but the hypersensitivity persists (days 45-47). No apparent differences were observed in substance P, calcitonin gene-related peptide, or neuropeptide Y protein expression in DRGs and spinal cord of CAIA mice. However, the neuropeptide galanin, the ATP-gated ion channel P2X3, and calcium channel subunit α2δ1 were significantly increased in the CAIA DRGs as compared to controls, both 15 and 47 days after induction of arthritis. On day 15 there was an increase in expression of two factors associated with nerve injury and cell stress, activating transcription factor 3 and growth-associated protein 43 in DRGs, whereby the latter was still dramatically upregulated after 47 days. In conclusion, this study suggests that long-term joint inflammation has an impact on DRG neurons that resembles both inflammation and nerve injury-induced pain states. Thus, antibody-driven inflammation generates a pain state with a unique neurochemical profile. Topics: Activating Transcription Factor 3; Animals; Antibodies; Arthritis; Calcium Channels; Collagen; Disease Models, Animal; Galanin; Ganglia, Spinal; Hyperalgesia; Lectins; Lipopolysaccharides; Male; Mice; Mice, Inbred CBA; Nerve Tissue Proteins; Neuropeptide Y; Spinal Cord; Substance P; Time Factors | 2015 |
Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: Neuropeptide and morphologic changes.
Myocardial infarction (MI) induces remodeling in stellate ganglion neurons (SGNs).. We investigated whether infarct site has any impact on the laterality of morphologic changes or neuropeptide expression in stellate ganglia.. Yorkshire pigs underwent left circumflex coronary artery (LCX; n = 6) or right coronary artery (RCA; n = 6) occlusion to create left- and right-sided MI, respectively (control: n = 10). At 5 ± 1 weeks after MI, left and right stellate ganglia (LSG and RSG, respectively) were collected to determine neuronal size, as well as tyrosine hydroxylase (TH) and neuropeptide Y immunoreactivity.. Compared with control, LCX and RCA MIs increased mean neuronal size in the LSG (451 ± 25 vs 650 ± 34 vs 577 ± 55 μm(2), respectively; P = .0012) and RSG (433 ± 22 vs 646 ± 42 vs 530 ± 41 μm(2), respectively; P = .002). TH immunoreactivity was present in the majority of SGNs. Both LCX and RCA MIs were associated with significant decreases in the percentage of TH-negative SGNs, from 2.58% ± 0.2% in controls to 1.26% ± 0.3% and 0.7% ± 0.3% in animals with LCX and RCA MI, respectively, for LSG (P = .001) and from 3.02% ± 0.4% in controls to 1.36% ± 0.3% and 0.68% ± 0.2% in LCX and RCA MI, respectively, for RSG (P = .002). Both TH-negative and TH-positive neurons increased in size after LCX and RCA MI. Neuropeptide Y immunoreactivity was also increased significantly by LCX and RCA MI in both ganglia.. Left- and right-sided MIs equally induced morphologic and neurochemical changes in LSG and RSG neurons, independent of infarct site. These data indicate that afferent signals transduced after MI result in bilateral changes and provide a rationale for bilateral interventions targeting the sympathetic chain for arrhythmia modulation. Topics: Animals; Coronary Vessels; Disease Models, Animal; Electrocardiography; Myocardial Infarction; Neuronal Plasticity; Neurons; Neuropeptide Y; Spatial Analysis; Stellate Ganglion; Swine; Tyrosine 3-Monooxygenase | 2015 |
Exercise Enhances the Behavioral Responses to Acute Stress in an Animal Model of PTSD.
This study examined the effects of endurance exercise on the behavioral response to stress and patterns of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY), and δ-opioid receptor (phospho-DOR) expression in the hippocampus.. Animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. After training, one group of animals was exposed to a predator scent stress (PSS) protocol for 10 min. Outcome measurements included behavior in an elevated plus-maze (EPM) and acoustic startle response (ASR) 7 d after exposure to stress. Immunohistochemical technique was used to detect the expression of the BDNF, NPY, and phospho-DOR in the hippocampus 8 d after exposure.. Sedentary animals exposed to PSS were observed to have a greater incidence of extreme behavior responses including higher anxiety, less total activity in the EPM, and greater amplitude in the ASR than unexposed and/or trained animals. Exercise-trained animals exposed to PSS developed a resiliency to the stress, reflected by significantly greater total activity in the EPM, reduced anxiety, and reduced ASR compared to the sedentary, exposed animals. Exercise in the absence of stress significantly elevated the expression of BDNF and phospho-DOR, whereas exposure to PSS resulted in a significant decline in the expression of NPY, BDNF, and phospho-DOR. Trained animals that were exposed maintained expression of BDNF, NPY, and phospho-DOR in most subregions of the hippocampus.. Results indicated that endurance training provided a mechanism to promote resilience and/or recovery from stress. In addition, exercise increased expression of BDNF, NPY, and DOR signaling in the hippocampus that was associated with the greater resiliency seen in the trained animals. Topics: Animals; Behavior, Animal; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Exercise; Hippocampus; Humans; Male; Maze Learning; Neuropeptide Y; Rats, Sprague-Dawley; Receptors, Opioid, delta; Reflex, Startle; Stress Disorders, Post-Traumatic; Stress, Psychological | 2015 |
High neuropeptide Y release associates with Ewing sarcoma bone dissemination - in vivo model of site-specific metastases.
Ewing sarcoma (ES) develops in bones or soft tissues of children and adolescents. The presence of bone metastases is one of the most adverse prognostic factors, yet the mechanisms governing their formation remain unclear. As a transcriptional target of EWS-FLI1, the fusion protein driving ES transformation, neuropeptide Y (NPY) is highly expressed and released from ES tumors. Hypoxia up-regulates NPY and activates its pro-metastatic functions. To test the impact of NPY on ES metastatic pattern, ES cell lines, SK-ES1 and TC71, with high and low peptide release, respectively, were used in an orthotopic xenograft model. ES cells were injected into gastrocnemius muscles of SCID/beige mice, the primary tumors excised, and mice monitored for the presence of metastases. SK-ES1 xenografts resulted in thoracic extra-osseous metastases (67%) and dissemination to bone (50%) and brain (25%), while TC71 tumors metastasized to the lungs (70%). Bone dissemination in SK-ES1 xenografts associated with increased NPY expression in bone metastases and its accumulation in bone invasion areas. The genetic silencing of NPY in SK-ES1 cells reduced bone degradation. Our study supports the role for NPY in ES bone invasion and provides new models for identifying pathways driving ES metastases to specific niches and testing anti-metastatic therapeutics. Topics: Animals; Bone Neoplasms; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Culture Media, Conditioned; Disease Models, Animal; Female; Gene Silencing; Humans; Hypoxia; Lung Neoplasms; Mice; Mice, SCID; Neoplasm Metastasis; Neoplasm Transplantation; Neuropeptide Y; Oncogene Proteins, Fusion; Phenotype; Proto-Oncogene Protein c-fli-1; RNA-Binding Protein EWS; Sarcoma, Ewing | 2015 |
Effects of sleeve gastrectomy and gastric banding on the hypothalamic feeding center in an obese rat model.
Laparoscopic sleeve gastrectomy (SG) and gastric banding (GB) are popular bariatric procedures for treating morbid obesity. This study aimed to investigate changes in the hypothalamic feeding center after these surgeries in a diet-induced obese rat model.. Obesity was induced in 60 Sprague-Dawley rats using a high-energy diet for 6 weeks. These rats were divided into four groups: the sham-operated (SO) control, pair-fed (PF) control, SG and GB groups. Six weeks after the surgery, metabolic parameters, the plasma levels of leptin, ghrelin, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) and the hypothalamic mRNA expressions of neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) were measured.. Compared with those observed in the SO group, the body and fat tissue weights were significantly decreased and the metabolic parameters were significantly improved in the PF, SG and GB groups 6 weeks after surgery. The plasma ghrelin levels were significantly lower and the PYY and GLP-1 levels were significantly higher in the SG group than in the PF, GB and SO groups. Compared with that seen in the PF and GB groups, the hypothalamic mRNA expression of NPY was significantly lower and the expression of POMC was significantly higher in the SG group.. SG may affect the neurological pathway associated with appetite in the hypothalamus and thereby control ingestive behavior. Topics: Animals; Bariatric Surgery; Disease Models, Animal; Feeding Behavior; Gastrectomy; Ghrelin; Glucagon-Like Peptide 1; Hypothalamus; Leptin; Male; Neuropeptide Y; Obesity, Morbid; Peptide YY; Pro-Opiomelanocortin; Rats, Sprague-Dawley; RNA, Messenger | 2015 |
NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking.
Binge alcohol drinking is a tremendous public health problem because it leads to the development of numerous pathologies, including alcohol abuse and anxiety. It is thought to do so by hijacking brain systems that regulate stress and reward, including neuropeptide Y (NPY) and corticotropin-releasing factor (CRF). The central actions of NPY and CRF have opposing functions in the regulation of emotional and reward-seeking behaviors; thus, dysfunctional interactions between these peptidergic systems could be involved in the development of these pathologies. We used converging physiological, pharmacological and chemogenetic approaches to identify a precise neural mechanism in the bed nucleus of the stria terminalis (BNST), a limbic brain region involved in pathological reward and anxiety behaviors, underlying the interactions between NPY and CRF in the regulation of binge alcohol drinking in both mice and monkeys. We found that NPY Y1 receptor (Y1R) activation in the BNST suppressed binge alcohol drinking by enhancing inhibitory synaptic transmission specifically in CRF neurons via a previously unknown Gi-mediated, PKA-dependent postsynaptic mechanism. Furthermore, chronic alcohol drinking led to persistent alterations in Y1R function in the BNST of both mice and monkeys, highlighting the enduring, conserved nature of this effect across mammalian species. Together, these data provide both a cellular locus and signaling framework for the development of new therapeutics for treatment of neuropsychiatric diseases, including alcohol use disorders. Topics: Animals; Behavior, Animal; Binge Drinking; Circadian Rhythm; Corticotropin-Releasing Hormone; Disease Models, Animal; Macaca mulatta; Male; Mice; Mice, Inbred C57BL; Neural Inhibition; Neuropeptide Y; Receptors, Neuropeptide Y; Septal Nuclei; Signal Transduction | 2015 |
Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat model of neuropathic pain.
Neuropeptide Y (NPY) has been implicated in the modulation of pain. Under normal conditions, NPY is found in interneurons in the dorsal horn of the spinal cord and in sympathetic postganglionic neurons but is absent from the cell bodies of sensory neurons. Following peripheral nerve injury NPY is dramatically upregulated in the sensory ganglia. How NPY expression is altered in the peripheral nervous system, distal to a site of nerve lesion, remains unknown. To address this question, NPY expression was investigated using immunohistochemistry at the level of the trigeminal ganglion, the mental nerve and in the skin of the lower lip in relation to markers of sensory and sympathetic fibers in a rat model of trigeminal neuropathic pain.. At 2 and 6 weeks after chronic constriction injury (CCI) of the mental nerve, de novo expression of NPY was seen in the trigeminal ganglia, in axons in the mental nerve, and in fibers in the upper dermis of the skin. In lesioned animals, NPY immunoreactivity was expressed primarily by large diameter mental nerve sensory neurons retrogradely labelled with Fluorogold. Many axons transported this de novo NPY to the periphery as NPY-immunoreactive (IR) fibers were seen in the mental nerve both proximal and distal to the CCI. Some of these NPY-IR axons co-expressed Neurofilament 200 (NF200), a marker for myelinated sensory fibers, and occasionally colocalization was seen in their terminals in the skin. Peptidergic and non-peptidergic C fibers expressing calcitonin gene-related peptide (CGRP) or binding isolectin B4 (IB4), respectively, never expressed NPY. CCI caused a significant de novo sprouting of sympathetic fibers into the upper dermis of the skin, and most, but not all of these fibers, expressed NPY.. This is the first study to provide a comprehensive description of changes in NPY expression in the periphery after nerve injury. Novel expression of NPY in the skin comes mostly from sprouted sympathetic fibers. This information is fundamental in order to understand where endogenous NPY is expressed, and how it might be acting to modulate pain in the periphery. Topics: Animals; Axons; Calcitonin Gene-Related Peptide; Disease Models, Animal; Male; Neuralgia; Neurons; Neuropeptide Y; Peripheral Nervous System; Rats, Sprague-Dawley; Skin | 2015 |
Environmental Enrichment Reduces Anxiety by Differentially Activating Serotonergic and Neuropeptide Y (NPY)-Ergic System in Indian Field Mouse (Mus booduga): An Animal Model of Post-Traumatic Stress Disorder.
Exposure to a predator elicits an innate fear response and mimics several behavioral disorders related to post-traumatic stress disorder (PTSD). The protective role of an enriched condition (EC) against psychogenic stressors in various animal models has been well documented. However, this condition has not been tested in field mice in the context of PTSD. In this study, we show that field mice (Mus booduga) housed under EC exhibit predominantly proactive and less reactive behavior compared with mice housed under standard conditions (SC) during exposure to their natural predator (field rat Rattus rattus). Furthermore, we observed that EC mice displayed less anxiety-like behavior in an elevated plus maze (EPM) and light/dark-box after exposure to the predator (7 hrs/7 days). In EC mice, predator exposure elevated the level of serotonin (5-Hydroxytrypamine, [5-HT]) in the amygdala as part of the coping response. Subsequently, the serotonin transporter (SERT) and 5-HT1A receptor were up-regulated significantly, but the same did not occur in the 5-HT2C receptor, which is associated with the activation of calmodulin-dependent protein kinase-II (CaMKII) and a transcription factor cAMP response element binding protein (CREB). Our results show that predator exposure induced the activation of CaMKII/CREB, which is accompanied with increased levels of histone acetylation (H3, H4) and decreased histone deacetylases (HDAC1, 2). Subsequently, in the amygdala, the transcription of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY) and its Y1 receptor were up-regulated, whereas the Y2 receptor was down-regulated. Therefore, EC facilitated a coping response against a fear associated cue in a PTSD animal model and reduced anxiety by differentially activating serotonergic and NPY-ergic systems. Topics: Amygdala; Animals; Anxiety; Anxiety Disorders; Behavior, Animal; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Environment; Fear; Histones; Male; Mice; Neuropeptide Y; Rats; Receptor, Serotonin, 5-HT1A; Receptor, Serotonin, 5-HT2C; Serotonin; Serotonin Plasma Membrane Transport Proteins; Stress Disorders, Post-Traumatic; Stress, Psychological; Up-Regulation | 2015 |
Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice.
Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4mmol/μl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression. Topics: Adrenocorticotropic Hormone; Animals; Antidepressive Agents, Tricyclic; Corticosterone; Depressive Disorder; Disease Models, Animal; Drug Resistance; Female; Hippocampus; Hydroxyindoleacetic Acid; Indoleamine-Pyrrole 2,3,-Dioxygenase; Mice; Mice, Inbred C57BL; Neuropeptide Y; Swimming | 2015 |
A potential anti-allodynic mechanism of GDNF following L5 spinal nerve ligation; Mitigation of NPY up-regulation in the touch sense pathway.
Intrathecal delivery of glial cell line-derived neurotrophic factor (GDNF) reverses mechanical allodynia after 5th lumbar (L5) spinal nerve ligation (SNL). However, the molecular mechanism behind this process is not fully understood. Following sciatic nerve injury, primary afferent neurons in the injured dorsal root ganglion (DRG) begin to express neuropeptide Y (NPY) that is absent in normal DRG. The aim of the current study was to determine the relationship of this de novo expression of NPY and the anti-allodynic effect of GDNF. Following L5 SNL, 73% of neurons began to express NPY mRNA in the ipsilateral L5 DRG and robust NPY-immunoreactive fibers appeared in the ipsilateral GN where the touch-sense mediating A-fiber primary afferents from the hindpaw terminate. Seven-daylong intrathecal infusion of GDNF at the L5 DRG level, starting on day three when mechanical allodynia had fully developed, reversed once-established these changes. The GN neurons normally expressed NPY Y1 receptor, but not Y2, Y4, or Y5 receptors, and L5 SNL did not change the expression pattern. Bolus intracisternal injection of BIBP3226, a Y1 receptor antagonist, dose-dependently reversed mechanical allodynia. We demonstrated that GDNF reversed once-established mechanical allodynia as well as NPY induction in the touch-sense processing pathway. NPY could facilitate touch-sense processing by Y1 receptor in the gracile nucleus after peripheral nerve injury. GDNF may exert anti-allodynic effects through mitigation of this NPY up-regulation. The effectiveness of delayed treatment further indicates the therapeutic potential of GDNF on neuropathic pain. Topics: Animals; Disease Models, Animal; Ganglia, Spinal; Glial Cell Line-Derived Neurotrophic Factor; Hyperalgesia; Male; Neural Pathways; Neurons; Neuropeptide Y; Neuroprotective Agents; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; RNA, Messenger; Spinal Nerves; Time Factors; Up-Regulation | 2015 |
Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease.
Machado-Joseph disease (MJD) is a fatal, dominantly inherited neurodegenerative disorder associated with an expanded polyglutamine tract within the ataxin-3 protein, and characterized by progressive impairment of motor coordination, associated with neurodegeneration of specific brain regions, including cerebellum and striatum. The currently available therapies do not allow modification of disease progression. Neuropeptide Y (NPY) has been shown to exert potent neuroprotective effects by multiple pathways associated with the MJD mechanisms of disease. Thus, we evaluated NPY levels in MJD and investigated whether raising NPY by gene transfer would alleviate neuropathological and behavioural deficits in cerebellar and striatal mouse models of the disease. For that, a cerebellar transgenic and a striatal lentiviral-based models of MJD were used. NPY overexpression in the affected brain regions in these two mouse models was obtained by stereotaxic injection of adeno-associated viral vectors encoding NPY. Up to 8 weeks after viral injection, balance and motor coordination behaviour and neuropathology were analysed. We observed that NPY levels were decreased in two MJD patients' cerebella and in striata and cerebella of disease mouse models. Furthermore, overexpression of NPY alleviated the motor coordination impairments and attenuated the related neuropathological parameters, preserving cerebellar volume and granular layer thickness, reducing striatal lesion and decreasing mutant ataxin-3 aggregation. Additionally, NPY mediated increase of brain-derived neurotrophic factor levels and decreased neuroinflammation markers. Our data suggest that NPY is a potential therapeutic strategy for MJD. Topics: Animals; Ataxin-3; Brain-Derived Neurotrophic Factor; Cerebellum; Dependovirus; Disease Models, Animal; Down-Regulation; Genetic Therapy; Genetic Vectors; Humans; Machado-Joseph Disease; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuropeptide Y; Visual Cortex | 2015 |
Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y.
Dysregulation of the central noradrenergic system is a core feature of post-traumatic stress disorder (PTSD). Here, we examined molecular changes in locus coeruleus (LC) triggered by single-prolonged stress (SPS) PTSD model at a time when behavioral symptoms are manifested, and the effect of early intervention with intranasal neuropeptide Y (NPY). Immediately following SPS stressors, male SD rats were administered intranasal NPY (SPS/NPY) or vehicle (SPS/V). Seven days later, TH protein, but not mRNA, was elevated in LC only of the SPS/V group. Although 90% of TH positive cells expressed GR, its levels were unaltered. Compared to unstressed controls, LC of SPS/V, but not SPS/NPY, expressed less Y2 receptor mRNA with more CRHR1 mRNA in subset of animals, and elevated corticotropin-releasing hormone (CRH) in central nucleus of amygdala. Following testing for anxiety on elevated plus maze (EPM), there were significantly increased TH, DBH and NPY mRNAs in LC of SPS-treated, but not previously unstressed animals. Their levels highly correlated with each other but not with behavioral features on EPM. Thus, SPS triggers long-term noradrenergic activation and higher sensitivity to mild stressors, perhaps mediated by the up-regulation influence of amygdalar CRH input and down-regulation of Y2R presynaptic inhibition in LC. Results also demonstrate the therapeutic potential of early intervention with intranasal NPY for traumatic stress-elicited noradrenergic impairments. Single-prolonged stress (SPS)-triggered long-term changes in the locus coeruleus/norepinephrine (LC/NE) system with increased tyrosine hydroxylase (TH) protein and CRH receptor 1(CRHR1) mRNA and lower neuropeptide Y receptor 2 (Y2R) mRNA levels as well as elevated corticotropin-releasing hormone (CRH) in the central nucleus of amygdala (CeA) that were prevented by early intervention with intranasal neuropeptide Y (NPY). SPS treatment led to increased sensitivity of LC to mild stress of elevated plus maze (EPM), with elevated mRNA for NE biosynthetic enzymes in subset of animals. Topics: Administration, Intranasal; Animals; Corticotropin-Releasing Hormone; Disease Models, Animal; Dopamine beta-Hydroxylase; Gene Expression Regulation; Locus Coeruleus; Male; Maze Learning; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Corticotropin-Releasing Hormone; Receptors, Neuropeptide Y; Restraint, Physical; RNA, Messenger; Stress Disorders, Post-Traumatic; Tyrosine 3-Monooxygenase | 2015 |
Electro-acupuncture decreases 5-HT, CGRP and increases NPY in the brain-gut axis in two rat models of Diarrhea-predominant irritable bowel syndrome(D-IBS).
To examine whether electro-acupuncture (EA) could decrease 5-hydroxytryptamine (5-HT) and calcitonin gene-related peptide (CGRP), and increase neuro-peptide Y (NPY) in the brain-gut axis (BGA) in D-IBS using rat models.. Rats were randomly exposed to unpredictable chronic stress for 3 weeks followed by 1-hour acute restraint stress (CAS) after 7 days of rest, or daily gavage of Senna decoction (6 g/kg) plus chronic restraint stress (for a duration of 2 h, starting from 1 h prior to the gavage) for 2 weeks (ISC). The content of 5-HT, CGRP and NPY in the distal colon, spinal cord, hypothalamus was examined at the end of the treatment.. 1. The two rat models exhibited similar characteristics, e.g., increased number of fecal pellets expelled in 1 h, decreased sacchar-intake, decreased CRD, elevated 5-HT, CGRP content and decreased NPY in the distal colon, spinal cord, hypothalamus (P < 0.05 vs. that in healthy control rats). 2. A series of equations was developed based on correlation regression analysis. The analysis results demonstrated that 5-HT mediates the changes in hypothalamus, spinal cord and colon. 5-HT and CGRP in spinal cord was closely correlated with general behavior evaluation and other transmitters in BGA.. 1. In comparison to 5-HT, CGRP and NPY (particularly in the spinal cord) had closer relationship with the D-IBS symptoms induced by either stress factors or Senna decotion. 2. EA treatment could restore the brain-gut axis to balanced levels. Topics: Acupuncture Therapy; Animals; Brain; Calcitonin Gene-Related Peptide; Colon; Diarrhea; Disease Models, Animal; Hypothalamus; Irritable Bowel Syndrome; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Serotonin; Spinal Cord | 2015 |
Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection.
Monocyte infiltration into the CNS is a hallmark of several viral infections of the central nervous system (CNS), including retrovirus infection. Understanding the factors that mediate monocyte migration in the CNS is essential for the development of therapeutics that can alter the disease process. In the current study, we found that neuropeptide Y (NPY) suppressed monocyte recruitment to the CNS in a mouse model of polytropic retrovirus infection. NPY(-/-) mice had increased incidence and kinetics of retrovirus-induced neurological disease, which correlated with a significant increase in monocytes in the CNS compared to wild-type mice. Both Ly6C(hi) inflammatory and Ly6C(lo) alternatively activated monocytes were increased in the CNS of NPY(-/-) mice following virus infection, suggesting that NPY suppresses the infiltration of both cell types. Ex vivo analysis of myeloid cells from brain tissue demonstrated that infiltrating monocytes expressed high levels of the NPY receptor Y2R. Correlating with the expression of Y2R on monocytes, treatment of NPY(-/-) mice with a truncated, Y2R-specific NPY peptide suppressed the incidence of retrovirus-induced neurological disease. These data demonstrate a clear role for NPY as a negative regulator of monocyte recruitment into the CNS and provide a new mechanism for suppression of retrovirus-induced neurological disease.. Monocyte recruitment to the brain is associated with multiple neurological diseases. However, the factors that influence the recruitment of these cells to the brain are still not well understood. In the current study, we found that neuropeptide Y, a protein produced by neurons, affected monocyte recruitment to the brain during retrovirus infection. We show that mice deficient in NPY have increased influx of monocytes into the brain and that this increase in monocytes correlates with neurological-disease development. These studies provide a mechanism by which the nervous system, through the production of NPY, can suppress monocyte trafficking to the brain and reduce retrovirus-induced neurological disease. Topics: Animals; Cell Movement; Central Nervous System; Disease Models, Animal; Immunosuppressive Agents; Mice; Mice, Knockout; Monocytes; Neuropeptide Y; Retroviridae Infections | 2015 |
Effect of immobilization stress on the appetite and stomach ghrelin expression in maternal mice.
Maternal stress exerts long-lasting postnatal growth on offspring, which persist into adulthood. However, the effect of maternal stress on appetizing system has not been widely reported. In this study, we found that maternal immobilization stress (IS) during lactation resulted in low body weight and food intake. Immunohistochemistry showed an increase in stomach ghrelin protein expression. The central regulation of body weight and food intake occurs in the hypothalamus, which contains multiple neuronal systems that play important roles in the regulation of energy homeostasis. These systems including multiple neuropeptides involve in the ghrelin pathway of appetite regulation. Therefore, real time reverse transcription polymerase chain reaction (RT-PCR) was used to measure the change of mRNA expression of ghrelin pathway related hormones in order to explore the mechanisms involved in the appetite regulation. Expression levels of the hypothalamic 5-hydroxytryptamine 2c receptor (5-HT2cR) and 5-HT2bR, which are essential for the development and function of ghrelin and leptin, were decreased, as well as those of corticotrophin releasing factor (CRF) and pro-opiomelanocortin (POMC). While the expression of growth hormone secretagogue receptor (GHSR), neuropeptide-Y (NPY) and agouti-related protein (AgRP) showed an increase with significant difference. These results suggest that stress in a postpartum mother has persistent effects on the body weight of their offspring. Increased ghrelin and decreased leptin expression in the stomach may play a role in these effects. Topics: Agouti Signaling Protein; Animals; Appetite Regulation; Corticotropin-Releasing Hormone; Disease Models, Animal; Eating; Feeding Behavior; Female; Gastric Mucosa; Ghrelin; Hypothalamus; Lactation; Leptin; Maternal Exposure; Mice, Inbred ICR; Neuropeptide Y; Postpartum Period; Pro-Opiomelanocortin; Receptor, Serotonin, 5-HT2B; Receptor, Serotonin, 5-HT2C; Receptors, Ghrelin; Restraint, Physical; Stress, Psychological; Time Factors; Weight Gain | 2015 |
Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model.
PTSD is a debilitating neuropsychiatric disorder and many patients do not respond sufficiently to current treatments. Neuropeptide Y (NPY) is suggested to provide resilience to the development of PTSD and co-morbid depression. Injections of NPY to the rodent brain are anxiolytic. Recently we showed that intranasal delivery of NPY to rats before or immediately after exposure to single prolonged stress (SPS) animal model of PTSD prevented development of many biochemical and behavioral symptoms of PTSD, indicating its prophylactic potential. Here, we investigated whether intranasal NPY might provide benefits once symptoms have already developed. One week after exposure to SPS stressors, animals were given intranasal NPY or vehicle and tested on elevated plus maze 2h or 2 days later. The NPY treated rats had lower anxiety-like behavior than vehicle treated rats as indicated by more entries into open arms and fewer into closed arms, lower anxiety index, higher risk assessment and unprotected head dips and reduced grooming time. Their anxiety index was similar to that of unstressed controls. On most of these variables there was no effect of time interval and rats displayed similar overall changes 2h or 2 days after the infusion. Moreover, intranasal NPY led to reduced depressive-like behavior, assessed by forced swim test. Thus, intranasal NPY reversed several behavioral impairments triggered by the traumatic stress of SPS and has potential for non-invasive PTSD therapeutic intervention. Topics: Administration, Intranasal; Analysis of Variance; Animals; Antidepressive Agents; Anxiety; Depression; Disease Models, Animal; Exploratory Behavior; Immobility Response, Tonic; Male; Maze Learning; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic; Swimming; Time Factors | 2014 |
New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line.
Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC. Topics: Agouti-Related Protein; Animals; Cachexia; Cell Line, Tumor; Corticotropin-Releasing Hormone; Cytokines; Disease Models, Animal; Drugs, Chinese Herbal; Humans; Hypothalamic Hormones; Hypothalamus; Leukemia Inhibitory Factor; Male; Melanins; Nerve Tissue Proteins; Neuropeptide Y; Oxygen Consumption; Pituitary Hormones; Pro-Opiomelanocortin; Rats; Rats, Nude; RNA, Messenger; Stomach Neoplasms | 2014 |
TBI and sex: crucial role of progesterone protecting the brain in an omega-3 deficient condition.
We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity. Topics: Animals; Animals, Newborn; Anxiety; Brain Injuries; Dietary Fats; Disease Models, Animal; Fatty Acids; Fatty Acids, Omega-3; Female; GAP-43 Protein; Male; Maze Learning; Myelin Proteins; Myelin-Associated Glycoprotein; Neuropeptide Y; Nogo Proteins; Ovariectomy; Pregnancy; Prenatal Exposure Delayed Effects; Progesterone; Progestins; Qa-SNARE Proteins; Rats; Rats, Sprague-Dawley; Sex Factors | 2014 |
Hindbrain lactostasis regulates hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein responses to hypoglycemia.
Nerve cell metabolic activity is monitored in multiple brain regions, including the hypothalamus and hindbrain dorsal vagal complex (DVC), but it is unclear if individual metabolosensory loci operate autonomously or interact to coordinate central nervous system (CNS) reactivity to energy imbalance. This research addressed the hypothesis that hypoglycemia-associated DVC lactoprivation stimulates hypothalamic AMPK activity and metabolic neurotransmitter expression. As DVC catecholaminergic neurons express biomarkers for metabolic monitoring, we investigated whether these cells are a source of lactate deficit signaling to the hypothalamus. Caudal fourth ventricle (CV4) infusion of the glucose metabolite l-lactate during insulin-induced hypoglycemia reversed changes in DVC A2 noradrenergic, arcuate neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), and lateral hypothalamic orexin-A (ORX) neuronal AMPK activity, coincident with exacerbation of hypoglycemia. Hindbrain lactate repletion also blunted hypoglycemic upregulation of arcuate NPY mRNA and protein. This treatment did not alter hypoglycemic paraventricular oxytocin (OT) and lateral hypothalamic ORX mRNA profiles, but exacerbated or reversed adjustments in OT and ORX neuropeptide synthesis, respectively. CV4 delivery of the monocarboxylate transporter inhibitor, 4-CIN, increased A2 phosphoAMPK (pAMPK), elevated circulating glucose, and stimulated feeding, responses that were attenuated by 6-hydroxydopamine pretreatment. 4-CIN-infused rats exhibited increased (NPY, ORX neurons) or decreased (POMC neurons) pAMPK concurrent with hyperglycemia. These data show that hindbrain lactoprivic signaling regulates hypothalamic AMPK and key effector neurotransmitter responses to hypoglycemia. Evidence that A2 AMPK activity is lactate-dependent, and that DVC catecholamine cells are critical for lactoprivic control of glucose, feeding, and hypothalamic AMPK, implies A2 derivation of this metabolic regulatory stimulus. Topics: Adrenergic Neurons; AMP-Activated Protein Kinases; Animals; Disease Models, Animal; Energy Metabolism; Enzyme Activation; Feeding Behavior; Gene Expression Regulation; Hypoglycemia; Hypothalamus; Infusions, Intraventricular; Insulin; Intracellular Signaling Peptides and Proteins; Lactic Acid; Male; Neuropeptide Y; Neuropeptides; Orexins; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Rhombencephalon; RNA, Messenger; Signal Transduction | 2014 |
Altered expression of neuropeptide Y, Y1 and Y2 receptors, but not Y5 receptor, within hippocampus and temporal lobe cortex of tremor rats.
As an endogenous inhibitor of glutamate-mediated synaptic transmission in mammalian central nervous system, neuropeptide Y (NPY) plays a crucial role in regulating homeostasis of neuron excitability. Loss of balance between excitatory and inhibitory neurotransmission is thought to be a chief mechanism of epileptogenesis. The abnormal expression of NPY and its receptors observed following seizures have been demonstrated to be related to the production of epilepsy. The tremor rat (TRM) is a hereditary epileptic animal model. So far, there is no report concerning whether NPY and its receptors may be involved in TRM pathogenesis. In this study, we focused on the expression of NPY and its three receptor subtypes: Y1R, Y2R and Y5R in the TRM brain. We first found the expression of NPY in TRM hippocampus and temporal lobe cortex was increased compared with control (Wistar) rats. The mRNA and protein expression of Y1R was down-regulated in hippocampus but up-regulated in temporal lobe cortex, whereas Y2R expression was significantly increased in both areas. There was no significant change of Y5R expression in either area. The immunohistochemistry data showed that Y1R, Y2R, Y5R were present throughout CA1, CA3, dentate gyrus (DG) and the entorhinal cortex which is included in the temporal lobe cortex of TRM. In conclusion, our results showed the altered expression of NPY, Y1R and Y2R but not Y5R in hippocampus and temporal lobe cortex of TRM brain. This abnormal expression may be associated with the generation of epileptiform activity and provide a candidate target for treatment of genetic epilepsy. Topics: Animals; Disease Models, Animal; Epilepsy; Female; Hippocampus; Male; Neuropeptide Y; Rats, Mutant Strains; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Neuropeptide Y; Temporal Lobe; Tremor | 2014 |
Increased density of inhibitory noradrenergic parenchymal nerve fibers in hypertrophic islets of Langerhans of obese mice.
We sought to identify mechanisms of beta cell failure in genetically obese mice. Little is known about the role of pancreatic innervation in the progression of beta cell failure. In this work we studied adrenergic innervation, in view of its potent inhibitory effect on insulin secretion. We analyzed genetically obese ob/ob and db/db mice at different ages (6- and 15-week-old), corresponding to different compensatory stages in the course of beta cell dysfunction. 15 week-old HFD mice were also studied.. All mice were characterized by measures of plasma glucose, insulin, and HOMA. After perfusion, pancreata were dissected and studied by light microscopy, electron microscopy, and morphometry. Insulin, Tyrosine Hydroxylase-positive fibers and cells and Neuropeptide Y-positive cells were scored by immunohistochemistry. Islets of obese mice showed increased noradrenergic fiber innervation, with significant increases of synaptoid structures contacting beta cells compared to controls. Noradrenergic innervation of the endocrine area in obese db/db mice tended to increase with age, as diabetes progressed. In ob/ob mice, we also detected an age-dependent trend toward increased noradrenergic innervation that, unlike in db/db mice, was unrelated to glucose levels. We also observed a progressive increase in Neuropeptide Y-immunoreactive elements localized to the islet core.. Our data show increased numbers of sympathetic nerve fibers with a potential to convey inhibitory signals on insulin secretion in pancreatic islets of genetically obese animals, regardless of their diabetic state. The findings suggest an alternative interpretation of the pathogenesis of beta cell failure, as well as novel strategies to reverse abnormalities in insulin secretion. Topics: Adrenergic Neurons; Age Factors; Animals; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Female; Hypertrophy; Insulin; Insulin-Secreting Cells; Islets of Langerhans; Mice; Neural Inhibition; Neuropeptide Y; Obesity; Tyrosine 3-Monooxygenase | 2014 |
Gene therapy for neuropathic pain by silencing of TNF-α expression with lentiviral vectors targeting the dorsal root ganglion in mice.
Neuropathic pain can be a debilitating condition. Many types of drugs that have been used to treat neuropathic pain have only limited efficacy. Recent studies indicate that pro-inflammatory mediators including tumor necrosis factor α (TNF-α) are involved in the pathogenesis of neuropathic pain. In the present study, we engineered a gene therapy strategy to relieve neuropathic pain by silencing TNF-α expression in the dorsal root ganglion (DRG) using lentiviral vectors expressing TNF short hairpin RNA1-4 (LV-TNF-shRNA1-4) in mice. First, based on its efficacy in silencing TNF-α in vitro, we selected shRNA3 to construct LV-TNF-shRNA3 for in vivo study. We used L5 spinal nerve transection (SNT) mice as a neuropathic pain model. These animals were found to display up-regulated mRNA expression of activating transcription factor 3 (ATF3) and neuropeptide Y (NPY), injury markers, and interleukin (IL)-6, an inflammatory cytokine in the ipsilateral L5 DRG. Injection of LV-TNF-shRNA3 onto the proximal transected site suppressed significantly the mRNA levels of ATF3, NPY and IL-6, reduced mechanical allodynia and neuronal cell death of DRG neurons. These results suggest that lentiviral-mediated silencing of TNF-α in DRG relieves neuropathic pain and reduces neuronal cell death, and may constitute a novel therapeutic option for neuropathic pain. Topics: Activating Transcription Factor 3; Animals; Cell Death; Disease Models, Animal; Ganglia, Spinal; Gene Expression Regulation; Gene Silencing; Genetic Therapy; Genetic Vectors; Interleukin-6; Lentivirus; Male; Mice; Mice, Inbred C57BL; Neuralgia; Neurons; Neuropeptide Y; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Spinal Cord Injuries; Tumor Necrosis Factor-alpha | 2014 |
Neuropeptide Y-stimulated [(35) S]GTPγs functional binding is reduced in the hippocampus after kainate-induced seizures in mice.
Kainate-induced seizures constitute a model of temporal lobe epilepsy where prominent changes are observed in the hippocampal neuropeptide Y (NPY) system. However, little is known about the functional state and signal transduction of the NPY receptor population resulting from kainate exposure. Thus, in this study, we explored functional NPY receptor activity in the mouse hippocampus and neocortex after kainate-induced seizures using NPY-stimulated [(35) S]GTPγS binding. Moreover, we also studied levels of [(125) I]-peptide YY (PYY) binding and NPY, Y1, Y2, and Y5 receptor mRNA in these kainate-treated mice. Functional NPY binding was unchanged up to 12 h post-kainate, but decreased significantly in all hippocampal regions after 24 h and 1 week. Similarly, a decrease in [(125) I]-PYY binding was found in the dentate gyrus (DG) 1 week post-kainate. However, at 2 h, 6 h, and 12 h, [(125) I]-PYY binding was increased in all regions, and in the CA1 also at 24 h post-kainate. NPY mRNA levels were prominently increased in hippocampal regions, reaching maximum at 12 and 24 h. Y1 and Y5 mRNA levels were lowered in the DG at 24 and 2 h, respectively, while Y2 mRNA levels were elevated at 24 h in the DG and CA3. This study confirms rat kainate studies by showing pronounced adaptive changes in the mouse hippocampus both with regard to NPY synthesis and NPY receptor synthesis and binding, which may contribute to regulating neuronal seizure susceptibility after kainate. However, the potential seizure-suppressant effects of increased NPY gene expression at late time points post-kainate could be attenuated by the novel finding of reduced NPY-receptor G-protein activation. Topics: Animals; Autoradiography; Disease Models, Animal; Epilepsy, Temporal Lobe; Guanosine 5'-O-(3-Thiotriphosphate); Hippocampus; Kainic Acid; Male; Mice; Neocortex; Neuropeptide Y; Peptide YY; Receptors, Neuropeptide Y; RNA, Messenger; Seizures; Time Factors | 2014 |
Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons.
Weight loss is a prominent early feature of Alzheimer's disease (AD) that often precedes the cognitive decline and clinical diagnosis. While the exact pathogenesis of AD remains unclear, accumulation of amyloid-β (Aβ) derived from the amyloid precursor protein (APP) in the brain is thought to lead to the neuronal dysfunction and death underlying the dementia. In this study, we examined whether transgenic mice overexpressing the Swedish mutation of APP (Tg2576), recapitulating selected features of AD, have hypothalamic leptin signaling dysfunction leading to early body weight deficits. We found that 3-month-old Tg2576 mice, before amyloid plaque formation, exhibit decreased weight with markedly decreased adiposity, low plasma leptin levels, and increased energy expenditure without alterations in feeding behavior. The expression of the orexigenic neuropeptide Y (NPY) in the hypothalamus to the low leptin state was abnormal at basal and fasting conditions. In addition, arcuate NPY neurons exhibited abnormal electrophysiological responses to leptin in Tg2576 hypothalamic slices or wild-type slices treated with Aβ. Finally, the metabolic deficits worsened as Tg2576 mice aged and amyloid burden increased in the brain. These results indicate that excess Aβ can potentially disrupt hypothalamic arcuate NPY neurons leading to weight loss and a pathologically low leptin state early in the disease process that progressively worsens as the amyloid burden increases. Collectively, these findings suggest that weight loss is an intrinsic pathological feature of Aβ accumulation and identify hypothalamic leptin signaling as a previously unrecognized pathogenic site of action for Aβ. Topics: Adiposity; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Arcuate Nucleus of Hypothalamus; Brain; Brain Chemistry; Disease Models, Animal; Disease Progression; Fasting; Feeding Behavior; Female; Genes, Reporter; Humans; Hypothalamus; Leptin; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Neurons; Neuropeptide Y; Patch-Clamp Techniques; Plaque, Amyloid; Weight Loss | 2014 |
Effect of neuropeptide Y on norepinephrine-induced constriction in the rabbit facial artery after carotid artery occlusion.
Atherosclerotic-occlusive changes could be observed in orofacial branches of the external carotid artery. Atherosclerosis-induced ischemia caused alteration in production and release of endothelial factors. The aim of this study was to investigate the influence of carotid artery occlusion (10, 30 and 60 min) on vascular effects of norepinephrine (NOR) and neuropeptide Y (NPY) in the isolated glandular branch of the rabbit facial artery, the main feeding artery for the submandibular gland.. Changes in isometric tension were recorded in organ bath studies with arterial rings, before and after carotid artery occlusion.. Concentration-dependent vasocontractile effect of NOR was significantly augmented after 30 and 60 min of carotid occlusion, but only in the rings with intact endothelium. Given alone, NPY showed no effect in isolated glandular branch of the rabbit facial artery, but enhanced NOR vasoconstriction in all the investigated rings. NOR vasocontractile effect enhancement in the presence of NPY was attenuated after 30 and 60 min of carotid occlusion. Also, enhancement of NOR vasoconstriction by NPY was significantly higher in endothelium-intact rings compared to endothelium-denuded rings obtained after 30 and 60 min of carotid occlusion.. The present investigation provides results of increased vasocontractile effect of NOR and decreased enhancing effect of NPY on NOR vasoconstriction in the rabbit facial artery after carotid occlusion that is related to altered endothelium function. Topics: Animals; Arteries; Carotid Stenosis; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Face; Neuropeptide Y; Norepinephrine; Rabbits; Submandibular Gland; Vasoconstriction; Vasoconstrictor Agents; Vasodilation | 2014 |
Neuropeptide Y attenuates anxiety- and depression-like effects of cholecystokinin-4 in mice.
We investigated the involvement of neuropeptide Y (NPY) in the modulation of cholecystokinin-4 (CCK-4)-evoked anxiety and depression. Adult male mice were injected with vehicle, CCK-4, NPY, NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY or antagonist BIBP3226, via intracerebroventricular route, and subjected to social interaction or forced swim test (FST) for the evaluation of anxiety- and depression-like phenotypes, respectively. To assess the interactions between the two systems, if any, NPYergic agents were administered prior to CCK-4 and the animals were subjected to these behavioral tests. Treatment with CCK-4 or BIBP3226 dose-dependently reduced social interaction time, while NPY or [Leu(31), Pro(34)]-NPY produced opposite effect. CCK-4 treatment increased immobility time in FST. This effect was reversed by NPY and [Leu(31), Pro(34)]-NPY, although BIBP3226 per se did not alter the immobility time. In a combination study, the anxiogenic or depressive effects of CCK-4 were attenuated by NPY or [Leu(31), Pro(34)]-NPY and potentiated by BIBP3226. The brains of CCK-4 treated rats were processed for NPY immunohistochemistry. Following CCK-4 treatment, the nucleus accumbens shell (AcbSh), ventral part of lateral division of the bed nucleus of stria terminalis (BSTLV), hypothalamic paraventricular nucleus and locus coeruleus showed a reduction in NPY-immunoreactive fibers. Population of NPY-immunopositive cells was also decreased in the AcbSh, BSTLV, prefrontal cortex and hypothalamic arcuate nucleus (ARC). However, NPY-immunoreaction in the fibers of the ARC and cells of the central nucleus of amygdala was unchanged. We conclude that, inhibition of NPY signaling in the brain by CCK-4 might be causal to anxiety- and depression-like behaviors. Topics: Animals; Anti-Anxiety Agents; Anxiety; Arginine; Brain; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Immunohistochemistry; Male; Mice; Motor Activity; Neuropeptide Y; Neuropsychological Tests; Psychotropic Drugs; Receptors, Neuropeptide Y; Social Behavior; Swimming; Tetragastrin | 2014 |
Prenatal hypoxia leads to increased muscle sympathetic nerve activity, sympathetic hyperinnervation, premature blunting of neuropeptide Y signaling, and hypertension in adult life.
Adverse conditions prenatally increase the risk of cardiovascular disease, including hypertension. Chronic hypoxia in utero (CHU) causes endothelial dysfunction, but whether sympathetic vasoconstrictor nerve functioning is altered is unknown. We, therefore, compared in male CHU and control (N) rats muscle sympathetic nerve activity, vascular sympathetic innervation density, and mechanisms of sympathetic vasoconstriction. In young (Y)-CHU and Y-N rats (≈3 months), baseline arterial blood pressure was similar. However, tonic muscle sympathetic nerve activity recorded focally from arterial vessels of spinotrapezius muscle had higher mean frequency in Y-CHU than in Y-N rats (0.56±0.075 versus 0.33±0.036 Hz), and the proportions of single units with high instantaneous frequencies (1-5 and 6-10 Hz) being greater in Y-CHU rats. Sympathetic innervation density of tibial arteries was ≈50% greater in Y-CHU than in Y-N rats. Increases in femoral vascular resistance evoked by sympathetic stimulation at low frequency (2 Hz for 2 minutes) and bursts at 20 Hz were substantially smaller in Y-CHU than in Y-N rats. In Y-N only, the neuropeptide Y Y1-receptor antagonist BIBP3226 attenuated these responses. By contrast, baseline arterial blood pressure was higher in middle-aged (M)-CHU than in M-N rats (≈9 months; 139±3 versus 126±3 mm Hg, respectively). BIBP3226 had no effect on femoral vascular resistance increases evoked by 2 Hz or 20 Hz bursts in M-N or M-CHU rats. These results indicate that fetal programming induced by prenatal hypoxia causes an increase in centrally generated muscle sympathetic nerve activity in youth and hypertension by middle age. This is associated with blunting of sympathetically evoked vasoconstriction and its neuropeptide Y component that may reflect premature vascular aging and contribute to increased risk of cardiovascular disease. Topics: Aging; Animals; Blood Vessels; Disease Models, Animal; Female; Hypertension; Hypoxia; Male; Muscle, Skeletal; Neuropeptide Y; Pregnancy; Pregnancy, Animal; Prenatal Exposure Delayed Effects; Rats; Rats, Wistar; Signal Transduction; Sympathetic Nervous System; Vascular Resistance; Vasoconstriction | 2014 |
Cystain C and neuropeptid Y levels in brain tissues after experimental subarachnoid hemorrhage.
The aim of this study was to investigate the changes in the levels of cystatin C, which protects neurodegeneration in the central nervous system with the inhibition of cysteine protease and by inducing autophagy in the pathogenesis of cerebral vasospasm and levels of vasoconstrictive neuropeptid Y (NPY) in the brain tissue homogenates of rat model of subarachnoid hemorrhage (SAH). Three experimental groups were used: Day 2 and Day 7 groups after SAH, and also a control group. There were seven Wistar albino rats in each group. SAH was accomplished by transclival basilar artery puncture. Rat cystatin C, rat NPY were determined with ELISA in brain tissue homogenates. Day 2 group showed significantly enhanced cystatin C values in comparision with the control group (P=0.048). NPY levels between the Day 2 and Day 7 groups and the control groups were not significantly different (P=0.315). In histopathological examination, there was less neuronal loss in the Day 2 group than in the Day 7 group. Regarding our results, it would be more valuable to measure NPY levels in specific brain areas. The increased cystatin C levels on the second day after SAH is probably a pathophysiologic mechanism to organize protease activity. Topics: Animals; Brain; Cystatin C; Disease Models, Animal; Male; Neuropeptide Y; Rats; Subarachnoid Hemorrhage | 2014 |
Ilex paraguariensis (yerba mate) improves endocrine and metabolic disorders in obese rats primed by early weaning.
We showed that early weaned rats developed obesity, hyperleptinemia, leptin and insulin resistance at adulthood. Here, we studied the potential beneficial effects of Ilex paraguariensis aqueous solution upon body composition, glycemia, lipid and hormonal profiles, leptin signaling and NPY content.. To induce early weaning, lactating rats' teats were blocked with a bandage to interrupt lactation during the last 3 days (EW group), while control offspring had free access to milk throughout lactation (C group). In postnatal day (PN) 150, EW offspring were subdivided into: EW and EW+ mate groups treated, respectively, with water or yerba mate aqueous solution (1 g/kg BW/day, gavage) during 30 days. C offspring received water for gavage. In PN180, offspring were killed.. EW+ mate group presented lower body weight (-10 %), adipose mass (retroperitoneal:-40 % and epididymal:-44 %), total body fat (-43 %), subcutaneous fat (-46 %), visceral adipocyte area (-21 %), triglyceridemia (-31 %) and hypothalamic NPY content (-37 %) compared to EW group. However, hyperglycemia and lower HDL-c levels observed in EW group were not reverted with mate treatment. Although the hyperleptinemia, lower hypothalamic JAK2 and pSTAT3 content of EW group were not corrected by mate treatment, the hyperphagia and higher hypothalamic SOCS-3 content were normalized in EW+ mate group, indicating that the central leptin resistance could be restored.. Thus, the therapy with yerba mate solution was capable to reverse abdominal obesity, leptin resistance and hypertriglyceridemia, suggesting an important role of this bioactive component in the management of obesity in this programming model. Topics: Animals; Blood Glucose; Body Composition; Body Weight; Cholesterol, HDL; Cholesterol, LDL; Disease Models, Animal; Dyslipidemias; Female; Hyperglycemia; Hypothalamus; Ilex paraguariensis; Insulin Resistance; Janus Kinase 2; Lactation; Leptin; Neuropeptide Y; Obesity; Plant Extracts; Rats; STAT3 Transcription Factor; Subcutaneous Fat; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Weaning | 2014 |
A clinically relevant rodent model of the HIV antiretroviral drug stavudine induced painful peripheral neuropathy.
HIV-associated sensory neuropathy is the most frequent manifestation of HIV disease, afflicting 40-50% of patients whose HIV disease is otherwise controlled by antiretroviral therapy. It often presents with significant neuropathic pain and is consistently associated with previous exposure to nucleoside reverse transcriptase inhibitors including stavudine (d4T), which is widely used in resource-limited settings. Here we investigated complex pain-related behaviours associated with d4T treatment using ethologically relevant thigmotaxis and burrowing behaviours in adult rats. Detailed neuropathological response was also examined using neurochemistry, electron microscopy, and proteomics. After 2 intravenous injections of d4T (50 mg/kg, 4 days apart), rats developed hind paw mechanical hypersensitivity, which plateaued at 21 days after initial d4T injection, a time that these animals also had significant changes in thigmotaxis and burrowing behaviours when compared to the controls; reductions in hind paw intraepidermal nerve fibre density and CGRP/IB4 immunoreactivity in L5 spinal dorsal horn, suggesting injury to both the peripheral and central terminals of L5 dorsal root ganglion neurons; and increases in myelinated and unmyelinated axon diameters in the sural nerve, suggesting axonal swelling. However, no significant glial and inflammatory cell response to d4T treatment was observed. Sural nerve proteomics at 7 days after initial d4T injection revealed down-regulated proteins associated with mitochondrial function, highlighting distal axons vulnerability to d4T neurotoxicity. In summary, we have reported complex behavioural changes and a distinctive neuropathology in a clinically relevant rat model of d4T-induced sensory neuropathy that is suitable for further pathophysiological investigation and preclinical evaluation of novel analgesics. Topics: Activating Transcription Factor 3; Animals; Anti-HIV Agents; Brain; Calcitonin Gene-Related Peptide; Disease Models, Animal; Exploratory Behavior; Ganglia, Spinal; Gene Expression Regulation, Viral; HIV Infections; Hyperalgesia; Lectins; Male; Nerve Tissue Proteins; Neuralgia; Neuropeptide Y; Psychomotor Performance; Rats; Rats, Wistar; Reproducibility of Results; Sensory Receptor Cells; Stavudine; Sural Nerve; Time Factors | 2013 |
Platelet neuropeptide Y is critical for ischemic revascularization in mice.
We previously reported that the sympathetic neurotransmitter neuropeptide Y (NPY) is potently angiogenic, primarily through its Y2 receptor, and that endogenous NPY is crucial for capillary angiogenesis in rodent hindlimb ischemia. Here we sought to identify the source of NPY responsible for revascularization and its mechanisms of action. At d 3, NPY(-/-) mice demonstrated delayed recovery of blood flow and limb function, consistent with impaired collateral conductance, while ischemic capillary angiogenesis was reduced (~70%) at d 14. This biphasic temporal response was confirmed by 2 peaks of NPY activation in rats: a transient early increase in neuronally derived plasma NPY and increase in platelet NPY during late-phase recovery. Compared to NPY-null platelets, collagen-activated NPY-rich platelets were more mitogenic (~2-fold vs. ~1.6-fold increase) for human microvascular endothelial cells, and Y2/Y5 receptor antagonists ablated this difference in proliferation. In NPY(+/+) mice, ischemic angiogenesis was prevented by platelet depletion and then restored by transfusion of platelets from NPY(+/+) mice, but not NPY(-/-) mice. In thrombocytopenic NPY(-/-) mice, transfusion of wild-type platelets fully restored ischemia-induced angiogenesis. These findings suggest that neuronally derived NPY accelerates the early response to femoral artery ligation by promoting collateral conductance, while platelet-derived NPY is critical for sustained capillary angiogenesis. Topics: Animals; Blood Platelets; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Endothelial Cells; Hindlimb; Humans; Ischemia; Male; Mice; Mice, 129 Strain; Mice, Knockout; Neovascularization, Physiologic; Neuropeptide Y; Rats; Rats, Wistar | 2013 |
Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats.
We sought to determine a role for NPY overexpression in the dorsomedial hypothalamus (DMH) in obesity etiology using the rat model of adeno-associated virus (AAV)-mediated expression of NPY (AAVNPY) in the DMH. Rats received bilateral DMH injections of AAVNPY or control vector and were fed on regular chow. Five-week postviral injection, half the rats from each group were switched to access to a high-fat diet for another 11 weeks. We examined variables including body weight, food intake, energy efficiency, meal patterns, glucose tolerance, fat mass, plasma insulin, plasma leptin, and hypothalamic gene expression. Rats with DMH NPY overexpression had increased food intake and body weight and lowered metabolic efficiency. The hyperphagia was mediated through increased meal size during the dark. Although these rats had normal blood glucose, their plasma insulin levels were increased in both basal and glucose challenge conditions. While high-fat diet induced hyperphagia, obesity, and hyperinsulinemia, these effects were amplified in rats with DMH NPY overexpression. Arcuate Npy, agouti-related protein and proopiomelanocortin expression was appropriately regulated in response to positive energy balance. These results indicate that DMH NPY overexpression can cause hyperphagia and obesity and DMH NPY may have actions in glucose homeostasis. Topics: Agouti-Related Protein; Animals; Body Weight; Dependovirus; Diet, High-Fat; Disease Models, Animal; Energy Metabolism; Gene Expression Regulation; Glucose; Glucose Tolerance Test; Homeostasis; Hyperphagia; Hypothalamus; Leptin; Male; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley | 2013 |
Lentiviral vector-mediated knockdown of Lrb in the arcuate nucleus promotes diet-induced obesity in rats.
Obesity is currently a worldwide pandemic. Leptin resistance is a main mechanism of obese human and rodents. The downregulation of the long form of the leptin receptor (Lrb) was involved in leptin resistance in diet-induced obese rats. In the studies, we investigated whether arcuate nucleus (ARC) silencing of Lrb would promote diet-induced obesity in rats. Lentiviral vectors expressing Lrb-shRNA were administered to 5-week-old male rats by ARC injection. Following viral delivery, the rats were provided with a high-fat diet (HFD) or a chow diet (CD). After 8 weeks of the diet, serum leptin, and insulin concentrations were measured by RIA, gene expression of Lrb in the ARC was detected by a real-time RT-PCR, and leptin signaling was examined by western blot. The Lrb-shRNA knocked down the expression of Lrb mRNA in infected regions by 54% for the HFD rats and 47% for the CD rats respectively. The Lrb knockdown reduced Stats3 activation and increased expression of Npy mRNA. The rats with reduced Lrb in the ARC showed a significant increase in energy intake and body weight (BW) again when fed with a HFD. By contrast, there were no effects of Lrb reduction on energy intake or BW when rats maintained on a low-fat chow. Our results provide evidence that Lrb knockdown selectively in the ARC promotes diet-induced obesity and associated metabolic complications in rats. Topics: Animals; Arcuate Nucleus of Hypothalamus; Diet, High-Fat; Disease Models, Animal; Gene Expression Regulation; Gene Knockdown Techniques; Genetic Vectors; Lentivirus; Leptin; Male; Neuropeptide Y; Obesity; Rats; Receptors, Leptin; RNA Interference; RNA, Small Interfering; Signal Transduction; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins | 2013 |
Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats.
Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST. Topics: Action Potentials; Affective Symptoms; Analysis of Variance; Aniline Compounds; Animals; Arginine; Corticotropin-Releasing Hormone; Cyclohexanes; Disease Models, Animal; Excitatory Amino Acid Antagonists; Formaldehyde; GABA Antagonists; Hormone Antagonists; Hormones; In Vitro Techniques; Kynurenic Acid; Male; Membrane Potentials; Microdialysis; Neurons; Neuropeptide Y; Pain; Pain Measurement; Peptide Fragments; Pyridazines; Pyrimidines; Rats; Rats, Sprague-Dawley; Septal Nuclei; Xanthenes | 2013 |
Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer's disease.
BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid β peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the β2-subunit of voltage-gated sodium channels (Navβ2). Although increased BACE1 levels are associated with Navβ2 cleavage in AD patients, whether Navβ2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navβ2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navβ-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navβ2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navβ2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navβ2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD. Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Biotinylation; Cognition Disorders; Disease Models, Animal; Electroencephalography; Gene Expression Regulation; Glutamate Decarboxylase; Humans; Maze Learning; Mice; Mice, Transgenic; Mutation; NAV1.1 Voltage-Gated Sodium Channel; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Sodium Channels | 2013 |
The role of neuropeptide Y and aquaporin 4 in the pathogenesis of intestinal dysfunction caused by traumatic brain injury.
Although the exact incidence is unknown, traumatic brain injury (TBI) can lead to intestinal dysfunction. It has important influence on the early nutrition and prognosis of TBI patients. Experiments were designed to study the roles of neuropeptide Y (NPY) and aquaporin 4 (AQP4) in the pathogenesis of intestinal dysfunction caused by TBI and to find some new solutions for the treatment of intestinal dysfunction after TBI.. Forty adult male Wistar rats were randomly divided into control, mild trauma, moderate trauma, and severe trauma groups. TBI was induced by Feeney's impact method. Control animals were sham operated but not subjected to the impact test. All rats were killed 24 h after surgery. Blood samples were obtained from the abdominal aorta for enzyme-linked immunosorbent assay measurement of NPY concentrations. Jejunum segments 15 cm distal to the Treitz ligament were taken for analysis of NPY and AQP4 expression by polymerase chain reaction, Western blot, and immunohistochemistry. Pathologic changes in intestinal cell structure and ultrastructure were studied by light microscopy and transmission electron microscopy.. The specimens from different groups showed different degrees of structural changes, ranging from swelling and degeneration of villous epithelial cells to extensive denudation and collapse of the villi. The more severe the trauma, the more serious the degree of intestinal mucosal injury. Intestinal smooth muscle also showed varying degrees of edema and structural disorder. Electron microscopy showed that intestinal mitochondria had varying degrees of swelling and the structure of mitochondrial crista was disordered and even fractured. Plasma concentrations of NPY and jejunal gene and protein expressions of NPY and AQP4 increased significantly following TBI (P < 0.05), with greater increases at higher levels of injury. Moreover, there were positive correlations between NPY and AQP4 (P < 0.05).. Increasing grades of TBI caused increasing degrees of intestinal ischemia and edema, and thus caused increasingly severe intestinal dysfunction. AQP4 and NPY may be involved in the pathogenesis of intestinal dysfunction after TBI. Increased NPY levels may be responsible for intestinal ischemia and hypoxia, and AQP4 may play an important role in intestinal edema. Increased NPY levels may be one of the main causes for the increase in AQP4 after TBI. Topics: Animals; Aquaporin 4; Biomarkers; Brain Injuries; Disease Models, Animal; Intestinal Mucosa; Intestines; Jejunum; Male; Neuropeptide Y; Rats; Rats, Wistar; RNA, Messenger; Severity of Illness Index | 2013 |
Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression.
Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA-protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant. Topics: Animals; Deception; Depression; Disease Models, Animal; Epigenesis, Genetic; Gene Expression; Genotype; Hippocampus; Motor Activity; Neuropeptide Y; Polymerase Chain Reaction; Polymorphism, Single Nucleotide; Promoter Regions, Genetic; Rats; Transcription Factors | 2013 |
Hypothalamic expression of mutant huntingtin contributes to the development of depressive-like behavior in the BAC transgenic mouse model of Huntington's disease.
Psychiatric symptoms such as depression and anxiety are important clinical features of Huntington's disease (HD). However, the underlying neurobiological substrate for the psychiatric features is not fully understood. In order to explore the biological origin of depression and anxiety in HD, we used a mouse model that expresses the human full-length mutant huntingtin, the BACHD mouse. We found that the BACHD mice displayed depressive- and anxiety-like features as early as at 2 months of age as assessed using the Porsolt forced swim test (FST), the sucrose preference test and the elevated plus maze (EPM). BACHD mice subjected to chronic treatment with the anti-depressant sertraline were not different to vehicle-treated BACHD mice in the FST and EPM. The behavioral manifestations occurred in the absence of reduced hippocampal cell proliferation/neurogenesis or upregulation of the hypothalamic-pituitary-adrenal axis. However, alterations in anxiety- and depression-regulating genes were present in the hypothalamus of BACHD mice including reduced mRNA expression of neuropeptide Y, tachykinin receptor 3 and vesicular monoamine transporter type 2 as well as increased expression of cocaine and amphetamine regulated transcript. Interestingly, the orexin neuronal population in the hypothalamus was increased and showed cellular atrophy in old BACHD mice. Furthermore, inactivation of mutant huntingtin in a subset of the hypothalamic neurons prevented the development of the depressive features. Taken together, our data demonstrate that the BACHD mouse recapitulates clinical HD with early psychiatric aspects and point to the role of hypothalamic dysfunction in the development of depression and anxiety in the disease. Topics: Animals; Anxiety; Behavior, Animal; Depression; Disease Models, Animal; Female; Humans; Huntingtin Protein; Huntington Disease; Hypothalamus; Male; Mice; Mice, Transgenic; Nerve Tissue Proteins; Neuropeptide Y; Receptors, Tachykinin; Sertraline; Vesicular Monoamine Transport Proteins | 2013 |
Neuropeptide Y modulates fracture healing through Y1 receptor signaling.
Neuropeptide Y acting via it's Y1 receptor represents a powerful pathway in the control of bone mass. The global or osteoblast-specific Y1 receptor deletion induces pronounced bone anabolic effects in mice. However, the contribution of Y1 receptor deletion in bone repair/healing remained to be clarified. Therefore, in this study we characterized the role of Y1 receptor deletion in fracture healing. Closed tibial fractures were generated in germline (Y1 (-/-) ) and osteoblastic-specific Y1 receptor knockout mice. The progression of tibial repair monitored from 1- until 6-weeks post-fracture demonstrated that in Y1 (-/-) mice there is a delay in fracture repair, as seen by a decrease in bone callus volume and callus strength. Moreover, the histological features included elevated avascular and cartilage area and consequently delayed cartilage removal, and hence impaired union. Interestingly, this delay in bone repair was not related directly to Y1 receptors expressed by mature osteoblasts. These findings suggest that the global absence of the Y1 receptor delays fracture healing, through impairing the early phases of fracture repair to achieve bony union. The data acquired on the role of Y1 receptor signaling disruption in bone regeneration is critical for the design of future therapeutic strategies. Topics: Animals; Disease Models, Animal; Female; Fracture Healing; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuropeptide Y; Osteoblasts; Receptors, Neuropeptide Y; Signal Transduction; Tibia; Tibial Fractures; X-Ray Microtomography | 2013 |
Study on osteogenesis promoted by low sound pressure level infrasound in vivo and some underlying mechanisms.
To clarify the effects of low sound pressure level (LSPL) infrasound on local bone turnover and explore its underlying mechanisms, femoral defected rats were stabilized with a single-side external fixator. After exposure to LSPL infrasound for 30min twice everyday for 6 weeks, the pertinent features of bone healing were assessed by radiography, peripheral quantitative computerized tomography (pQCT), histology and immunofluorescence assay. Infrasound group showed a more consecutive and smoother process of fracture healing and modeling in radiographs and histomorphology. It also showed significantly higher average bone mineral content (BMC) and bone mineral density (BMD). Immunofluorescence showed increased expression of calcitonin gene related peptide (CGRP) and decreased Neuropeptide Y (NPY) innervation in microenvironment. The results suggested the osteogenesis promotion effects of LSPL infrasound in vivo. Neuro-osteogenic network in local microenvironment was probably one target mediating infrasonic osteogenesis, which might provide new strategy to accelerate bone healing and remodeling. Topics: Acoustics; Animals; Bone Density; Bone Remodeling; Calcitonin Gene-Related Peptide; Disease Models, Animal; External Fixators; Femoral Fractures; Femur; Fluorescent Antibody Technique; Fracture Healing; Male; Neuropeptide Y; Osteogenesis; Osteotomy; Pressure; Rats; Rats, Sprague-Dawley; Sound; Time Factors; Tomography, X-Ray Computed | 2013 |
Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.
Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity. Topics: Action Potentials; Adrenal Glands; Animals; Animals, Newborn; Chromaffin Cells; Disease Models, Animal; Exploratory Behavior; Ganglionic Stimulants; Gene Expression Regulation; Green Fluorescent Proteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neuronal Plasticity; Neuropeptide Y; Phenylethanolamine N-Methyltransferase; Receptors, Neuropeptide Y; Signal Transduction; Stress, Psychological; Swimming; Sympathetic Nervous System; Time Factors | 2013 |
Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat.
Recent studies in prehypertensive spontaneously hypertensive rats (SHR) have shown larger calcium transients and reduced norepinephrine transporter (NET) activity in cultured stellate neurons compared with Wistar-Kyoto (WKY) controls, although the functional significance of these results is unknown. We hypothesized that peripheral sympathetic responsiveness in the SHR at 4 wk of age would be exaggerated compared with the WKY. In vivo arterial pressure (under 2% isoflurane) was similar in SHRs (88 ± 2/50 ± 3 mmHg, n = 18) compared with WKYs (88 ± 3/49 ± 4 mmHg, n = 20). However, a small but significant (P < 0.05) tachycardia was observed in the young SHR despite the heart rate response to vagus stimulation (3 and 5 Hz) in vivo being similar (SHR: n = 12, WKY: n = 10). In isolated atrial preparations there was a significantly greater tachycardia during right stellate stimulation (5 and 7 Hz) in SHRs (n = 19) compared with WKYs (n = 16) but not in response to exogenous NE (0.025-5 μM, SHR: n = 10, WKY: n = 10). There was also a significantly greater release of [(3)H]NE to field stimulation (5 Hz) of atria in the SHR (SHR: n = 17, WKY: n = 16). Additionally, plasma levels of neuropeptide Y sampled from the right atria in vivo were also higher in the SHR (ELISA, n = 12 for both groups). The difference in [(3)H]NE release between SHR and WKY could be normalized by the NET inhibitor desipramine (1 μM, SHR: n = 10, WKY: n = 8) but not the α2-receptor antagonist yohimbine (1 μM, SHR: n = 7, WKY: n = 8). Increased cardiac sympathetic neurotransmission driven by larger neuronal calcium transients and reduced NE reuptake translates into enhanced cardiac sympathetic responsiveness at the end organ in prehypertensive SHRs. Topics: Adrenergic alpha-2 Receptor Antagonists; Adrenergic Uptake Inhibitors; Animals; Arterial Pressure; Calcium Signaling; Disease Models, Animal; Electric Stimulation; Heart; Heart Rate; Hypertension; Male; Neuropeptide Y; Norepinephrine; Prehypertension; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Stellate Ganglion; Sympathetic Nervous System; Time Factors; Vagus Nerve | 2013 |
Functional profiling of immediate early gene Egr1 in an anorexic mouse model.
A small population of neurons in the hypothalamus is known to promote food intake by releasing inhibitory agouti‑related peptide (ARP) and neuropeptide Y to broad postsynaptic areas. Acute ablation of ARP neurons in adult mice leads to rapid loss of appetite and the development of an anorexic phenotype. Recent studies have suggested that ablation of ARP neurons removes critical inhibition of postsynaptic neurons, resulting in hyperexcitation of selected downstream neurons. Left uncontrolled, this neuronal hyperactivation is hypothesized to induce starvation. However, the cellular mechanism underlying the control of excitability of postsynaptic neurons in response to the ablation of ARP neurons is poorly understood. The present study aimed to determine the functional correlation between ARP neurons and an immediate early gene, early growth response factor‑1 (Egr1), in postsynaptic neurons in the context of energy homeostasis. Egr1 expression levels were analyzed in different postsynaptic areas upon acute ablation of ARP neurons. As ARP neurons increase appetite by inhibiting the pro‑opiomelanocortin pathway, it was also investigated whether blockade of melanocortin signaling affects Egr1 expression in ARP neuron‑ablated mice. The results suggested that ablation of ARP neurons induced robust expression of Egr1 in numerous common postsynaptic targets of ARP and pro‑opiomelanocortin neurons. When ARP neurons were acutely ablated, it was demonstrated that Egr1 induction was attenuated by chronic blockade of the melanocortin signaling pathway in the arcuate nucleus, but not in other downstream regions. Further analysis of the Egr1 signaling cascade may aid in differentiating the functional involvement of postsynaptic targets of ARP neurons in the control of energy metabolism. Topics: Agouti-Related Protein; Animals; Anorexia; Arcuate Nucleus of Hypothalamus; Brain; Cells, Cultured; Diphtheria Toxin; Disease Models, Animal; Early Growth Response Protein 1; Energy Metabolism; Heparin-binding EGF-like Growth Factor; Humans; In Situ Hybridization; Intercellular Signaling Peptides and Proteins; Mice; Neurons; Neuropeptide Y; Pro-Opiomelanocortin | 2013 |
Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice.
Neuropeptide Y (NPY) neurons in both the arcuate nucleus of the hypothalamus (ARH) and the dorsomedial hypothalamus (DMH) have been implicated in food intake and obesity. However, while ARH NPY is highly expressed in the lean animal, DMH NPY mRNA expression is observed only after diet-induced obesity (DIO). Furthermore, while ARH NPY neurons are inhibited by leptin, the effect of this adipokine on DMH NPY neurons is unknown. In this study we show that in contrast to the consistent expression in the ARH, DMH NPY mRNA expression was undetectable until after 10 weeks in mice fed a high-fat diet, and peaked at 20 weeks. Surprisingly, electrophysiological experiments demonstrated that leptin directly depolarized and increased the firing rate of DMH NPY neurons in DIO mice. To further differentiate the regulation of DMH and ARH NPY populations, fasting decreased expression of DMH NPY expression, while it increased ARH NPY expression. However, treatment with a leptin receptor antagonist failed to alter DMH NPY expression, indicating that leptin may not be the critical factor regulating mRNA expression. Importantly, we also demonstrated that DMH NPY neurons coexpress cocaine amphetamine-regulated transcript (CART); however, CART mRNA expression in the DMH peaked earlier in the progression of DIO. This study demonstrates novel and important findings. First, NPY and CART are coexpressed in the same neurons within the DMH, and second, leptin stimulates DMH NPY neurons. These studies suggest that during the progression of DIO, there is an unknown signal that drives the expression of the orexigenic NPY signal within the DMH, and that the chronic hyperleptinemia increases the activity of these NPY/CART neurons. Topics: Action Potentials; Analysis of Variance; Animals; Diet; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Green Fluorescent Proteins; Hypothalamus; In Vitro Techniques; Insulin; Leptin; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Obesity; Patch-Clamp Techniques; Proto-Oncogene Proteins c-fos; Radioimmunoassay; RNA, Messenger; STAT3 Transcription Factor; Time Factors | 2013 |
Local infiltration of neuropeptide Y as a potential therapeutic agent against apoptosis and fibrosis in a swine model of hypercholesterolemia and chronic myocardial ischemia.
While the angiogenic effects of Neuropeptide Y (NPY) in myocardial ischemia and hypercholesterolemia have been studied, its effects on altering oxidative stress, fibrosis and cell death are not known. We hypothesized that local infiltration of NPY in a swine model of chronic myocardial ischemia and hypercholesterolemia will induce nerve growth and cell survival, while reducing oxidative stress and fibrosis. Yorkshire mini-swine (n=15) were fed a high cholesterol diet for 5 weeks. Three weeks after surgical induction of focal myocardial ischemia, an osmotic pump was implanted, which delivered NPY (n=8, high cholesterol treated, HCT) or the vehicle (n=7, high cholesterol control, HCC) for 5 weeks. Then myocardium was harvested for analysis. Assessment of myocardial function and perfusion was made the last intervention. Immunoblotting demonstrated significantly decreased levels of MMP-9 (p=0.001) and TGF-β (p=0.05) and significantly increased levels of Ang-1 (p=0.002), MnSOD (p=0.006) and NGF (p=0.01) in HCT. Immunohistochemistry results revealed significantly decreased TUNEL staining (p=0.005) and GLUT4 translocation (p=0.004) in HCT. The functional data showed significantly improved blood flow reserve (p=0.02) and improved diastolic function -dP/dt (p=0.009) in the treated animals. Local infiltration of NPY results in positive remodeling in ischemic myocardium in the setting of hypercholesterolemia. By initiating angio and neurogenesis, NPY infiltration improves blood flow reserve and restoration of fatty acid metabolism. The associated increased cell survival and decreased fibrosis result in improved myocardial diastolic function. NPY may have a potential therapeutic role in patients with hypercholesterolemia associated coronary artery disease. Topics: Animals; Apoptosis; Cell Membrane; Cell Proliferation; Cell Survival; Chronic Disease; Coronary Angiography; Disease Models, Animal; Fatty Acids; Fibrosis; Gene Expression Regulation; Glucose Transporter Type 4; Heart Ventricles; Hypercholesterolemia; Hypertrophy; Male; Myocardial Ischemia; Myocytes, Cardiac; Neovascularization, Pathologic; Neuropeptide Y; Oxidative Stress; Swine | 2013 |
[Effect of changji'an capsule on mRNA expressions of NPY and ACTH contents in brain-gut axis of IBS-D model rats].
To explore the effect of Changji'an Capsule (CA) on mRNA expressions of neuropeptide Y (NPY) in the hypothalamus and colon and serum levels of adreno-cortico-tropic hormone (ACTH) in rats of diarrhea predominant irritable bowel syndrome (IBS-D) model rats.. Totally 48 SD rats were randomly divided into six groups, i.e., the normal control group, the model group, the Pinaverium Bromide group (PB, 0.018 g/kg), the high dose CA group (2.812 g/kg), the medium dose CA group (1.406 g/kg), and the low dose CA group (0.703 g/kg), 8 in each group. The IBS-D rat model was established by using separation of breast milk + stimulation of acetic acid + constraint of four limbs. Normal saline was given to rats in the normal control group and the model group. All medication lasted for 14 successive days by gastrogavage. The serum content of ACTH was detected by enzyme linked immunosorbent assay (ELISA). The expressions of NPY mRNA in the colon and the hypothalamus were detected using real-time fluorescence quantitative PCR.. Compared with the normal control group, the serum ACTH content significantly increased (P < 0.01), the NPY mRNA expression in the colon and the hypothalamus obviously decreased (P < 0.01) in the model control group. Compared with the model group, the serum ACTH obviously decreased in the high dose CA group, the medium dose CA group, and the PB group (P < 0.01, P < 0.05). The NPY mRNA expression in the colon and the hypothalamus were obviously up-regulated in the high dose CA group, the medium dose CA group, the low dose CA group, and the PB group (P < 0.05).. CA could modulate the abnormity of brain-gut axis of IBS-D rats possibly by up-regulating NPY mRNA expressions in the hypothalamus and the colon and down-regulating the ACTH content in the hypothalamic-pituitary-adrenal axis. Topics: Adrenocorticotropic Hormone; Animals; Colon; Disease Models, Animal; Drugs, Chinese Herbal; Female; Hypothalamus; Irritable Bowel Syndrome; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2013 |
Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer's disease.
At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease. Topics: Aging; Alzheimer Disease; Animals; Biomarkers; Calbindin 1; Cell Count; Cell Movement; Dentate Gyrus; Disease Models, Animal; Disease Progression; Gene Expression Regulation; Hippocampus; Male; Mice; Mice, Transgenic; Neurogenesis; Neurons; Neuropeptide Y; Time Factors | 2013 |
Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility.
Neuro-immune interactions play a significant role in regulating the severity of inflammation. Our previous work demonstrated that neuropeptide Y (NPY) is upregulated in the enteric nervous system during murine colitis and that NPY knockout mice exhibit reduced inflammation. Here, we investigated if NPY expression during inflammation is induced by tumor necrosis factor (TNF), the main proinflammatory cytokine.. Using primary enteric neurons and colon explant cultures from wild type and NPY knockout (NPY(-/-)) mice, we determined if NPY knockdown modulates TNF release and epithelial permeability. Further, we assessed if NPY expression is inducible by TNF in enteric neuronal cells and mouse model of experimental colitis, using the TNF inhibitors-etanercept (blocks transmembrane and soluble TNF) and XPro1595 (blocks soluble TNF only).. We found that enteric neurons express TNF receptors (TNFR1 and R2). Primary enteric neurons from NPY(-/-) mice produced less TNF compared with wild type. Further, TNF activated NPY promoter in enteric neurons through phospho-c-Jun. NPY(-/-) mice had decreased intestinal permeability. In vitro, NPY increased epithelial permeability through phosphatidyl inositol-3-kinase (PI3-K)-induced pore-forming claudin-2. TNF inhibitors attenuated NPY expression in vitro and in vivo. TNF inhibitor-treated colitic mice exhibited reduced NPY expression and inflammation, reduced oxidative stress, enhanced neuronal survival, and improved colonic motility. XPro1595 had more protective effects on neuronal survival and motility compared with etanercept.. We demonstrate a novel TNF-NPY cross talk that modulates inflammation, barrier functions, and colonic motility during inflammation. It is also suggested that selective blocking of soluble TNF may be a better therapeutic option than using anti-TNF antibodies. Topics: Animals; Blotting, Western; Case-Control Studies; Cell Membrane Permeability; Chromatin Immunoprecipitation; Colitis; Colon; Cytokines; Disease Models, Animal; Electric Conductivity; Enteric Nervous System; Gastrointestinal Motility; Humans; Intestinal Mucosa; Laser Capture Microdissection; Mice; Mice, Knockout; Mutagenesis, Site-Directed; Neuropeptide Y; Phosphatidylinositol 3-Kinases; Signal Transduction; Tumor Necrosis Factor-alpha | 2013 |
Effects of single-dose neuropeptide Y on levels of hippocampal BDNF, MDA, GSH, and NO in a rat model of pentylenetetrazole-induced epileptic seizure.
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, which may increase the content of reactive oxygen and nitrogen species. The objective of this study was to investigate the effects of Neuropeptide Y on oxidative and nitrosative balance and brain-derived neurotrophic factor levels induced by pentylenetetrazole (a standard convulsant drug) in the hippocampus of Wistar rats. Three groups of seven rats were treated intraperitoneally as follows: group 1 (saline + saline) 1 ml saline, group 2 (salin + Pentylenetetrazole) 1 ml saline 30 min before Pentylenetetrazole; and group 3 (Neuropeptide Y + Pentylenetetrazole) 60 μg/kg Neuropeptide Y 30 min before 60 mg/kg Pentylenetetrazole. After 24 h, the animals were euthanized by decapitation. Hippocampus were isolated to evaluate the malondialdehyde, glutathione, nitric oxide, and brain-derived neurotrophic factor levels in three rat groups. The results of this study demonstrated that while intraperitoneally administered neuropeptide Y did not result in a statistically significant difference in BDNF levels, its administration caused a statistically significant decrease in malondialdehyde and nitric oxide levels and an increase in glutathione levels in rats with pentylenetetrazole-induced epileptic seizure. Neuropeptide Y were able to reduce nitroxidative damage induced by pentylenetetrazole in the hippocampus of Wistar rats. Topics: Animals; Brain-Derived Neurotrophic Factor; Convulsants; Disease Models, Animal; Epilepsy; Glutathione; Hippocampus; Male; Malondialdehyde; Neuropeptide Y; Nitric Oxide; Pentylenetetrazole; Rats; Rats, Wistar | 2013 |
The role of C-Fos protein, somatostatin and neuropeptide Y in the pathogenesis of ischemic brain injuries based on animal model of cerebral ischemia.
The aim of this study was to define all the areas of changes in expression of nuclear c-Fos protein (c-Fos), cytoplasmic somatostatin (SS) and neuropeptide Y (NPY) in rat brain during experimental ischemia. Using the immunohistochemical method, brain mapping (based on the atlas by Paxinos & Watson) of immunoreactivity for c-Fos, SS and NPY in 39 rats, was studied in telencephalon, diencephalon and midbrain after resistant and transitory ischemia. The first experimental group (R group) was exposed to resistant ischemia by occlusion (10 minutes) of four vessels according to the Pulsinelli method. The second group was first exposed to transitory (4 minutes) ischemia (preconditioning) and, after 72 hours, to total ischemia as in the R group. There was a statistical difference between the R and T group in the c-Fos reaction, especially in the parietofrontal cortex, anterior amygdaloid area, claustrum, reuniens nucleus and suprachiasmatic nucleus. The dominant immunohistochemical reactivity was found for c-Fos protein, and the most reactive in terms of co-localization of c-Fos with SS and NPY was periventricular area of hypothalamus. The mapping showed that both, phylogenetically new as well as phylogenetically older brain structures reacted immunohistochemically. The results of our study, regarding the impact of preconditioning with a short period of ischemia on c-Fos activity and co-localization of c-Fos with SS and NPY immunoreactivity, showed the need for future studies of brain neuropeptides related to regional and time effects, and indicated brain structures which may require pharmacological targeting to achieve neuroprotective level of proto-oncogene activity in populations at risk. Topics: Animals; Brain; Brain Ischemia; Brain Mapping; Disease Models, Animal; Neuropeptide Y; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Risk Factors; Somatostatin | 2013 |
Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice.
Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Amyloidosis; Analysis of Variance; Animals; Calbindins; Cognition Disorders; Disease Models, Animal; Environment; Exploratory Behavior; Humans; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Neuropeptide Y; Recognition, Psychology; S100 Calcium Binding Protein G; Spatial Behavior; Statistics, Nonparametric | 2013 |
Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y.
Splanchnic vasodilation is an essential disturbance in portal hypertension. Increased systemic sympathetic nerve activity is well known, but potential corresponding vascular desensitization is incompletely characterized. Release of splanchnic sympathetic neurotransmitters noradrenaline (NA) and co-transmitter neuropeptide Y (NPY) remains to be elucidated. Finally, the effects of exogenous NPY on these mechanisms are unexplored.. Portal vein ligated cirrhotic, and control rats were used for in vitro perfusion of mesenteric arteries. Depletion of vascular pressure response was induced by repetitive electric sympathetic perivascular nerve stimulation (PNS) and performed in the absence and presence of exogenous NPY. Additionally, PNS-induced release of NA and NPY was measured.. Mesenteric PNS-induced pressure response was lower in portal hypertension. Depletion of the pressure response to PNS, representing the degree of desensitization, was enhanced in portal hypertension. NA release was elevated, whereas NPY release was attenuated in cirrhosis. Administration of exogenous NPY led to marked recovery from desensitization and vasoconstrictive improvement in cirrhotic rats, being associated with more pronounced decrease of NA release.. Pronounced depletion of splanchnic arterial pressure-response to repetitive sympathetic nerve stimulation in cirrhosis is partly attributable to altered NA release as well as to deficient NPY release. External NPY restores vascular contractility and attenuates pathologically elevated NA release in the portal hypertensive mesenteric vasculature, revealing post-, and prejunctional effects at the vascular smooth muscle motor endplate; therefore outlining encouraging therapeutic strategies. Topics: Animals; Carbon Tetrachloride; Disease Models, Animal; Electric Stimulation; Hypertension, Portal; Liver Cirrhosis; Male; Mesenteric Arteries; Neuropeptide Y; Neurotransmitter Agents; Norepinephrine; Rats; Rats, Inbred Strains; Sympathetic Nervous System | 2013 |
Downregulation of cannabinoid receptor 1 from neuropeptide Y interneurons in the basal ganglia of patients with Huntington's disease and mouse models.
Cannabinoid receptor 1 (CB(1) receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB(1) expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB(1) signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB(1) downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB(1) expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB(1) is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB(1) downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, Hdh(Q150/Q150) mice and the caudate nucleus of patients with HD. In R6/2 mice, CB(1) downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB(1) signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD. Topics: Adult; Aged; Animals; Basal Ganglia; Calbindin 2; Cannabinoid Receptor Agonists; Case-Control Studies; Cyclic AMP; Disease Models, Animal; Down-Regulation; Female; Gene Expression; Humans; Huntingtin Protein; Huntington Disease; Interneurons; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Nerve Tissue Proteins; Neuropeptide Y; Nitric Oxide Synthase; Nuclear Proteins; Parvalbumins; Receptor, Cannabinoid, CB1; S100 Calcium Binding Protein G; Serotonin Plasma Membrane Transport Proteins | 2013 |
Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models.
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem. Topics: Age Factors; Animals; Animals, Newborn; Biotin; Chronic Disease; Dextrans; Disease Models, Animal; Efferent Pathways; Female; Gonadotropin-Releasing Hormone; Hyperphagia; Hypothalamic Hormones; Hypothalamus; Intracellular Signaling Peptides and Proteins; Lactic Acid; Male; Melanins; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Neuropeptides; Obesity; Orexins; Peptide Fragments; Pituitary Hormones; Pregnancy; Rats; Rats, Wistar; Tryptophan Hydroxylase | 2013 |
A new murine model of stress-induced complex atherosclerotic lesions.
The primary purpose of this investigation was to determine whether ApoE(-/-) mice, when subjected to chronic stress, exhibit lesions characteristic of human vulnerable plaque and, if so, to determine the time course of such changes. We found that the lesions were remarkably similar to human vulnerable plaque, and that the time course of lesion progression raised interesting insights into the process of plaque development. Lard-fed mixed-background ApoE(-/-) mice exposed to chronic stress develop lesions with large necrotic core, thin fibrous cap and a high degree of inflammation. Neovascularization and intraplaque hemorrhage are observed in over 80% of stressed animals at 20 weeks of age. Previously described models report a prevalence of only 13% for neovascularization observed at a much later time point, between 36 and 60 weeks of age. Thus, our new stress-induced model of advanced atherosclerotic plaque provides an improvement over what is currently available. This model offers a tool to further investigate progression of plaque phenotype to a more vulnerable phenotype in humans. Our findings also suggest a possible use of this stress-induced model to determine whether therapeutic interventions have effects not only on plaque burden, but also, and importantly, on plaque vulnerability. Topics: Animals; Atherosclerosis; Blood Pressure; Cholesterol; Coronary Stenosis; Corticosterone; Disease Models, Animal; Hemorrhage; Humans; Inflammation; Mice; Mice, Inbred C57BL; Necrosis; Neovascularization, Pathologic; Neuropeptide Y; Plaque, Atherosclerotic; Stress, Psychological | 2013 |
Loss of GABAergic neurons in the hippocampus and cerebral cortex of Engrailed-2 null mutant mice: implications for autism spectrum disorders.
The homeobox-containing transcription factor Engrailed-2 (En2) is involved in patterning and neuronal differentiation of the midbrain/hindbrain region, where it is prominently expressed. En2 mRNA is also expressed in the adult mouse hippocampus and cerebral cortex, indicating that it might also function in these brain areas. Genome-wide association studies revealed that En2 is a candidate gene for autism spectrum disorders (ASD), and mice devoid of its expression (En2(-/-) mice) display anatomical, behavioral and clinical "autistic-like" features. Since reduced GABAergic inhibition has been proposed as a possible pathogenic mechanism of ASD, we hypothesized that the phenotype of En2(-/-) mice might include defective GABAergic innervation in the forebrain. Here we show that the Engrailed proteins are present in postnatal GABAergic neurons of the mouse hippocampus and cerebral cortex, and adult En2(-/-) mice show reduced expression of GABAergic marker mRNAs in these areas. In addition, reduction in parvalbumin (PV), somatostatin (SOM) and neuropeptide Y (NPY) expressing interneurons is detected in the hippocampus and cerebral cortex of adult En2(-/-) mice. Our results raise the possibility of a link between altered function of En2, anatomical deficits of GABAergic forebrain neurons and the pathogenesis of ASD. Topics: Animals; Autistic Disorder; Cerebral Cortex; Disease Models, Animal; GABAergic Neurons; Hippocampus; Homeodomain Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Tissue Proteins; Neuropeptide Y; Parvalbumins; Somatostatin | 2013 |
Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats.
Exposure to severe stress leads to development of neuropsychiatric disorders, including depression and Post-Traumatic Stress Disorder (PTSD) in at-risk individuals. Neuropeptide Y (NPY) is associated with resilience or improved recovery. Therefore exogenous administration to the brain has therapeutic potential although peripheral administration can trigger undesirable side effects. Here, we established conditions with intranasal (IN) NPY infusion to rats to obtain CSF concentrations in the proposed anxiolytic range without significant change in plasma NPY. Rats were pretreated with IN NPY or vehicle before exposure to single prolonged stress (SPS) animal model of PTSD and compared to untreated controls. The IN NPY appeared to lessen the perceived severity of stress, as these animals displayed less time immobile in forced swim part of the SPS. Thirty minutes after SPS the elevation of plasma adrenocorticotropic hormone (ACTH) and corticosterone was not as pronounced in NPY-infused rats and the induction of tyrosine hydroxylase (TH) in locus coeruleus (LC) was attenuated. Seven days after SPS, they displayed lower depressive-like behavior on Forced Swim Test and reduced anxiety-like behavior on Elevated Plus Maze. The prolonged effect of SPS on Acoustic Startle Response was also lower in NPY-infused rats. Plasma ACTH, corticosterone, and hippocampal glucocorticoid receptor levels were significantly above controls only in the vehicle - but not IN NPY-treated group 1week after SPS. Baseline TH mRNA levels in LC did not differ among groups, but increased with forced swim in the vehicle - but not NPY-pretreated animals. Administration of IN NPY after exposure to SPS led to similar, but not identical, reduction in development of anxiety, depressive-like behavior and hyperarousal. The results show that single IN NPY can alter stress-triggered dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and activation of central noradrenergic activity. These findings provide proof of concept for potential of IN NPY for non-invasive prophylactic treatment or early intervention in response to traumatic stress. Topics: Administration, Intranasal; Adrenocorticotropic Hormone; Animals; Blotting, Western; Corticosterone; Disease Models, Animal; Hypothalamo-Hypophyseal System; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Reflex, Startle; Reverse Transcriptase Polymerase Chain Reaction; Stress Disorders, Post-Traumatic; Stress, Psychological | 2013 |
Role of neuropeptide Y Y₁ and Y₂ receptors on behavioral despair in a rat model of depression with co-morbid anxiety.
Accumulated evidence suggests that neuropeptide Y (NPY) is involved in emotional disorders by acting on Y(1) and Y(2) receptors. This hypothesis is based on animal studies carried out in naïve normal animals but not in animal models of depression, including the olfactory bulbectomized (OBX) rat. The OBX rat produces a wide array of symptoms that mimic several aspects of human depression and anxiety disorders. In the present study, we aimed to investigate the effects of sustained (2 weeks) intracerebroventricular administration of NPY Y(1) and Y(2) agonists and antagonists in a battery of behavioral tests including the open field, forced swim test (FST) and social interaction (SI) tests in OBX rats. The levels of Y(1) and Y(2) receptors in the hippocampus and basolateral amygdala (BLA) were also evaluated. Treatment with the Y(1)-like receptor agonist, [Leu(31)Pro(34)]PYY, decreased both depressive- and anxiogenic-like behaviors. The Y(2) receptor antagonist, BIIE0246, decreased the immobility time in the FST in OBX animals and increased active contacts in the SI test in sham rats. The Y(2) agonist, PYY3-36, increased the immobility time in the FST in OBX rats. Additionally, increased levels of Y(2) receptor binding were quantified in the dorsal hippocampus and BLA in OBX rats. Taken together, the autoradiographic results add further evidence that the NPYergic system is altered in disturbed emotional states. Moreover, we demonstrate a differential role for NPY Y(1) and Y(2) receptors in emotional processes under control and challenged conditions. This article is part of a Special Issue entitled 'Anxiety and Depression'. Topics: Amygdala; Analysis of Variance; Animals; Anxiety; Arginine; Autoradiography; Benzazepines; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Delivery Systems; Exploratory Behavior; Hippocampus; Interpersonal Relations; Male; Neuropeptide Y; Olfactory Bulb; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Swimming; Time Factors | 2012 |
Neuroprotection by neuropeptide Y in cell and animal models of Parkinson's disease.
This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD. Topics: Adrenergic Agents; Analysis of Variance; Animals; Animals, Newborn; Arginine; Autoradiography; Cell Line, Tumor; Cell Survival; Chromatography, High Pressure Liquid; Disease Models, Animal; Dopamine Plasma Membrane Transport Proteins; Dopaminergic Neurons; Enzyme Inhibitors; Female; Functional Laterality; Humans; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuroblastoma; Neurodegenerative Diseases; Neuropeptide Y; Neuroprotective Agents; Nortropanes; Oligopeptides; Oxidopamine; Parkinson Disease; Protein Binding; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Substantia Nigra; Tyrosine 3-Monooxygenase | 2012 |
Inflammation-induced changes in the chemical coding pattern of colon-projecting neurons in the inferior mesenteric ganglia of the pig.
The present study examines the chemical coding of the inferior mesenteric ganglia after chemically induced colitis in the pig animal model. In all animals (n = 6), a median laparotomy was performed under anesthesia, and the Fast Blue retrograde tracer was injected into the descending colon wall. In experimental animals (n = 3), the thick descending colon were injected with formalin solution to induce inflammation. The animals were euthanized and the inferior mesenteric ganglion was harvested and processed for double-labeling immunofluorescence for calbindin-D28k (CB) in combination with either tyrosine hydroxylase (TH), neuropeptide Y (NPY), somatostatin (SOM), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), Leu-enkephalin (LENK), substance P (SP), vesicular acetylcholine transporter (VAChT), or galanin (GAL). Immunohistochemistry revealed significant changes in the chemical coding pattern of inferior mesenteric ganglion neurons. In control animals, Fast Blue-positive neurons were immunoreactive to TH, NPY, SOM, VIP, LENK, CB, and NOS. In the experimental group, TH, NPY, SOM, VIP, and LENK expressing neurons were reduced, whereas the number of neurons immunoreactive to CB, NOS, and GAL were increased. The increase of so-called neuroprotective neuropeptides suggests that the changes in the chemical coding of inferior mesenteric ganglion neurons reflect adaption under pathological conditions to promote their own survival. Topics: Animals; Cell Count; Cell Survival; Colitis; Colon; Disease Models, Animal; Enteric Nervous System; Female; Formaldehyde; Ganglia, Sympathetic; Gene Expression Regulation; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Neuropeptides; Neurotransmitter Agents; Sus scrofa; Swine | 2012 |
The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder.
Converging evidence implicates the regulatory neuropeptide Y (NPY) in anxiety- and depression-related behaviors. The present study sought to assess whether there is an association between the magnitude of behavioral responses to stress and patterns of NPY in selected brain areas, and subsequently, whether pharmacological manipulations of NPY levels affect behavior in an animal model of PTSD. Animals were exposed to predator-scent stress for 15 min. Behaviors were assessed with the elevated plus maze and acoustic startle response tests 7 days later. Preset cutoff criteria classified exposed animals according to their individual behavioral responses. NPY protein levels were assessed in specific brain regions 8 days after the exposure. The behavioral effects of NPY agonist, NPY-Y1-receptor antagonist, or placebo administered centrally 1 h post-exposure were evaluated in the same manner. Immunohistochemical technique was used to detect the expression of the NPY, NPY-Y1 receptor, brain-derived neurotrophic factor, and GR 1 day after the behavioral tests. Animals whose behavior was extremely disrupted (EBR) selectively displayed significant downregulation of NPY in the hippocampus, periaqueductal gray, and amygdala, compared with animals whose behavior was minimally (MBR) or partially (PBR) disrupted, and with unexposed controls. One-hour post-exposure treatment with NPY significantly reduced prevalence rates of EBR and reduced trauma-cue freezing responses, compared with vehicle controls. The distinctive pattern of NPY downregulation that correlated with EBR as well as the resounding behavioral effects of pharmacological manipulation of NPY indicates an intimate association between NPY and behavioral responses to stress, and potentially between molecular and psychopathological processes, which underlie the observed changes in behavior. The protective qualities attributed to NPY are supported by the extreme reduction of its expression in animals severely affected by the stressor and imply a role in promoting resilience and/or recovery. Topics: Animals; Arginine; Brain; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Down-Regulation; Gene Expression Regulation; Humans; Male; Maze Learning; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Reflex, Startle; Resilience, Psychological; Stress Disorders, Post-Traumatic; Stress, Psychological | 2012 |
Re-evaluation of the phenotypic changes in L4 dorsal root ganglion neurons after L5 spinal nerve ligation.
The L5 spinal nerve ligation (SNL) is a widely used animal neuropathic pain model. There are conflicting reports regarding the extent of injury to the L4 dorsal root ganglion (DRG) neurons in this model. If a significant number of these neurons were injured, the previously reported phenotypic and electrophysiological changes at this level are in need of re-evaluation by separating the injured neurons and the frankly spared ones. So, we immunostained activating transcription factor 3 (ATF3) and examined the change in expression of transcripts for neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF) and several voltage-gated sodium channel α-subunits (Nav1.1, Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) in the L4 DRG by comparing signal intensities of individual neurons using in situ hybridization histochemistry. ATF3-immunoreactivity was similarly observed in 4-6% of neuronal nuclei of the SNL and sham-operated ipsilateral L4 DRGs. Comparison between ATF3+ and ATF3- neurons in the SNL L4 DRG revealed that (1) whereas NPY induction occurred in ATF3+ cells, BDNF increased mainly in ATF3- neurons; (2) although ATF3+ neurons had higher Nav1.3 signals than ATF3- neurons, these signals were much lower than those of the L5 DRG neurons; and (3) ATF3+/N52- neurons selectively lost Nav1.8 and Nav1.9 mRNAs. Comparison of the total neuronal populations among naïve, SNL, and sham-operated rats revealed no significant differences for all examined Nav mRNAs. Because neuropathic pain behaviors were developed by rats with SNL but not the sham-operation, the small number of injured L4 neurons likely do not contribute to the pathomechanisms of neuropathic pain. Topics: Activating Transcription Factor 3; Animals; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Ganglia, Spinal; Ligation; Male; Neuralgia; Neurons; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Sodium Channels; Spinal Nerves | 2012 |
A novel anti-inflammatory role for spleen-derived interleukin-10 in obesity-induced hypothalamic inflammation.
Obesity can be associated with systemic low-grade inflammation that contributes to obesity-related metabolic disorders. Recent studies raise the possibility that hypothalamic inflammation contributes to the pathogenesis of diet-induced obesity (DIO), while another study reported that obesity decreases the expression of pro-inflammatory cytokines in spleen. The following study examines the hypothesis that obesity suppresses the splenic synthesis of the anti-inflammatory cytokine, interleukin (IL)-10, thereby resulting in chronic hypothalamic inflammation. The results showed that due to oxidative stress or apoptosis, the synthesis of splenic IL-10 was decreased in DIO when compared with non-obesity rats. Splenectomy (SPX) accelerated DIO-induced inflammatory responses in the hypothalamus. Interestingly, SPX suppressed the DIO-induced increases in food intake and body weight and led to a hypothalamic pro-inflammatory state that was similar to that produced by DIO, indicating that hypothalamic inflammation exerts a dual effect on energy metabolism. These SPX-induced changes were inhibited by the systemic administration of IL-10. Moreover, SPX had no effect on hypothalamic inflammatory responses in IL-10-deficient mice. These data suggest that spleen-derived IL-10 plays an important role in the prevention of hypothalamic inflammation and may be a therapeutic target for the treatment of obesity and hypothalamic inflammation. Topics: Aldehydes; alpha-MSH; Animals; Apoptosis; Area Under Curve; Body Weight; Cytokines; Diet, High-Fat; Disease Models, Animal; Eating; Encephalitis; Hypothalamus; In Situ Nick-End Labeling; Interleukin-10; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Neuropeptide Y; Obesity; Oxidative Stress; Oxygen Consumption; Rats; Rats, Sprague-Dawley; Spleen; Splenectomy | 2012 |
Focal administration of neuropeptide Y into the S2 somatosensory cortex maximally suppresses absence seizures in a genetic rat model.
Neuropeptide Y (NPY) is an inhibitory neurotransmitter that suppresses focal and generalized seizures in animal models. In this study, we investigated the sites within the thalamocortical circuit that NPY acts to suppress seizures in genetic absence epilepsy rats from Strasbourg (GAERS).. In conscious freely moving GAERS, NPY was administered via intracerebral microcannulae implanted bilaterally into one of the following regions: primary somatosensory cortex (S1), secondary somatosensory cortex (S2), the primary motor cortex (M1), caudal nucleus reticular thalamus (nRT), or ventrobasal thalamus (VB). Animals received vehicle and up to three doses of NPY, in a randomized order. Electroencephalography (EEG) recordings were carried out for 30 min prior to injection and 90 min after the injection of NPY or vehicle.. Focal microinjections of NPY into the S2 cortex suppressed seizures in a dose-dependent manner, with the response being significantly different at the highest dose (1.5 mm) compared to vehicle for total time in seizures postinjection (7.2 ± 3.0% of saline, p < 0.01) and average number of seizures (9.4 ± 4.9% of saline, p < 0.05). In contrast NPY microinjections into the VB resulted in an aggravation of seizures.. NPY produces contrasting effects on absence-like seizures in GAERS depending on the site of injection within the thalamocortical circuit. The S2 is the site at which NPY most potently acts to suppress absence-like seizures in GAERS, whereas seizure-aggravating effects are seen in the VB. These results provide further evidence to support the proposition that these electroclinically "generalized" seizures are being driven by a topographically restricted region within the somatosensory cortex. Topics: Animals; Anticonvulsants; Disease Models, Animal; Epilepsy, Absence; Male; Microinjections; Neural Inhibition; Neuropeptide Y; Random Allocation; Rats; Rats, Mutant Strains; Somatosensory Cortex | 2012 |
Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease.
We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition. Topics: Alzheimer Disease; Amygdala; Analysis of Variance; Animals; Arcuate Nucleus of Hypothalamus; Arginine; Colchicine; Dentate Gyrus; Disease Models, Animal; Escape Reaction; Learning; Male; Maze Learning; Memory; Neuropeptide Y; Nicotine; Nicotinic Agonists; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Septal Nuclei | 2012 |
Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.
Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Topics: Agouti-Related Protein; AMP-Activated Protein Kinases; Animals; Disease Models, Animal; Eating; Feeding Behavior; Hyperphagia; Hyperthyroidism; Hypothalamus; Male; Neural Pathways; Neuropeptide Y; Phosphorylation; Pro-Opiomelanocortin; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Sirolimus; Thyroid Hormone Receptors alpha; Time Factors; TOR Serine-Threonine Kinases; Triiodothyronine; Weight Loss | 2012 |
The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats.
Metformin appears to be involved in altering energy expenditure and thermogenesis, and could affect hypothalamic feeding circuits. However, it is not clear whether metformin is able to cross the blood-brain barrier (BBB) to reach the hypothalamus and exert a direct effect on the central nervous system. Here we show the presence of metformin in cerebrospinal fluid (CSF) of diabetic rats administered orally with metformin which was confirmed by detecting the concentration of metformin with liquid chromatography-tandem mass spectrometry. Food intake of diabetic rats treated with metformin was reduced, and glucose homeostasis was gained. Expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related protein (AgRP) decreased in the hypothalamus of metformin-treated diabetic rats, though anorexigenic peptides pro-opiomelanocortin (POMC) did not change significantly. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased but phosphorylated AMP-activated kinase (AMPK) was similar in the hypothalamus of metformin-treated diabetic rats. Our findings suggest that metformin may cross BBB and play a central mechanism on regulation of food intake in the hypothalamus. The anorexic effect of metformin may be mediated by inhibition of NPY and AgRP gene expression through the STAT3 signaling pathway. Topics: Administration, Oral; Agouti-Related Protein; AMP-Activated Protein Kinases; Animals; Blood Glucose; Chromatography, Liquid; Diabetes Mellitus, Experimental; Disease Models, Animal; Eating; Gene Expression Regulation; Hypoglycemic Agents; Hypothalamus; Male; Metformin; Neuropeptide Y; Phosphorylation; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; STAT3 Transcription Factor; Tandem Mass Spectrometry | 2012 |
Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.
Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain. Topics: Animals; Calcitonin Gene-Related Peptide; Denervation; Disease Models, Animal; Ganglia, Spinal; Hyperalgesia; Immunohistochemistry; Ketanserin; Male; Neuralgia; Neuronal Plasticity; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Serotonin 5-HT2 Receptor Antagonists; Spinal Cord; Spinal Nerves; Up-Regulation | 2012 |
NPY suppressed development of experimental autoimmune encephalomyelitis in Dark Agouti rats by disrupting costimulatory molecule interactions.
Neuropeptide Y (NPY) suppressed clinical experimental autoimmune encephalomyelitis (EAE) and reduced numbers of CD28+, CD11b+ and CD80+ cells among spinal cord infiltrating cells at the peak of disease in Dark Agouti rat strain. Suppression of EAE was accompanied by the reduced expression of costimulatory CD80 and CD86 molecules on ED1+ macrophages and OX62+ dendritic cells in draining lymph nodes during the inductive phase of EAE. An inhibitor of dipeptidyl peptidase 4, an enzyme which terminates the action of NPY on Y1 receptor subtype, did not sustain the suppressive effect of NPY on the EAE development, suggesting involvement of Y2 and Y5 receptors. Topics: Animals; B7-1 Antigen; CD11b Antigen; CD28 Antigens; Cell Count; Cell Movement; Costimulatory and Inhibitory T-Cell Receptors; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Humans; Inflammation Mediators; Male; Neuropeptide Y; Primary Cell Culture; Protein Interaction Mapping; Rats; Rats, Inbred Strains; Spinal Cord | 2012 |
Neuropeptide Y: identification of a novel rat mRNA splice-variant that is downregulated in the hippocampus and the prefrontal cortex of a depression-like model.
Neuropeptide Y (NPY) is known to influence emotional processing and decreased NPY levels have been associated with mood and anxiety disorders. Alternative splicing of pre-messenger RNA is a cellular mechanism that allows for transcriptome diversity, yet there is limited knowledge in this respect with regard to Npy. Since the hippocampus and the prefrontal cortex play an important role in affective disorders, we investigated alternative splicing of Npy in these regions of a rat model of depression (Flinders Sensitive Line, FSL) and its controls (Flinders Resistant Line, FRL). The existence of different Npy messenger RNA (mRNA) variants was examined using 5' and 3' RACE. In addition to the Npy mRNA species annotated in GenBank and Ensembl, we identified a novel "short" mRNA splice variant. Immunoblotting results argued against a putative translation of this "short" mRNA into protein in brain tissue. Compared to the FRL, the FSL had reduced "short"Npy mRNA levels in the HIP (P=0.00014) and the PFC (P=0.016). Gene expression analyses in five brain regions of an outbred rat strain supported the presence of the "short"Npy transcript in all examined regions and showed that it is expressed in ∼2.4-fold lower levels than the "long"Npy mRNA. Finally, sequencing of the 5' RACE products revealed a transcription start site of Npy that is different from the currently annotated position. These data add to the characterization of the rat Npy mRNA and demonstrate the presence of a novel transcript with a so far unknown function. Topics: Amino Acid Sequence; Animals; Depression; Disease Models, Animal; Down-Regulation; Female; Hippocampus; Male; Molecular Sequence Data; Neuropeptide Y; Prefrontal Cortex; Protein Biosynthesis; Protein Isoforms; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sequence Analysis, DNA; Transcription Initiation Site | 2012 |
Selective degeneration of septal and hippocampal GABAergic neurons in a mouse model of amyloidosis and tauopathy.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by brain accumulation of amyloid-β peptide and neurofibrillary tangles, which are believed to initiate a pathological cascade that results in progressive impairment of cognitive functions and eventual neuronal death. To obtain a mouse model displaying the typical AD histopathology of amyloidosis and tauopathy, we generated a triple-transgenic mouse line (TauPS2APP) by overexpressing human mutations of the amyloid precursor protein, presenilin2 and tau genes. Stereological analysis of TauPS2APP mice revealed significant neurodegeneration of GABAergic septo-hippocampal projection neurons as well as their target cells, the GABAergic hippocampal interneurons. In contrast, the cholinergic medial septum neurons remained unaffected. Moreover, the degeneration of hippocampal GABAergic interneurons was dependent on the hippocampal subfield and interneuronal subtype investigated, whereby the dentate gyrus and the NPY-positive interneurons, respectively, were most strongly affected. Neurodegeneration was also accompanied by a change in the mRNA expression of markers for inhibitory interneurons. In line with the loss of inhibitory neurons, we observed functional changes in TauPS2APP mice relative to WT mice, with strongly enhanced long-term potentiation in the medial-perforant pathway input to the dentate gyrus, and stereotypic hyperactivity. Our data indicate that inhibitory neurons are the targets of neurodegeneration in a mouse model of amyloidosis and tauopathy, thus pointing to a possible role of the inhibitory network in the pathophysiological and functional cascade of Alzheimer's disease. Topics: Alzheimer Disease; Amyloidosis; Animals; Cholinergic Neurons; Disease Models, Animal; GABAergic Neurons; Hippocampus; Interneurons; Long-Term Potentiation; Mice; Mice, Transgenic; Neuropeptide Y; Presenilin-2; Septal Nuclei; tau Proteins; Tauopathies | 2012 |
Re-exposure and environmental enrichment reveal NPY-Y1 as a possible target for post-traumatic stress disorder.
Exposure-based cognitive behavioral therapy in post-traumatic stress disorder (PTSD) patients relieves symptoms caused by fear association as well as symptoms that are not the result of associative learning. We used the inescapable foot shock model (IFS), an animal model for PTSD, to study the possible involvement of glutamate receptors, the corticotropin-releasing factor (CRF) system, and the neuropeptide Y (NPY) system in the reduction of stress sensitization following repeated re-exposure to the conditioning context. Starting one week after the IFS procedure, the rats were repeatedly re-exposed to the shock environment. Stress sensitivity was measured in a modified open field test (sudden silence was used as a stressor). Selected mRNAs (GluN1, -2A-C, GluA1-4, GluK1-5, CRF, CRF-R1, NPY, NPY-Y1) were quantified in the amygdala. Repeated re-exposure (RE) to the IFS context reduced both trauma-associated anxiety (to the IFS context) and the enhanced stress sensitivity (in the open field). Changes in glutamate receptor subunits (GluN1, GluN2A-B, GluA1, GluA4, GluK3, GluK4) were detected in the amygdala that were normalized by RE. However, infusion of the AMPA/kainate antagonist NBQX in the BLA (basolateral amygdala) did not improve the anxious behavior. RE normalized IFS-induced increases in CRF-R1 mRNA and increased NPY-Y1 mRNA expression in the amygdala. Previously, and repeated here, we showed that environmental enrichment (EE) enhances recovery from IFS. EE led to similar changes in CRF-R1 and NPY-Y1 expression as RE did. Importantly, administration of [Leu31, Pro34]-NPY (Y1 agonist) in the BLA normalized the enhanced sensitivity to stress after IFS. Our data suggest that the NPY-Y1 receptor in the amygdala may serve as a therapeutic target for the treatment of PTSD. Topics: Amygdala; Animals; Behavior, Animal; Disease Models, Animal; Disease Susceptibility; Exploratory Behavior; Gene Expression Regulation; Male; Molecular Targeted Therapy; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Neurotransmitter Agents; Rats; Rats, Sprague-Dawley; Receptors, Corticotropin-Releasing Hormone; Receptors, G-Protein-Coupled; Receptors, Kainic Acid; Receptors, Neuropeptide; RNA, Messenger; Socioenvironmental Therapy; Stress Disorders, Post-Traumatic | 2012 |
NPY intraperitoneal injections produce antidepressant-like effects and downregulate BDNF in the rat hypothalamus.
Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production.. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma.. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma.. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis.. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. Topics: Analysis of Variance; Animals; Antidepressive Agents; Body Weight; Brain-Derived Neurotrophic Factor; Corticosterone; Depression; Disease Models, Animal; Down-Regulation; Eating; Enzyme-Linked Immunosorbent Assay; Hypothalamus; Male; Nerve Growth Factor; Neuropeptide Y; Rats; Rats, Wistar; Swimming; Time Factors | 2012 |
Improvement of hyperphagia by activation of cerebral I(1)-imidazoline receptors in streptozotocin-induced diabetic mice.
Imidazoline I1-receptors (I1R) are known to regulate blood pressure and rilmenidine, an agonist, is widely used as antihypertensive agent in clinic. However, the role of I1R in feeding behavior is still unclear. In the present study, we used the agonist of I1R to investigate the effect on hyperphagia in streptozotocin (STZ)-induced diabetic mice. Rilmenidine decreased the food intake of STZ-diabetic mice in a dose-dependent manner. The reduction of food intake was abolished by pretreatment with efaroxan at the dose sufficient to block I1R. Intracerebroventricular (icv) administration of rilmenidine into STZ-diabetic mice also significantly reduced hyperphagia, which was reversed by icv administration of efaroxan. In addition, similar results were observed in STZ-diabetic mice, which received chronic treatment with rilmenidine 3 times daily (t.i.d.) for 7 days. Moreover, the hypothalamic neuropeptide Y (NPY) level was reduced by rilmenidine that was also reversed by pretreatment with efaroxan. In conclusion, the obtained results suggest that rilmenidine can decrease food intake in STZ-diabetic mice through an activation of I1R to lower hypothalamic NPY level. Topics: Animals; Benzofurans; Cerebrum; Diabetes Mellitus, Type 1; Disease Models, Animal; Eating; Female; Humans; Hyperphagia; Hypothalamus; Imidazoles; Imidazoline Receptors; Male; Mice; Mice, Inbred BALB C; Neuropeptide Y; Oxazoles; Rilmenidine; Streptozocin | 2012 |
Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat.
It was recently reported that the mono-iodoacetate (MIA) experimental model of osteoarthritis (OA) courses with changes of neurons innervating the affected joints that are commonly interpreted as a neuronal response to axonal injury. To better characterize these changes, we evaluated the expression of two markers of neuronal damage, ATF-3 and NPY, and the growth associated protein GAP-43, in primary afferent neurons of OA animals injected with three different doses of MIA (0.3, 1 or 2 mg). Measurements were performed at days 3, 7, 14, 21 and 31 post-MIA injection.. OA animals showed the characteristic histopathological changes of the joints and the accompanying nociceptive behaviour, evaluated by the Knee-Bed and CatWalk tests. An increase of ATF-3 expression was detected in the DRG of OA animals as early as 3 days after the injection of 1 or 2 mg of MIA and 7 days after the injection of 0.3 mg. NPY expression was increased in animals injected with 1 or 2 mg of MIA, at day 3 or in all time-points, respectively. From day 7 onwards there was a massive increase of GAP-43 expression in ATF-3 cells.. The expression of the neuronal injury markers ATF-3 and NPY as well as an up-regulation of GAP-43 expression, indicative of peripheral fibre regeneration, suggests that axonal injury and a regeneration response may be happening in this model of OA. This opens new perspectives in the unravelling of the physiopathology of the human disease. Topics: Activating Transcription Factor 3; Animals; Behavior, Animal; Biomarkers; Disease Models, Animal; Ganglia, Spinal; GAP-43 Protein; Humans; Immunohistochemistry; Iodoacetic Acid; Knee Joint; Lumbar Vertebrae; Male; Neurons; Neuropeptide Y; Osteoarthritis, Knee; Rats; Rats, Wistar | 2012 |
Impaired neurovascular coupling in the APPxPS1 mouse model of Alzheimer's disease.
The tight coupling between neuronal activity and the local increase of blood flow termed neurovascular coupling is essential for normal brain function. This mechanism of regulation is compromised in Alzheimer's Disease (AD). In order to determine whether a purely vascular dysfunction or a neuronal alteration of blood vessels diameter control could be responsible for the impaired neurovascular coupling observed in AD, blood vessels reactivity in response to different pharmacological stimulations was examined in double transgenic APPxPS1 mice model of AD. Blood vessels movements were monitored using infrared videomicroscopy ex vivo, in cortical slices of 8 month-old APPxPS1 and wild type (WT) mice. We quantified vasomotor responses induced either by direct blood vessel stimulation with a thromboxane A2 analogue, the U46619 (9,11-dideoxy-11a,9a-epoxymethanoprostaglandin F2α) or via the stimulation of interneurons with the nicotinic acetylcholine receptor (nAChRs) agonist DMPP (1,1-Dimethyl-4- phenylpiperazinium iodide). Using both types of stimulation, no significant differences were detected for the amplitude of blood vessel diameter changes between the transgenic APPxPS1 mice model of AD and WT mice, although the kinetics of recovery were slower in APPxPS1 mice. We find that activation of neocortical interneurons with DMPP induced both vasodilation via Nitric Oxide (NO) release and constriction via Neuropeptide Y (NPY) release. However, we observed a smaller proportion of reactive blood vessels following a neuronal activation in transgenic mice compared with WT mice. Altogether, these results suggest that in this mouse model of AD, deficiency in the cortical neurovascular coupling essentially results from a neuronal rather than a vascular dysfunction. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Area Under Curve; Blood Vessels; Brain; Cerebrovascular Circulation; Dimethylphenylpiperazinium Iodide; Disease Models, Animal; Ganglionic Stimulants; Humans; In Vitro Techniques; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Neuropeptide Y; Presenilin-1; Vasoconstrictor Agents; Vasodilation | 2012 |
Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6N mice.
In this study, we investigated whether the proangiogenic neuropeptides secretoneurin (SN), substance P (SP), and neuropeptide Y (NPY) contribute to the development of abnormal neovascularization in the oxygen-induced retinopathy (OIR) model in mice. By exposing litters of C57Bl/6N mice to 75% oxygen from postnatal day 7 (P7) until postnatal day 11 (P11) and then returning them to normoxic conditions, retinal ischemia and subsequent neovascularization on the retinal surface were induced. Retinae were dissected on P9, P11, P12-P14, P16 and P20, and the concentrations of SN, SP, NPY and VEGF determined by radioimmunoassay or ELISA. The levels of SN and SP increased in controls from P9 until P16 and from P9 until P14, respectively, whereas the levels of NPY were high at P9 and decreased thereafter until P20, suggesting that NPY may participate in the development of the retina. However, dipeptidyl peptidase IV (DPPIV) and the NPY-Y2 receptor were not detectable in the immature retina indicating that NPY is not involved in the physiological vascularization in the retina. Compared to controls, OIR had no effect on the levels of SN, whereas levels of both SP and NPY slightly decreased during hyperoxia. Normalization of the levels of SP, and to a more pronounced extent of NPY, was significantly delayed during relative hypoxia. This clearly indicates that these three neuropeptides are not involved in the pathogenesis of neovascularization in OIR. Moreover, since there were no differences in the expression of two vessel markers in the retina of NPY knockout mice versus controls at P14, NPY is also not involved in the delayed development of the intermediate and deep vascular plexus in the retina in this animal model. Topics: Animals; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hyperoxia; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuropeptide Y; Neuropeptides; Radioimmunoassay; Retina; Retinal Neovascularization; Secretogranin II; Substance P | 2012 |
Neuropeptide Y improves myocardial perfusion and function in a swine model of hypercholesterolemia and chronic myocardial ischemia.
Pharmacologically induced angiogenesis could be a promising option in clinical situations with diffuse inoperable coronary artery disease e.g. metabolic syndrome and diabetes mellitus. The failure of focused cytokine, stem cell and gene therapies to achieve both perfusion and functional improvement in clinical trials suggests a more centralized control mechanism. Neuropeptide-Y (NPY) is one such natural neurotransmitter that is known to exert a multifaceted role during neo-angiogenesis and can possibly act as the central control. To date, the ability to harness the 'master switch' nature of NPY in a specific experimental model of metabolic syndrome and chronic myocardial ischemia has not been conclusively demonstrated. We hypothesized that infiltration of NPY into an area of chronic ischemia in a metabolic syndrome swine model would induce angiogenesis and improve myocardial perfusion and function. An osmotic pump was inserted three weeks after surgical induction of focal myocardial ischemia. We delivered either NPY or placebo for five weeks, after which the myocardial tissue was harvested for analysis. Assessments of myocardial perfusion and function were performed at each stage of the experiment. Local infiltration of NPY significantly improved collateral vessel formation, blood flow and myocardial function. We believe activation of NPY receptors may be a potential target therapy for patients with diffuse coronary artery disease. Topics: Angiogenesis Inducing Agents; Animals; Coronary Angiography; Coronary Circulation; Disease Models, Animal; Hypercholesterolemia; Male; Myocardial Ischemia; Myocardium; Neuropeptide Y; Receptors, Neuropeptide Y; Swine | 2012 |
Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats.
Rapamycin (RAP) has certain antiepileptogenic features. However, it is unclear whether these effects can be explained by the anticonvulsant action of RAP, which has not been studied. To address this question, we tested potential anticonvulsant effects of RAP in immature and adult rats using different seizure models and treatment paradigms. In addition, we studied changes in the expression of neuropeptide Y (NPY) induced by RAP, which may serve as an indirect target of the RAP action.. A complex approach was adopted to evaluate the anticonvulsant potential of RAP: We used flurothyl-, pentylenetetrazole (PTZ)-, N-methyl-D-aspartate (NMDA)-, and kainic acid (KA)-induced seizures to test the effects of RAP using different pretreatment protocols in immature and adult rats. We also evaluated expression of NPY within the primary motor cortex, hippocampal CA1, and dentate gyrus (DG) after different pretreatments with RAP in immature rats.. We found the following: (1) RAP administered with short-term pretreatment paradigms has a weak anticonvulsant potential in the seizure models with compromised inhibition. (2) Lack of RAP efficacy correlates with decreased NPY expression in the cortex, CA1, and DG. Specifically in immature rats, a single dose of RAP (3 mg/kg) 4 or 24 h before seizure testing had anticonvulsant effects against PTZ-induced seizures. In the flurothyl seizure model only the 4-h pretreatment with RAP was anticonvulsant in the both age groups. Short-term pretreatments with RAP had no effects against NMDA- and KA-induced seizures tested in immature rats. Long-term pretreatments with RAP over 8 days did not show beneficial effect in all tested seizure models in developing rats. Moreover, the long-term pretreatment with RAP had a slight proconvulsant effect on KA-induced seizures. In immature rats, any lack of anticonvulsant effect (including proconvulsant effect of multiple doses of RAP) was associated with downregulation of NPY expression in the cortex and DG. In immature animals, after a single dose of RAP with 24 h delay, we found a decrease of NPY expression in DG, and CA1 as well.. Our data show weak age-, treatment paradigm-, and model-specific anticonvulsant effects of RAP as well as loss of those effects after long-term RAP pretreatment associated with downregulation of NPY expression. These findings suggest that RAP is a poor anticonvulsant and may have beneficial effects only against epileptogenesis. In addition, our data present new insights into mechanisms of RAP action on seizures indicating a possible connection between mammalian target of rapamycin (mTOR) signaling and NPY system. Topics: Age Factors; Animals; Animals, Newborn; Anticonvulsants; Disease Models, Animal; Gene Expression Regulation; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Seizures; Sirolimus; Treatment Outcome | 2012 |
Involvement of neuropeptide Y signaling in the antidepressant-like effect and hippocampal cell proliferation induced by kososan, a Kampo medicine, in the stress-induced depression-like model mice.
Neuropeptide Y (NPY) and Orexin-A (OX-A), well-known neuropeptides associated with feeding and arousal, show antidepressant-like properties via hippocampal cell proliferation. Previous studies have revealed that kososan, a Kampo (Japanese herbal) medicine, has an antidepressant-like effect in behavioral animal models of depression; the mechanisms underlying this effect may involve the orexinergic system and subsequent upregulation of hippocampal cell proliferation. However, the roles of NPY in kososan's antidepressant-like effect remain unclear. Here we investigated whether the regulation of the NPY system could play crucial roles in this effect in the stress-induced depression-like model mice. The antidepressant-like effect of kososan administered orally (1.0 g/kg) for 28 d was abolished by a continuous intracerebroventricular injection of BIBO3304, a neuropeptide Y1 receptor antagonist, for 7 d. Likewise, BIBO3304 injection blocked the kososan-induced increases in hippocampal cell proliferation and cluster formation of neural progenitor cells. On the other hand, BIBO3304 injection did not affect kososan-induced increases in hypothalamic OX-A-producing cells or in serum OX-A levels. These results suggest that the control of the NPY system in the brain plays an essential role in kososan's antidepressant-like effect and facilitates hippocampal cell proliferation, both of which could be attributed, at least in part, to the control of the NPY system subsequent to the control of the OX-A system. Topics: Animals; Antidepressive Agents; Arginine; Cell Proliferation; Depression; Disease Models, Animal; Drugs, Chinese Herbal; Hippocampus; Intracellular Signaling Peptides and Proteins; Male; Medicine, Kampo; Mice; Neuropeptide Y; Neuropeptides; Orexins; Signal Transduction; Stress, Psychological | 2012 |
Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing.
The interaction between neuropeptides and cytokines and its role in cutaneous wound healing is becoming evident. The goal of the present study is to investigate the impact of diabetes on peripheral cytokine and neuropeptide expression and its role in diabetic wound healing. To achieve this goal, the effect of diabetes on wound healing, along with the role of inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8) secreted in the wound microenvironment, and neuropeptides such as substance P (SP) and neuropeptide Y (NPY), secreted from peripheral nerves is monitored in non-diabetic and diabetic rabbits. Rabbits in the diabetic group received alloxan monohydrate (100mg/kg i.v.). Ten days after diabetic induction, four full thickness circular wounds were created in both ears using a 6mm punch biopsy. Wound healing was monitored over 10 d and gene expression of cytokines and neuropeptides was assessed in the wounds. Compared with the non-diabetic rabbits, wounds of diabetic rabbits heal significantly slower. Diabetic rabbits show significantly increased baseline gene expression of IL-6 and IL-8, their receptors, CXCR1, CXCR2, GP-130, and a decrease of prepro tachykinin-A (PP-TA), the precursor of SP, whereas the expression of prepro-NPY (PP-NPY), the precursor of NPY is not different. Similarly, baseline protein expression of CXCR1 is higher in diabetic rabbit skin. Post-injury, the increase over baseline gene expression of IL-6, IL-8, CXCR1, CXCR2, and GP-130 is significantly less in diabetic wounds compared with non-diabetic wounds. Although there is no difference in PP-TA gene expression between non-diabetic and diabetic rabbits post-injury, the gene expression of PP-NPY is reduced in diabetic rabbits. In conclusion, diabetes causes dysregulation in the neuropeptide expression in the skin along with a suppressed focused inflammatory response to injury. This suggests that the chronic inflammation in the skin of diabetic rabbits inhibits the acute inflammation much needed for wound healing. Topics: Alloxan; Animals; Cytokines; Diabetes Mellitus, Experimental; Disease Models, Animal; Inflammation; Interleukin-6; Interleukin-8; Neuropeptide Y; Neuropeptides; Rabbits; Substance P; Wound Healing | 2011 |
Dipeptidyl peptidase IV (DPP4)-deficiency attenuates diet-induced obesity in rats: possible implications for the hypothalamic neuropeptidergic system.
The underlying mechanisms controlling food intake and satiety are thoroughly controlled, but seem to be insufficient under conditions of almost unlimited food supply. Hence, overweight and obesity are serious problems especially in industrialized countries. To assess the possible influence of CD26, exerting a dipeptidyl peptidase activity (DPP4) cleaving several energy homeostasis-relevant peptides, we investigated wild type and DPP4-deficient dark agouti rats in a model of diet-induced obesity and found a reduced weight gain in DPP4-deficient rats. When investigating the specific increase of whole body fat volume by MRI to assess the distribution pattern (subcutaneous vs. intraabdominal), there was an altered ratio under dietary conditions only in DPP4-deficient rats, which was due to lower intraabdominal fat amounts. Furthermore, we investigated the number of cells immunopositive for the leptin receptor (OB-R), the orexigenic leptin antagonist neuropeptide Y (NPY), as well as of the NPY receptors Y1, Y2, and Y5 within hypothalamic nuclei. Independent from the body weight, higher levels of NPY and all receptors were expressed in DPP4-deficent rats. Under obese conditions, hypothalamic Y2-levels were reduced in both strains. Concerning NPY and Y1, there were partly oppositional effects, with reduced hypothalamic Y1 levels only in wild types, and increased NPY levels only in DPP4-deficient rats. These effects might be responsible for unaltered food intake in DPP4-deficent rats compared to wild types, despite reduced weight gain. However, since the food intake remained unaffected, these effects suggest that DPP4 exerts its effects on intraabdominal fat also via peripheral actions. Topics: Animals; Appetite Regulation; Dietary Fats; Dipeptidyl Peptidase 4; Disease Models, Animal; Energy Intake; Gene Knockout Techniques; Intra-Abdominal Fat; Male; Neuropeptide Y; Obesity; Rats; Rats, Inbred Strains; Receptors, Neuropeptide Y; Weight Gain | 2011 |
Selective loss and axonal sprouting of GABAergic interneurons in the sclerotic hippocampus induced by LiCl-pilocarpine.
In this study, we performed immunohistochemistry for somatostatin (SS), neuropeptide Y (NPY), and parvalbumin (PV) in LiCl-pilocarpine-treated rats to observe quantitative changes and axonal sprouting of GABAergic interneurons in the hippocampus, especially in the sclerotic hippocampus. Fluoro-Jade B (FJB) was performed to detect the specific degeneration of GABAergic interneurons. Compared with age-matched control rats, there were fewer SS/NPY/PV-immunoreactive (IR) interneurons in the hilus of the sclerotic hippocampus in pilocarpine-treated rats; hilar dentritic inhibitory interneurons were most vulnerable. FJB stain revealed degeneration was evident at 2 months after status epilepticus. Some SS-IR and NPY-IR interneurons were also stained for FJB, but there was no evidence of degeneration of PV-IR interneurons. Axonal sprouting of GABAergic interneurons was present in the hippocampus of epileptic rats, and a dramatic increase of SS-IR fibers was observed throughout all layers of CA1 region in the sclerotic hippocampus. These results confirm selective loss and degeneration of a specific subset of GABAergic interneurons in specific subfields of the hippocampus. Axonal sprouting of inhibitory GABAergic interneurons, especially numerous increase of SS-IR neutrophils within CA1 region of the sclerotic hippocampus, may constitute the aberrant inhibitory circum and play a significant role in the generation and compensation of temporal lobe epilepsy. Topics: Animals; Axons; Disease Models, Animal; gamma-Aminobutyric Acid; Hippocampus; Interneurons; Lithium Chloride; Male; Nerve Degeneration; Neuropeptide Y; Parvalbumins; Pilocarpine; Rats; Rats, Sprague-Dawley; Sclerosis; Somatostatin; Status Epilepticus | 2011 |
Vulnerability to nicotine abstinence-related social anxiety-like behavior: molecular correlates in neuropeptide Y, Y2 receptor and corticotropin releasing factor.
An outbred rat model of the novelty-seeking phenotype is used to study nicotine vulnerability, where experimentally naïve rats were phenotype screened as high or low responders (HRs or LRs, ranking in the upper or lower one-third of the population respectively) based on locomotor activity displayed in a novel environment. Following nicotine training and abstinence, HR animals pre-trained with nicotine showed expression of locomotor sensitization to nicotine challenge along with enhanced social anxiety-like behavior in the social interaction test compared to saline pre-trained controls. HR rats also showed a downregulation in neuropeptide Y (NPY) mRNA levels in the medial nucleus of amygdala and the CA1 field of the hippocampus, an upregulation in Y2 mRNA levels in the CA3 field of the hippocampus, and an upregulation in the corticotropin releasing factor (CRF) mRNA levels in the central nucleus of the amygdala. These findings implicate dysregulations in the NPY-CRF systems in the HR hippocampus and amygdala associated with the emergence of social anxiety-like behavior, and a novel Y2R-mediated pathway in nicotine relapse. Topics: Amygdala; Animals; Anxiety; CA1 Region, Hippocampal; Conditioning, Operant; Corticotropin-Releasing Hormone; Disease Models, Animal; Dose-Response Relationship, Drug; Locomotion; Male; Neuropeptide Y; Nicotine; Nicotinic Agonists; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; RNA, Messenger; Tobacco Use Disorder | 2011 |
In vitro effects of neuropeptide Y in rat neocortical and hippocampal tissue.
Neuropeptide Y (NPY) network effects in hippocampus and frontal cortex and its impact on epileptiform neocortical discharges were investigated in rat juvenile brain slices. NPY (1 μM) reduced amplitudes of paired pulse stimulation in hippocampal brain tissue (p<0.05) whereas NPY (1 nM-2 μM) had no effect in neocortex. Late stage epileptiform activity in the neocortex was unaffected by NPY (1 μM). Our results point to a region dependent effect of NPY with a high impact on hippocampal and minimal impact on neocortical networks. Topics: Action Potentials; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Epilepsy; Hippocampus; In Vitro Techniques; Male; Neocortex; Neuropeptide Y; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley | 2011 |
Attenuation of pain-related behavior evoked by injury through blockade of neuropeptide Y Y2 receptor.
Neuropeptide Y (NPY) has an important but still insufficiently defined role in pain modulation. We therefore examined the ability of NPY to modulate experimentally induced neuropathic pain by injecting it directly into dorsal root ganglion (DRG) immediately following spinal nerve ligation (SNL) injury. We have found that this application exacerbates pain-related behavior induced by SNL in a modality-specific fashion. When saline was injected after SNL, the expected increase in hyperalgesia responses to needle stimulation was present on the 8th postoperative day. When we injected NPY, hyperalgesic responses were increased in a manner similar to the SNL/saline group. To characterize NPY action, specific Y1 and Y2 antagonists were also delivered directly to DRG, which revealed that behavioral actions of NPY were abolished by Y2 receptor antagonist. We tested whether NPY effects were the result of its role in immunity by immunohistochemical staining for glial fibrillary acidic protein, in order to identify activation of DRG satellite cells and dorsal horn astrocytes. Exacerbation of pain-related behavior following NPY injection was accompanied by astrocyte activation in ipsilateral dorsal horn and with satellite cells activation in the DRG proximal to injury. This activation was reduced following Y2 receptor antagonist application. These findings indicate an important link between pain-related behavior and neuroimmune activation by NPY through its Y2 receptor. Topics: Analysis of Variance; Animals; Arginine; Benzazepines; Disease Models, Animal; Dose-Response Relationship, Drug; Functional Laterality; Glial Fibrillary Acidic Protein; Hyperalgesia; Male; Motor Activity; Neuralgia; Neurons; Neuropeptide Y; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Rotarod Performance Test; Spinal Cord | 2011 |
Corticotropin-releasing hormone (CRH) transgenic mice display hyperphagia with increased Agouti-related protein mRNA in the hypothalamic arcuate nucleus.
Although glucocorticoid-induced hyperphagia is observed in the patients with glucocorticoid treatment or Cushing's syndrome, its molecular mechanism is not clear. We thus explored the expression of neuropeptide mRNAs in the hypothalamus related to appetite regulation in CRH over-expressing transgenic mice (CRH-Tg), a model of Cushing's syndrome. We measured food intake, body weight (including body fat weight) and plasma corticosterone levels in CRH-Tg and their wild-type littermates (WT) at 6 and 14 weeks old. We also examined neuropeptide Y (NPY), proopiomelanocortin (POMC) and Agouti-related protein (AgRP) mRNAs in the arcuate nucleus (ARC) using in situ hybridization. Circulating corticosterone levels in CRH-Tg were markedly elevated at both 6 and 14 weeks old. Body fat weight in CRH-Tg was significantly increased at 14 weeks old, which is considered as an effect of chronic glucocorticoid excess. At both 6 and 14 weeks old, CRH-Tg mice showed significant hyperphagia compared with WT (14w old: WT 3.9±0.1, CRH-Tg 5.1±0.7 g/day, p<0.05). Unexpectedly, NPY mRNA levels in CRH-Tg were significantly decreased at 14 weeks old (WT: 1571.5±111.2, CRH-Tg: 949.1±139.3 dpm/mg, p<0.05), and there were no differences in POMC mRNA levels between CRH-Tg and WT. On the other hand, AgRP mRNA levels in CRH-Tg were significantly increased compared with WT at both ages (14w old: WT 365.6±88.6, CRH-Tg 660.1±87.2 dpm/ mg, p<0.05). These results suggest that glucocorticoid-induced hyperphagia is associated with increased hypothalamic AgRP. Our results also indicate that hypothalamic NPY does not have an essential role in the increased food intake during glucocorticoid excess. Topics: Adipose Tissue; Agouti-Related Protein; Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Corticosterone; Corticotropin-Releasing Hormone; Cushing Syndrome; Disease Models, Animal; Eating; Glucocorticoids; Hyperphagia; Male; Mice; Mice, Transgenic; Neuropeptide Y; Pro-Opiomelanocortin; RNA, Messenger | 2011 |
Of mice and men: neuropeptide Y and its receptors are associated with atherosclerotic lesion burden and vulnerability.
Neuropeptide Y (NPY), a sympathetic and platelet-derived vascular mitogen and angiogenic factor, has been implicated in atherosclerosis in animal and human genetic studies. Here we evaluate its association with human and murine atherosclerosis, and assess the role of platelet-derived NPY in lesion vulnerability. NPY immunoreactivity (NPY-ir) was measured in the platelet-poor and platelet-rich (PRP) plasmas, and NPY receptors (mitogenic Y1R and angiogenic Y2 and Y5Rs), CD26/DPPIV (a protease forming Y2/Y5-selective agonist), CD31-positive vascularity, and lesion morphology assessed by histo- and immunocyto-chemistry-in patients with peripheral artery disease (PAD) and healthy volunteers, and in lard-fed ApoE-/- mice. NPY and NPY-R immunostaining was greater in lesions from PAD patients compared to normal vessels of healthy volunteers (p < 0.001), and localized to smooth muscle cells, macrophages, and adventitial/neovascular endothelial cells. CD26/DPPIV staining co-localized with CD31-positive endothelial cells only in atherosclerotic lesions. NPY-ir in PRP (but not plasma) and vascular immunostaining was higher (p < 0.05 and 0.001, respectively) in men (not women) with PAD compared to healthy subjects. A similar gender specificity was observed in mice. PRP NPY-ir levels correlated with lesion area (p = 0.03), necrotic core area, and the necrotic core-to-lesion area ratio (p < 0.01) in male, but not female, mice. Also males with neovascularized lesions had higher PRP NPY-ir levels than those lacking lesion microvessels (p < 0.05). NPY and its Rs are up-regulated in human and murine atherosclerotic lesions suggesting pathogenic role. DPPIV expression by microvascular endothelium in atherosclerotic tissue may shift NPY's affinity toward angiogenic Y2/Y5Rs, and thus enhance angiogenesis and lesion vulnerability. Remarkably, plaque neovascularization was associated with increased NPY-ir in PRP in males but not females, suggesting that platelet NPY may be a novel mediator/marker of lesion vulnerability particularly in males, for reasons that remain to be determined. Both animal and human data suggest that NPY is an important contributor to, and platelet NPY-ir a marker of, atherosclerotic lesion burden and vulnerability but only in males, perhaps due to androgen-dependent up-regulation of NPY, previously shown in rats. Topics: Adult; Aged; Analysis of Variance; Animals; Apolipoproteins E; Arteries; Atherosclerosis; Blood Platelets; Case-Control Studies; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Humans; Immunohistochemistry; Linear Models; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Neovascularization, Pathologic; Neuropeptide Y; Peripheral Arterial Disease; Platelet Endothelial Cell Adhesion Molecule-1; Polymerase Chain Reaction; Receptors, Neuropeptide Y; Severity of Illness Index; Sex Factors; Up-Regulation; Young Adult | 2011 |
Pharmacological glycerol-3-phosphate acyltransferase inhibition decreases food intake and adiposity and increases insulin sensitivity in diet-induced obesity.
Storage of excess calories as triglycerides is central to obesity and its associated disorders. Glycerol-3-phosphate acyltransferases (GPATs) catalyze the initial step in acylglyceride syntheses, including triglyceride synthesis. We utilized a novel small-molecule GPAT inhibitor, FSG67, to investigate metabolic consequences of systemic pharmacological GPAT inhibition in lean and diet-induced obese (DIO) mice. FSG67 administered intraperitoneally decreased body weight and energy intake, without producing conditioned taste aversion. Daily FSG67 (5 mg/kg, 15.3 μmol/kg) produced gradual 12% weight loss in DIO mice beyond that due to transient 9- to 10-day hypophagia (6% weight loss in pair-fed controls). Continued FSG67 maintained the weight loss despite return to baseline energy intake. Weight was lost specifically from fat mass. Indirect calorimetry showed partial protection by FSG67 against decreased rates of oxygen consumption seen with hypophagia. Despite low respiratory exchange ratio due to a high-fat diet, FSG67-treated mice showed further decreased respiratory exchange ratio, beyond pair-fed controls, indicating enhanced fat oxidation. Chronic FSG67 increased glucose tolerance and insulin sensitivity in DIO mice. Chronic FSG67 decreased gene expression for lipogenic enzymes in white adipose tissue and liver and decreased lipid accumulation in white adipose, brown adipose, and liver tissues without signs of damage. RT-PCR showed decreased gene expression for orexigenic hypothalamic neuropeptides AgRP or NPY after acute and chronic systemic FSG67. FSG67 given intracerebroventricularly (100 and 320 nmol icv) produced 24-h weight loss and feeding suppression, indicating contributions from direct central nervous system sites of action. Together, these data point to GPAT as a new potential therapeutic target for the management of obesity and its comorbidities. Topics: Adiposity; Agouti-Related Protein; Animals; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Eating; Enzyme Inhibitors; Fatty Liver; Glycerol-3-Phosphate O-Acyltransferase; Insulin Resistance; Mice; Mice, Inbred Strains; Mitochondria, Liver; Neuropeptide Y; Obesity; Oxygen Consumption; Thinness; Triglycerides | 2011 |
Effects of a selective Y2R antagonist, JNJ-31020028, on nicotine abstinence-related social anxiety-like behavior, neuropeptide Y and corticotropin releasing factor mRNA levels in the novelty-seeking phenotype.
An outbred rat model of novelty-seeking phenotype has predictive value for the expression of locomotor sensitization to nicotine. When experimentally naïve rats are exposed to a novel environment, some display high rates of locomotor reactivity (HRs, scores ranking at top 1/3rd of the population), whereas some display low rates (LRs, scores ranking at bottom 1/3rd of the population). Basally, HRs display lower anxiety-like behavior compared to LRs along with higher neuropeptide Y (NPY) mRNA in the amygdala and the hippocampus. Following an intermittent behavioral sensitization to nicotine regimen and 1 wk of abstinence, HRs show increased social anxiety-like behavior in the social interaction test and robust expression of locomotor sensitization to a low dose nicotine challenge. These effects are accompanied by a deficit in NPY mRNA levels in the medial nucleus of the amygdala and the CA3 field of the hippocampus, and increases in Y2R mRNA levels in the CA3 field and corticotropin releasing factor (CRF) mRNA levels in the central nucleus of the amygdala. Systemic and daily injections of a Y2R antagonist, JNJ-31020028, during abstinence fully reverse nicotine-induced social anxiety-like behavior, the expression of locomotor sensitization to nicotine challenge, the deficit in the NPY mRNA levels in the amygdala and the hippocampus, as well as result an increase in Y2R mRNA levels in the hippocampus and the CRF mRNA levels in the amygdala in HRs. These findings implicate central Y2R in neuropeptidergic regulation of social anxiety in a behavioral sensitization to nicotine regimen in the LRHR rats. Topics: Amygdala; Animals; Anxiety; Benzamides; CA3 Region, Hippocampal; Corticosterone; Corticotropin-Releasing Hormone; Disease Models, Animal; Exploratory Behavior; Interpersonal Relations; Male; Motor Activity; Neuropeptide Y; Nicotine; Phenotype; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; RNA, Messenger; Substance Withdrawal Syndrome | 2011 |
Neuroimmunomodulative properties of dipeptidyl peptidase IV/CD26 in a TNBS-induced model of colitis in mice.
Causal connections between dipeptidyl peptidase IV, also known as CD26 molecule (DPP IV/CD26) and inflammatory bowel disease (IBD) have been shown, but mechanisms of these interactions are unclear. Our hypothesis was that DPP IV/CD26 could affect the neuroimmune response during inflammatory events. Therefore, we aimed to evaluate its possible role and the relevance of the gut-brain axis in a model of IBD in mice. Trinitrobenzenesulfonic acid-induced (TNBS) colitis was induced in CD26-deficient (CD26(-/-) ) and wild-type (C57BL/6) mice. Pathohistological and histomorphometrical measurements were done. Concentrations and protein expressions of DPP IV/CD26 substrates neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were determined. Concentrations of IL-6 and IL-10 were evaluated. Investigations were conducted at systemic and local levels. Acute inflammation induced increased serum NPY concentrations in both mice strains, more enhanced in CD26(-/-) mice. Increased NPY concentrations were found in colon and brain of C57BL/6 mice, while in CD26(-/-) animals only in colon. VIP and IL-6 serum and tissue concentrations were increased in both mice strains in acute inflammation, more pronouncedly in CD26(-/-) mice. IL-10 concentrations, after a decrease in serum of both mice strains, increased promptly in CD26(-/-) mice. Decreased IL-10 concentration was found in brain of C57BL/6 mice, while it was increased in colon of CD26(-/-) mice in acute inflammation. DPP IV/CD26 deficiency affects the neuroimmune response at systemic and local levels during colitis development and resolution in mice. Inflammatory changes in the colon reflected on investigated parameters in the brain, suggesting an important role of the gut-brain axis in IBD pathogenesis. Topics: Animals; Blotting, Western; Colitis; Dipeptidyl Peptidase 4; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Interleukins; Mice; Mice, Knockout; Neuropeptide Y; Trinitrobenzenesulfonic Acid; Vasoactive Intestinal Peptide | 2011 |
Environmental enrichment reduces spontaneous seizures in the Q54 transgenic mouse model of temporal lobe epilepsy.
Temporal lobe epilepsy (TLE) is one of the most common forms of human epilepsy and is characterized by spontaneous recurrent seizures and cognitive deficits, often accompanied by hippocampal damage. Mutations in genes encoding for voltage-gated sodium channels have been shown to result in seizure disorders in humans. As a genetic model of TLE, we studied transgenic mice harboring a missense mutation of the sodium channel Scn2a (Nav1.2). In these mice, called Q54, spontaneous recurrent limbic motor seizures began at around 2 months of age and were accompanied by hippocampal sclerosis. We tested whether an enriched sensorimotor experience from birth (environmental enrichment) is effective in counteracting development of hyperexcitability and histopathologic changes in Q54 mice. We found that enriched Q54 animals displayed a dampened frequency of epileptic discharges and reduced hippocampal damage. Therefore, environmental enrichment from birth reduces spontaneous seizures and neuronal damage in the Q54 model of TLE. Topics: Age Factors; Animals; Disease Models, Animal; Electroencephalography; Environment; Epilepsy, Temporal Lobe; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAV1.3 Voltage-Gated Sodium Channel; Neuropeptide Y; Sodium Channels; Up-Regulation | 2011 |
Inhibition of food intake induced by acute stress in rats is due to satiation effects.
Acute mild stress induces an inhibition of food intake in rats. In most studies, the cumulative daily food intake is measured but this only provides a quantitative assessment of ingestive behavior. The present study was designed to analyze the reduction in food intake induced by acute stress and to understand which behavioral and central mechanisms are responsible for it. Two different stressors, restraint stress (RS) and forced swimming stress (FSS), were applied acutely to male Wistar rats. We first measured corticosterone and ACTH in plasma samples collected immediately after acute RS and FSS in order to validate our stress models. We measured food intake after RS and FSS and determined meal patterns and behavioral satiety sequences. The expressions of CRF, NPY and POMC in the hypothalamus were also determined immediately after acute RS and FSS. The rise in corticosterone and ACTH levels after both acute RS and FSS validated our models. Furthermore, we showed that acute stress induced a reduction in cumulative food intake which lasted the whole day for RS but only for the first hour after FSS. For both stressors, this stress-induced food intake inhibition was explained by a decrease in meal size and duration, but there was no difference in ingestion speed. The behavioral satiety sequence was preserved after RS and FSS but grooming was markedly increased, which thus competed with, and could reduce, other behaviors, including eating. Lastly, we showed that RS induced an increase in hypothalamic POMC expression. These results suggest that acute stress may affect ingestive behavior by increasing satiation and to some extent by enhancing grooming, and this may be due to stimulation of the hypothalamic POMC neurons. Topics: Adrenocorticotropic Hormone; Animals; Blood Glucose; Body Weight; Corticosterone; Disease Models, Animal; Eating; Exploratory Behavior; Feeding Behavior; Gene Expression Regulation; Male; Neuropeptide Y; Pro-Opiomelanocortin; Rats; Rats, Wistar; Restraint, Physical; RNA, Messenger; Satiation; Stress, Psychological; Swimming; Time Factors | 2011 |
Wild ginseng attenuates anxiety- and depression-like behaviors during morphine withdrawal.
The purpose of this study was to evaluate whether wild ginseng (WG) administration could attenuate anxiety- and depression-like behaviors and expression of corticotrophin-releasing factor (CRF) and neuropeptide Y (NPY) following withdrawal from repeated morphine administration in rats. Male rats were administered daily doses of WG (50, 100, or 200 mg/kg, i.p.) for 5 days, 30 min before morphine injection (40 mg/kg, s.c). The anxiety- and depression-like behavioral responses were measured 72 h after the last morphine injection using an elevated plus maze (EPM) and forced swimming test (FST), respectively. Changes in hypothalamic CRF and NPY expressions were also examined by analyzing their immunoreactivities in the hypothalamus. Daily administration of WG significantly reduced anxiety-and depression-like behavior, and elicited the suppression of CRF expression and the stimulation of NPY expression in the hypothalamus. Our results demonstrated that WG extract might be effective at inhibiting the anxiety and depression responses due to morphine withdrawal by possibly modulating the hypothalamus CRF and NPY systems. Furthermore, these findings imply that WG extract can be used for developing new medication to cure or alleviate morphine withdrawal symptoms and to prevent relapses of morphine use. Topics: Animals; Anxiety; Corticotropin-Releasing Hormone; Depression; Disease Models, Animal; Humans; Male; Maze Learning; Morphine; Neuropeptide Y; Panax; Plant Extracts; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome; Swimming | 2011 |
Neural stimulation does not mediate attenuated vascular response in ACL-deficient knees: potential role of local inflammatory mediators.
Chronic inflammation associated with osteoarthritis (OA) alters normal responses and modifies the functionality of the articular vasculature. Altered responsiveness of the vasculature may be due to excessive neural activity associated with chronic pain and inflammation, or from the production of inflammatory mediators which induce vasodilation. Using laser speckle perfusion imaging (LSPI), blood flow to the medial collateral ligament (MCL) of adult rabbits was measured in denervated ACL transected knees (n = 6) and compared to unoperated control (n = 6) and 6-week anterial cruciate ligament (ACL)-transected knees (n = 6). Phenylephrine and neuropeptide Y were applied to the MCL vasculature in topical boluses of 100 microL (dose range 10(-14) to 10(-8) mol and 10(-14) to 10(-9) mol, respectively). Denervation diminished vasoconstrictive responsiveness to phenylephrine compared to both control and ACL-transected knees. Denervation minimally enhanced vascular responses to neuropeptide Y (NPY) compared to ACL deficiency alone, which nevertheless remained significantly diminished from control responses. To evaluate the potential role of inflammatory dilators in the diminished contractile responses, phenylephrine was coadministered with histamine, substance P, and prostaglandin E(2). High-dose histamine, and low-dose substance P and PGE(2) were able to inhibit contractile responses in the MCL of control knees. Excessive neural input does not mediate diminished vasoconstrictive responses in the ACL transected knee; inflammatory mediators may play a role in the deficient vascular responsiveness of the ACL transected knee. Topics: Adrenergic alpha-Agonists; Animals; Anterior Cruciate Ligament Injuries; Denervation; Disease Models, Animal; Dose-Response Relationship, Drug; Inflammation; Inflammation Mediators; Medial Collateral Ligament, Knee; Neuropeptide Y; Osteoarthritis, Knee; Pain; Phenylephrine; Physical Stimulation; Rabbits; Regional Blood Flow; Vasoconstriction | 2010 |
The antidepressant effects of running and escitalopram are associated with levels of hippocampal NPY and Y1 receptor but not cell proliferation in a rat model of depression.
One hypothesis of depression is that it is caused by reduced neuronal plasticity including hippocampal neurogenesis. In this study, we compared the effects of three long-term antidepressant treatments: escitalopram, voluntary running, and their combination on hippocampal cell proliferation, NPY and the NPY-Y1 receptor mRNAs, targets assumed to be important for hippocampal plasticity and mood disorders. An animal model of depression, the Flinders Sensitive Line (FSL) rat, was used and female rats were chosen because the majority of the depressed population is females. We investigated if these treatments were correlated to immobility, swimming, and climbing behaviors, which are associated with an overall, serotonergic-like and noradrenergic-like antidepressant response, in the Porsolt swim test (PST). Interestingly, while escitalopram, running and their combination increased the number of hippocampal BrdU immunoreactive cells, the antidepressant-like effect was only detected in the running group and the group with access both to running wheel and escitalopram. Hippocampal NPY mRNA and the NPY-Y1 receptor mRNA were elevated by running and the combined treatment. Moreover, correlations were detected between NPY mRNA levels and climbing and cell proliferation and NPY-Y1 receptor mRNA levels and swimming. Our results suggest that increased cell proliferation is not necessarily associated with an antidepressant effect. However, treatments that were associated with an antidepressant-like effect did regulate hippocampal levels of mRNAs encoding NPY and/or the NPY-Y1 receptor and support the notion that NPY can stimulate cell proliferation and induce an antidepressant-like response. Topics: Animals; Antidepressive Agents; Bromodeoxyuridine; Cell Proliferation; Citalopram; Depression; Disease Models, Animal; Female; Hippocampus; Immunohistochemistry; In Situ Hybridization; Motor Activity; Neuronal Plasticity; Neuropeptide Y; Rats; Receptors, Neuropeptide Y; RNA, Messenger; Running | 2010 |
Chronic psychosocial stress alters NPY system: different effects in rat and tree shrew.
The neuropeptide Y (NPY) system has been largely studied in relation to affective disorders, in particular for its role in the mechanisms regulating the pathophysiology of anxiety and depression and in the stress-related behaviours. Although NPY has been previously investigated in a variety of animal models of mood disorders, the receptor subtype mainly involved in the modulation of the stress response has not been identified. In the present study, the chronic psychosocial stress based on the resident-intruder protocol-an ethologically relevant paradigm known to induce behavioural and endocrine modifications which mimic depression-like symptoms-was used. Two different species were investigated: rat and tree shrew (Tupaia belangeri); the latter is regarded as an intermediate between insectivores and primates and it was chosen in this study for its pronounced territoriality. In these animals, the regulation of NPY and of Y(1), Y(2) and Y(5) receptors mRNA expression was evaluated after chronic stress and chronic antidepressant treatment by in situ hybridization in selected brain regions known to be involved in the pathophysiology of mood disorders. The animals were exposed to psychosocial stress for 35 days and concomitant daily fluoxetine treatment (10 mg/kg for rats and 15 mg/kg for tree shrews) after the first week of stress. The results confirmed a major role for hippocampal and hypothalamic NPY system in the pathophysiology of mood disorders. Although there were no evident differences between rat and tree shrew in the NPY system distribution, an opposite effect of chronic psychosocial stress was observed in the two species. Moreover, chronic antidepressant treatment was able to counteract the effects of stress and restored basal expression levels, suggesting the utility of these paradigms as preclinical models of stress-induced depression. Overall, although evident species differences were found in response to chronic psychosocial stress, the present study suggests a role for NPY receptors in the stress response and in the action of antidepressant drugs, providing further support for an involvement of this neuropeptidergic system in the pathophysiology of depression and anxiety. Topics: Analysis of Variance; Animals; Antidepressive Agents, Second-Generation; Disease Models, Animal; Fluoxetine; Gene Expression Regulation; Hippocampus; Hypothalamus; Male; Neuropeptide Y; Rats; Receptors, Neuropeptide Y; RNA, Messenger; Stress, Psychological; Time Factors; Tupaiidae | 2010 |
Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet.
While the effects of maternal separation on pups are well studied, the impact on dams has attracted little attention. The consumption of palatable food is known to dampen stress responses in animals, and emotions influence food choice in humans. Here we examined the early- and long-term impacts of maternal separation on behavioral profile of the dams, and the effects of palatable cafeteria high-fat diet (HFD). After littering, Sprague-Dawley female rats were subjected to prolonged separation, S180 (180 min) or brief separation, S15 (15 min/day) from postnatal days (PND) 2-14. At 4 weeks postpartum, half the dams were assigned to HFD. Anxiety and depression-like behaviors were assessed pre- and post-diet. Compared to S15 dams, S180 dams consuming chow demonstrated increased anxiety and depression-like behaviors assessed by elevated plus maze (EPM) and forced swim (FST) tests, respectively. These behavioral deficits were observed at 4 weeks, and persisted until 17 weeks postpartum. The S180 dams also had increased plasma corticosterone concentration compared to S15 dams, which coincided with increased hypothalamic CRH mRNA and reduced hippocampal GR mRNA expression, suggesting possible dysregulation of hypothalamic-pituitary-adrenal axis activity. Interestingly, continuous provision of HFD improved the behavioral deficits observed in S180 dams with significant reduction of hypothalamic CRH mRNA expression. These data are the first to describe long-term detrimental behavioral impacts of separation in dams, suggesting this may provide a model of postpartum depression. Moreover, they support the notion of long-term beneficial effects of 'comfort food' on stress responses. Topics: Adipose Tissue; Age Factors; Analysis of Variance; Animals; Animals, Newborn; Anxiety; Body Weight; Brain; Corticosterone; Corticotropin-Releasing Hormone; Depression, Postpartum; Dietary Fats; Disease Models, Animal; Female; Food Preferences; Male; Maternal Deprivation; Maze Learning; Neuropeptide Y; Peptide Fragments; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sucrose; Sweetening Agents; Swimming | 2010 |
Inhibitory effects of angiotensin-(1-7) on the nerve stimulation-induced release of norepinephrine and neuropeptide Y from the mesenteric arterial bed.
Neuropeptide Y (NPY) is a cotransmitter with norepinephrine (NE) and ATP in sympathetic nerves. There is evidence for increased activity of the sympathetic nervous system and the renin-angiotensin system (RAS), as well as a role for NPY in the development of hypertension in experimental animal models and in humans. Angiotensin II (ANG II) is known to facilitate sympathetic neurotransmission, an effect greater in spontaneously hypertensive rats (SHR) than normotensive Wistar-Kyoto (WKY) rats. A newly discovered product of the RAS is angiotensin-(1-7) [ANG-(1-7)]. There is evidence suggesting that ANG-(1-7) opposes the actions of ANG II, resulting in hypotensive effects. The objective of this study was to investigate the role of ANG-(1-7) on the nerve-stimulated overflow of NE and NPY from the mesenteric arterial bed of SHR and the mechanisms involved in mediating any effects produced. ANG-(1-7) (0.001, 0.01, 0.1 microM) decreased nerve-stimulated NE and NPY overflow, as well as perfusion pressure in preparations obtained from SHR. This effect was greater in preparations of SHR than WKY controls. In addition, ANG-(1-7) decreased NE overflow to a greater extent than NPY overflow. Administration of the Mas receptor antagonist, D-Ala(7) ANG-(1-7), attenuated the decrease in both NE and NPY overflow due to ANG-(1-7) administration. However, the angiotensin type 2 receptor antagonist, PD-123391, attenuated the effect of ANG-(1-7) on NE overflow without affecting the decrease in NPY overflow. Moreover, in the presence of N(G)-nitro-L-arginine methyl ester, ANG-(1-7) decreased NPY overflow, but not NE overflow. ANG-(1-7) decreases the nerve-stimulated overflow of NE and NPY in preparations of SHR, whereas ANG II enhances it. Therefore, ANG-(1-7) may counteract the effects of ANG II by acting on ANG type 2 and Mas receptors. Topics: Angiotensin I; Animals; Antihypertensive Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Hypertension; Imidazoles; Male; Mesenteric Arteries; Neuropeptide Y; NG-Nitroarginine Methyl Ester; Norepinephrine; Peptide Fragments; Pyridines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 2; Sympathetic Nervous System; Synaptic Transmission | 2010 |
Palatable cafeteria diet ameliorates anxiety and depression-like symptoms following an adverse early environment.
Early trauma contributes to psychosocial disorders later in life. An adverse early environment induced by maternal separation (MS) is known to alter behavioural and stress responses in rats. Palatable food dampens stress responses. We investigated the influence of palatable cafeteria high-fat diet (HFD) on behavioural responses following MS or non-handling (NH), versus 15min brief separation. After littering, Sprague-Dawley rats were exposed to short separation, S15 (15min), prolonged separation, S180 (180min) daily from postnatal days 2 to 14 or were non-handled. Pups were assigned to HFD or chow at weaning. We assessed depression and anxiety-like behaviour with sucrose preference test (SPT) and elevated plus maze (EPM) respectively, and measured hypothalamic CRH and hippocampal glucocorticoid receptor (GR) expression. S180 rats showed increased anxiety-and depression-like behaviours, with increased plasma corticosterone, hypothalamic CRH, and reduced hippocampal GR expression versus S15 rats. Similar effects were observed across gender. These were normalized by provision of HFD, with greater beneficial effects in males. S15 showed no benefit of HFD. NH female rats had less adverse impacts; HFD had beneficial impact on behaviour in NH males. Thus behavioural deficits and gene expression changes induced by early life stress were ameliorated by HFD. These results highlight the important place of palatable food in reducing central stress responses supporting the therapeutic value of 'comfort food'. Topics: 11-beta-Hydroxysteroid Dehydrogenase Type 1; Animals; Anxiety; Corticosterone; Corticotropin-Releasing Hormone; Depression; Dietary Fats; Disease Models, Animal; Eating; Female; Handling, Psychological; Hippocampus; Hypothalamus; Insulin; Leptin; Male; Maternal Behavior; Maternal Deprivation; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Glucocorticoid; Sex Characteristics; Time Factors | 2010 |
Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment.
Rodents exhibit aversive behavior toward a diet that lacks at least one of the essential amino acids. We sought to determine whether the particular form of anorexia caused by such diets could be ameliorated by the administration of orexigenic peptides while simultaneously analyzing the neural mechanisms underlying anorexia. Rats were fed a valine-deficient diet, which induced severe anorexia (reducing food consumption by 80%). The severe anorexia was associated with a significant decrease in the cerebrospinal fluid valine concentration and hyper-ghrelinemia. Between 6 and 12 days after initiation of the valine-deficient diet, we injected rats twice daily with valine and/or an orexigenic peptide (ghrelin, neuropeptide Y, or agouti-related protein) either i.p. or i.c.v.. We then measured dietary intake. An i.c.v. valine injection allowed earlier food intake compared with an i.p valine injection and increased the density of c-Fos-positive ependymal cells lining the third ventricle. Whereas an i.c.v. injection of ghrelin or neuropeptide Y increased consumption of the valine-deficient diet, i.p injection of ghrelin or i.c.v. injection of agouti-related protein did not. Following i.c.v. administration of either valine or ghrelin, we did not observe complete recovery of consumption of the valine-deficient diet. This may be due to the ineffectiveness of peripheral ghrelin and central agouti-related protein and/or to conditioned aversion to the valine-deficient diet. Since ghrelin is known to be involved in food anticipatory activities, whether the hyper-ghrelinemia observed in valine-deficient rats play role in foraging behavior other than food intake is the future study to be investigated. Topics: Agouti-Related Protein; Animals; Anorexia; Appetite; Appetite Regulation; Dietary Proteins; Disease Models, Animal; Ependyma; Exploratory Behavior; Feeding Behavior; Food, Formulated; Ghrelin; Hypothalamus; Male; Neuropeptide Y; Rats; Rats, Wistar; Third Ventricle; Valine | 2010 |
Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment.
Excess neural activity in the CA3 region of the hippocampus has been linked to memory impairment in aged rats. We tested whether interventions aimed at reducing this excess activity would improve memory performance. Aged (24 to 28 months old) male Long-Evans rats were characterized in a spatial memory task known to depend on the functional integrity of the hippocampus, such that aged rats with identified memory impairment were used in a series of experiments. Overexpression of the inhibitory neuropeptide Y 13-36 in the CA3 via adeno-associated viral transduction was found to improve hippocampal-dependent long-term memory in aged rats, which had been characterized with impairment. Subsequent experiments with two commonly used antiepileptic agents, sodium valproate and levetiracetam, similarly produced dose-dependent memory improvement in such aged rats. Improved spatial memory with low doses of these agents was observed in both appetitve and aversive spatial tasks. The benefits of these different modalities of treatment are consistent with the concept that excess activity in the CA3 region of the hippocampus is a dysfunctional condition that may have a key role underlying age-related impairment in hippocampal-dependent memory processes. Because increased hippocampal activation occurs in age-related memory impairment in humans as observed in functional neuroimaging, the current findings also suggest that low doses of certain antiepileptic drugs in cognitively impaired elderly humans may have therapeutic potential and point to novel targets for this indication. Topics: Age Factors; Aging; Animals; Anticonvulsants; CA3 Region, Hippocampal; Cognition Disorders; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Combinations; Levetiracetam; Male; Maze Learning; Neuropeptide Y; Peptide Fragments; Piracetam; Rats; Rats, Long-Evans; Space Perception; Transduction, Genetic; Valproic Acid | 2010 |
Depletion of spinal 5-HT accelerates mechanosensory recovery in the deafferented rat spinal cord.
Dorsal root injuries (DRIs), resulting in the permanent disconnection of nerve roots from the spinal cord, lead to sensory impairments, including both the loss of sensation and the development of neuropathic pain in the affected limb. DRI results in axonal sprouting of intraspinal serotonergic fibers, but the functional consequences of this response to spinal deafferentation remains unclear. Here we aimed to clarify the role of descending serotonergic projections in both mechanosensation and pain following DRI. By ablating serotonergic input to the spinal cord via 5,7-dihydroxytryptamine (5,7-DHT) prior to DRI in rats, we found that serotonergic input to the dorsal horn normally inhibits the recovery of mechanosensation but has no effect on the development or resolution of cold pain. Endogenous brain-derived neurotrophic factor (BDNF) is upregulated by activated microglia, is required for sprouting of serotonergic axons and neuropeptide tyrosine (NPY)-positive interneurons, and suppresses mechanosensory recovery following DRI. Intriguingly, we found that the density of activated microglia, the amount of BDNF protein, and density of NPY-positive processes were all significantly reduced in 5,7-DHT-treated rats, suggesting that serotonergic input to the deafferented dorsal horn is required for all of these consequences of spinal deafferentation. These results indicate that BDNF-dependent serotonergic and/or increases in NPY-positive fiber density slows, and ultimately halts, mechanosensory recovery following DRI. Topics: 5,7-Dihydroxytryptamine; Animals; Brain; Brain-Derived Neurotrophic Factor; Calcitonin Gene-Related Peptide; Disease Models, Animal; Hyperalgesia; Hypesthesia; Lectins; Male; Microglia; Neuropeptide Y; Pain Threshold; Peripheral Nervous System Diseases; Physical Stimulation; Rats; Rats, Sprague-Dawley; Recovery of Function; Rhizotomy; Serotonin; Serotonin Agents; Serotonin Plasma Membrane Transport Proteins; Spinal Cord; Spinal Nerve Roots; Tyrosine 3-Monooxygenase; Up-Regulation; Vesicular Glutamate Transport Protein 1 | 2010 |
Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli.
Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing.. All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY.. These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain. Topics: Acetone; Analgesics; Animals; Biomarkers; Cholecystokinin; Chronic Disease; Cold Temperature; Disease Models, Animal; Female; Functional Laterality; Hyperalgesia; Immunohistochemistry; Ligation; Neuropeptide Y; Pain Measurement; Pain Threshold; Peripheral Nervous System Diseases; Posterior Horn Cells; Predictive Value of Tests; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-1; Receptors, Opioid, mu; Reflex; Sciatic Neuropathy | 2010 |
Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression.
In schizophrenia, glutamic acid decarboxylase 1 (GAD1) disturbances are robust, consistently observed, cell-type specific and represent a core feature of the disease. In addition, neuropeptide Y (NPY), which is a phenotypic marker of a sub-population of GAD1-containing interneurons, has shown reduced expression in the prefrontal cortex in subjects with schizophrenia, suggesting that dysfunction of the NPY+ cortical interneuronal sub-population might be a core feature of this devastating disorder. However, modeling gene expression disturbances in schizophrenia in a cell type-specific manner has been extremely challenging. To more closely mimic these molecular and cellular human post-mortem findings, we generated a transgenic mouse in which we downregulated GAD1 mRNA expression specifically in NPY+ neurons. This novel, cell type-specific in vivo system for reducing gene expression uses a bacterial artificial chromosome (BAC) containing the NPY promoter-enhancer elements, the reporter molecule (eGFP) and a modified intron containing a synthetic microRNA (miRNA) targeted to GAD1. The animals of isogenic strains are generated rapidly, providing a new tool for better understanding the molecular disturbances in the GABAergic system observed in complex neuropsychiatric disorders such as schizophrenia. In the future, because of the small size of the silencing miRNAs combined with our BAC strategy, this method may be modified to allow generation of mice with simultaneous silencing of multiple genes in the same cells with a single construct, and production of splice-variant-specific knockdown animals. Topics: Alternative Splicing; Animals; Brain Diseases; Chromosomes, Artificial, Bacterial; Disease Models, Animal; Gene Expression Regulation; Gene Silencing; Glutamate Decarboxylase; HEK293 Cells; Humans; Mice; Mice, Transgenic; MicroRNAs; Neuropeptide Y; Schizophrenia | 2010 |
The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression.
Anxiety is integrated in the amygdaloid nuclei and involves the interplay of the amygdala and various other areas of the brain. Neuropeptides play a critical role in regulating this process. Neuropeptide Y (NPY), a 36 aa peptide, is highly expressed in the amygdala. It exerts potent anxiolytic effects through cognate postsynaptic Y1 receptors, but augments anxiety through presynaptic Y2 receptors. To identify the precise anatomical site(s) of Y2-mediated anxiogenic action, we investigated the effect of site-specific deletion of the Y2 gene in amygdaloid nuclei on anxiety and depression-related behaviors in mice. Ablating the Y2 gene in the basolateral and central amygdala resulted in an anxiolytic phenotype, whereas deletion in the medial amygdala or in the bed nucleus of the stria terminalis had no obvious effect on emotion-related behavior. Deleting the Y2 receptor gene in the central amygdala, but not in any other amygdaloid nucleus, resulted in an added antidepressant-like effect. It was associated with a reduction of presumably presynaptic Y2 receptors in the stria terminalis/bed nucleus of the stria terminalis, the nucleus accumbens, and the locus ceruleus. Our results are evidence of the highly site-specific nature of the Y2-mediated function of NPY in the modulation of anxiety- and depression-related behavior. The activity of NPY is likely mediated by the presynaptic inhibition of GABA and/or NPY release from interneurons and/or efferent projection neurons of the basolateral and central amygdala. Topics: Amygdala; Animals; Anxiety; Depression; Disease Models, Animal; Locus Coeruleus; Male; Mice; Mice, Knockout; Neuropeptide Y; Receptors, Neuropeptide Y; Septal Nuclei | 2010 |
Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats.
The insular cortex (IC) is involved in the generalization of epileptic discharges in temporal lobe epilepsy (TLE), whereas seizures originating in the IC can mimic the epileptic phenotype seen in some patients with TLE. However, few studies have addressed the changes occurring in the IC in TLE animal models. Here, we analyzed the immunohistochemical and electrophysiological properties of IC networks in non-epileptic control and pilocarpine-treated epileptic rats. Neurons identified with a neuron-specific nuclear protein antibody showed similar counts in the two types of tissue but parvalbumin- and neuropeptide Y-positive interneurons were significantly decreased (parvalbumin, approximately -35%; neuropeptide Y, approximately -38%; P < 0.01) in the epileptic IC. Non-adapting neurons were seen more frequently in the epileptic IC during intracellular injection of depolarizing current pulses. In addition, single-shock electrical stimuli elicited network-driven epileptiform responses in 87% of epileptic and 22% of non-epileptic control neurons (P < 0.01) but spontaneous postsynaptic potentials had similar amplitude, duration and intervals of occurrence in the two groups. Finally, pharmacologically isolated, GABA(A) receptor-mediated inhibitory postsynaptic potentials had more negative reversal potential (P < 0.01) and higher peak conductance (P < 0.05) in epileptic tissue. These data reveal moderate increased network excitability in the IC of pilocarpine-treated epileptic rats. We propose that this limited degree of hyperexcitability originates from the loss of parvalbumin- and neuropeptide Y-positive interneurons that is compensated by an increased drive for GABA(A) receptor-mediated inhibition. Topics: Action Potentials; Animals; Disease Models, Animal; Electrophysiology; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Humans; Interneurons; Male; Muscarinic Agonists; Neural Inhibition; Neuropeptide Y; Parvalbumins; Pilocarpine; Rats; Rats, Sprague-Dawley; Synaptic Transmission; Temporal Lobe | 2010 |
The effect of protein kinase C-delta knockdown on anti-free radical enzyme and neuropeptide Y gene expression in phenylpropanolamine-treated rats.
Hypothalamic neuropeptide Y (NPY) has been reported to involve in regulating behavioral response of phenylpropanolamine (PPA), a sympathomimetic agent. This study explored if protein kinase C (PKC)-delta signaling participated in this regulation. Moreover, possible roles of anti-free radical enzyme catalase (CAT) and nitrogen oxide synthase (NOS) were also examined. Rats were treated daily with PPA for 4 days. Changes in food intake and hypothalamic NPY, PKCdelta, CAT, and NOS contents were assessed and compared. Results showed that PKCdelta and CAT increased during PPA treatment, which were concomitant with decreases in NPY content and food intake, while the change of NOS was expressed differently. Moreover, PKCdelta knockdown could modify PPA anorexia as well as NPY and CAT expression, while NOS expression remained unchanged. Furthermore, pre-treatment with NOS inhibitor could modify both PPA anorexia and NPY content. It is suggested that PKCdelta participates in the anorectic response of PPA via the modulation of NPY and CAT, while NOS contribute to this modulation via a different mechanism during PPA treatment. Results provide molecular mechanism of NPY-mediated PPA anorexia and may aid the therapeutic research of PPA and other anti-obesity drugs. Topics: Animals; Anorexia; Catalase; Disease Models, Animal; Eating; Free Radicals; Gene Expression Regulation; Hypothalamus; Male; Neuropeptide Y; Nitric Oxide; Nitric Oxide Synthase Type I; Oxidative Stress; Phenylpropanolamine; Protein Kinase C-delta; Rats; Rats, Wistar | 2010 |
Effects of neuropeptide Y on collateral development in a swine model of chronic myocardial ischemia.
We investigated the role of neuropeptide Y (NPY), abundant in the myocardial sympathetic nervous system and endothelial cells, in angiogenesis during chronic myocardial ischemia. Adult male Yorkshire swine underwent ameroid constrictor placement on the proximal left circumflex coronary artery. After 3 weeks, an osmotic pump was placed to deliver either placebo (control, n=8) or NPY(3-36) (NPY, n=8) to the collateral dependent region. Five weeks after pump placement, after cardiac catheterization and hemodynamic assessment, the heart was harvested for analysis. NPY treated animals demonstrated increased mean arterial pressures and improved left ventricular function (+dP/dt). Cardiac catheterization demonstrated a significant increase in the blush score in the NPY group (p<0.001). Blood flow to the ischemic myocardium was not different between groups at rest or during ventricular pacing. Immunohistochemical double staining for CD-31 and smooth muscle actin demonstrated an increase in capillary and arteriole formation in NPY treated animals (p=0.02 and p<0.001). Immunoblotting showed a significant upregulation of DPPIV (p=0.009) and NPY receptors 1 (p=0.008), 2 (p=0.02) and 5 (p=0.03) in the NPY treated group. Additionally, there was significant upregulation of VEGF (p=0.04), eNOS (p=0.014), phospho-eNOS (ser1177) (p=0.02), and PDGF (p<0.001) in NPY treated group. The anti-angiogenic factors endostatin and angiostatin were significantly decreased in NPY treated animals (endostatin, p=0.03; angiostatin, p=0.04). Exogenous NPY(3-36) resulted in improved myocardial function and increased angiogenesis and arteriogenesis by stimulating growth factor, pro-angiogenic receptor upregulation, and decreasing anti-angiogenic expression, but did not increase blood flow to the ischemic myocardium. NPY may act as a good adjunct to primary agents of therapeutic angiogenesis. Topics: Animals; Chronic Disease; Collateral Circulation; Coronary Angiography; Disease Models, Animal; Heart Function Tests; Immunoblotting; Immunohistochemistry; Microvessels; Models, Biological; Myocardial Ischemia; Neuropeptide Y; Perfusion; Sus scrofa | 2010 |
Seizure-induced changes in neuropeptide Y-containing cortical neurons: Potential role for seizure threshold and epileptogenesis.
Seizure activity induces transient changes in the levels of neuropeptide Y (NPY) and somatostatin (SS) in various brain regions, but it remains unclear whether this effect can persist for long periods and whether it is relevant to epileptogenesis. We report that brief seizures evoked by electroshock produced an increase in the number of NPY neurons in the dentate hilus and retrosplenial cortex, an effect that lasted 10 weeks. The number of hilar SS neurons remained unchanged. However, the pentylenetetrazole seizure threshold was somewhat decreased in electroshock-treated rats. Despite this, no spontaneous seizures were detected in this group. In contrast, status epilepticus (pilocarpine model) produced loss of the hilar NPY and SS cells. Moreover, all rats with status epilepticus showed spontaneous behavioral seizures and their seizure threshold was markedly decreased. These findings support the notion that sustained NPY overexpression induced by brief seizures can be important in preventing epileptogenesis. Topics: Animals; Cell Count; Cerebral Cortex; Disease Models, Animal; Electroshock; Gene Expression Regulation; Hippocampus; Male; Neurons; Neuropeptide Y; Pentylenetetrazole; Pilocarpine; Rats; Rats, Wistar; Seizures; Somatostatin | 2010 |
Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia.
Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system ("glutamate chips") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity. Topics: Animals; Animals, Newborn; Antipsychotic Agents; Brain; Carboxypeptidases; Clozapine; Disease Models, Animal; Gene Expression Profiling; Gene Expression Regulation; Hypoxia; Neural Inhibition; Neuropeptide Y; Oligonucleotide Array Sequence Analysis; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Synaptosomal-Associated Protein 25; Syntaxin 1 | 2010 |
Changes in neuropeptide Y gene expression in the spinal cord of chronic constrictive injury model rats after electroconvulsive stimulation.
Some reports have shown that electroconvulsive shock therapy (ECT) is effective for treating refractory neuropathic pain. However, its mechanism of action remains unknown. We have previously shown that electroconvulsive shock (ECS) improved thermal hypersensitivity in chronic constrictive injury (CCI) model rats and simultaneously elevated the neuropeptide Y (NPY) expression in the brain of these rats. In this study, we examined changes in the expression of NPY in the spinal cord of a CCI model. The rat model of CCI was established by ligating the left sciatic nerve. ECS was administered to the rats once daily for six days on days 7-12 after the operation using an electrical stimulator. RT-PCR was used to measure NPY mRNA expression in both the right and left L5 dorsal spinal cords on the 14th day after the operation. NPY gene expression was decreased in the dorsal spinal cords after ECS; however, no differences in NPY expression were observed between the right and left side of dorsal spinal cords, suggesting that the effect of changes in NPY expression after ECS on the improvement of neuropathic pain is not directly related to the spinal cord, but mainly to the upper central nerves. Topics: Animals; Disease Models, Animal; Electroconvulsive Therapy; Gene Expression; Humans; Male; Neuralgia; Neuropeptide Y; Pain Threshold; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sciatic Nerve; Spinal Cord | 2010 |
Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing.
Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptides. PAM consists of O(2)-sensitive peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) activities. Here, we examined whether IH alters neuropeptide synthesis by affecting PAM activity and, if so, by what mechanisms. Experiments were performed on the brain stem of adult male rats exposed to IH (5% O(2) for 15 s followed by 21% O(2) for 5 min; 8 h/day for up to 10 days) or continuous hypoxia (0.4 atm for 10 days). Analysis of brain stem extracts showed that IH, but not continuous hypoxia, increased PHM, but not PAL, activity of PAM and that the increase of PHM activity was associated with a concomitant elevation in the levels of alpha-amidated forms of substance P and neuropeptide Y. IH increased the relative abundance of 42- and 35-kDa forms of PHM ( approximately 1.6- and 2.7-fold, respectively), suggesting enhanced proteolytic processing of PHM, which appears to be mediated by an IH-induced increase of endoprotease activity. Kinetic analysis showed that IH increases V(max) but has no effect on K(m). IH increased generation of reactive oxygen species in the brain stem, and systemic administration of antioxidant prevented IH-evoked increases of PHM activity, proteolytic processing of PHM, endoprotease activity, and elevations in substance P and neuropeptide Y amide levels. Taken together, these results demonstrate that IH activates PHM in rat brain stem via reactive oxygen species-dependent posttranslational proteolytic processing and further suggest that PAM activation may contribute to IH-mediated peptidergic neurotransmission in rat brain stem. Topics: Amidine-Lyases; Animals; Antioxidants; Brain Stem; Disease Models, Animal; Enzyme Activation; Hypoxia; Kinetics; Male; Metalloporphyrins; Mixed Function Oxygenases; Multienzyme Complexes; Neuropeptide Y; Peptide Hydrolases; Protein Processing, Post-Translational; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Sleep Apnea Syndromes; Substance P | 2009 |
Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP.
Recently, hippocampal neuropeptide Y (NPY) gene therapy has been shown to effectively suppress both acute and chronic seizures in animal model of epilepsy, thus representing a promising novel antiepileptic treatment strategy, particularly for patients with intractable mesial temporal lobe epilepsy (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY gene therapy. Here we report how rAAV vector-mediated overexpression of NPY in the hippocampus affects rapid kindling, and subsequently explore how synaptic plasticity and transmission is affected by kindling and NPY overexpression by field recordings in CA1 stratum radiatum of brain slices. In animals injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected by rAAV-NPY treatment, and may be considered less critical for clinical application in epilepsy patients already experiencing memory disturbances. Topics: Analysis of Variance; Animals; Biophysical Phenomena; Chi-Square Distribution; Disease Models, Animal; Electric Stimulation; Electrodes, Implanted; Electroencephalography; Epilepsy; Excitatory Postsynaptic Potentials; Genetic Therapy; Hippocampus; Long-Term Potentiation; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Transduction, Genetic | 2009 |
Anorexigenic effect of cholecystokinin is lost but that of CART (Cocaine and Amphetamine Regulated Transcript) peptide is preserved in monosodium glutamate obese mice.
Monosodium glutamate (MSG) treatment of neonatal mice results in a selective damage to the arcuate nucleus (ARC) and development of obesity with increased adiposity at sustained body weight in the adulthood. Feeding pattern of the MSG obese mice is unusual. Our previous results showed that after 24-h fasting, MSG mice consumed negligible amount of food in several hours and therefore, it was impossible to register the effect of peptides attenuating food intake such as cholecystokinin (CCK) or cocaine- and amphetamine-regulated transcript (CART) peptide. To overcome this problem, two findings were used: firstly, orexigenic effect of neuropeptide Y (NPY) was attenuated both by CCK or CART peptide in lean fed mice and secondly, orexigenic effect of NPY was preserved in fed rats with MSG obesity. In this study, short-term food intake in fed lean and MSG obese C57BL/6 male mice was measured after simultaneous central administration of orexigenic NPY with either CART peptide or peripherally administered CCK. Anorexigenic action of exogenous CART peptide was preserved in MSG obese mice. On the other hand, satiety effect of exogenous CCK was completely lost in MSG obese mice. In conclusion, effective leptin signaling in ARC is necessary for satiety effect of CCK. Topics: Animals; Appetite Regulation; Arcuate Nucleus of Hypothalamus; Cholecystokinin; Disease Models, Animal; Male; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; Neuropeptide Y; Obesity; Sodium Glutamate | 2009 |
Neuropeptide Y and CGRP concentrations in the rat tail artery: Effects of age and two types of diabetes.
The changes in concentrations of two neuropeptides, neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) in different segments of the rat tail artery have been investigated (a) after 12 and 16 weeks of streptozotocin (STZ)-induced hyperglycemia that has been induced at the age of 10 weeks, and (b) in 52-week-old Goto-Kakizaki (GK) rats that were intolerant of glucose, and age-matched Wistar controls. In the control animals at 22, 26 and 52 weeks of age, the concentration of CGRP was significantly greater in distal, relative to proximal, segments of normal arteries, and this contrasted with the pattern of distribution of NPY, which was consistently greater in the proximal than the distal segments. STZ-induced diabetes caused significant reductions in the concentrations of NPY and CGRP in the middle and distal segments of the vessel after 12 and 16 weeks of hyperglycemia. In the glucose-intolerant Goto-Kakizaki (GK) rats, the noradrenalin and adrenalin levels increased significantly in the distal segment of the artery relative to controls; in contrast there was a significant fall in dopamine concentration. The only significant change in the level of NPY in 52-week-old GK rats was an increase in the proximal segment, suggesting that in Type II pre-diabetes, noradrenalin and its co-transmitter NPY are affected independently. The concentration of CGRP increased significantly in all segments of the artery of the 12-month-old GK rats relative to controls. The similarities and differences between these measurements in Type I and Type II diabetic models are discussed. Topics: Animals; Arteries; Blood Glucose; Calcitonin Gene-Related Peptide; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Male; Neuropeptide Y; Rats; Rats, Wistar; Streptozocin; Tail | 2009 |
Early postnatal exposure to methylphenidate alters stress reactivity and increases hippocampal ectopic granule cells in adult rats.
To mimic clinical treatment with methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), rat pups were injected with MPH (5 mg/kg, i.p.) or placebo twice daily during their nocturnal active phase from postnatal day (PND) 7-35. Thirty-nine days after the last MPH administration (PND 76), four litters of rats experienced stressful conditions during the 2003 New York City blackout. MPH-treated rats that endured the blackout lost more weight and regained it at a slower pace than controls (p<0.05; N=7-11 per group). Furthermore, MPH-treated rats had elevated systolic arterial blood pressure (from 115.6+/-1.2 to 126+/-1.8 mmHg; p<0.05), assessed on PND 130 by tail cuff plethysmography. Immunocytochemical studies of transmitter systems in the brain demonstrated rearrangements of catecholamine and neuropeptide Y fibers in select brain regions at PND 135, which did not differ between blackout and control groups. However, MPH-treated rats that endured the blackout had more ectopic granule cells in the hilus of the dorsal hippocampal dentate gyrus compared to controls at PND 135 (p<0.05; N=6 per group). These findings indicate that early postnatal exposure to high therapeutic doses of MPH can have long lasting effects on the plasticity of select brain regions and can induce changes in the reactivity to stress that persist into adulthood. Topics: Analysis of Variance; Animals; Animals, Newborn; Attention Deficit Disorder with Hyperactivity; Behavior, Animal; Blood Pressure; Brain; Catecholamines; Cell Count; Central Nervous System Stimulants; Dentate Gyrus; Disease Models, Animal; Female; Hippocampus; Immunohistochemistry; Injections, Intraperitoneal; Male; Methylphenidate; Neurons; Neuropeptide Y; Pregnancy; Rats; Rats, Sprague-Dawley; Stress, Physiological; Weight Loss | 2009 |
Acupuncture and exercise restore adipose tissue expression of sympathetic markers and improve ovarian morphology in rats with dihydrotestosterone-induced PCOS.
Altered activity of the sympathetic nervous system, which innervates adipose and ovarian tissue, may play a role in polycystic ovary syndrome (PCOS). We hypothesize that electro-acupuncture (EA) and physical exercise reduce sympathetic activity by stimulating ergoreceptors and somatic afferent pathways in muscles. Here we investigated the effects of low-frequency EA and physical exercise on mRNA expression of sympathetic markers in adipose tissue and on ovarian morphology in female rats that received dihydrotestosterone (DHT) continuously, starting before puberty, to induce PCOS. At age 11 wk, rats with DHT-induced PCOS were randomly divided into three groups: PCOS, PCOS plus EA, and PCOS plus exercise. The latter two groups received 2-Hz EA (evoking muscle twitches) three times/week or had free access to a running wheel for 4-5 wk. In mesenteric adipose tissue, expression of beta(3)-adrenergic receptor (ADRB3), nerve growth factor (NGF), and neuropeptide Y (NPY) mRNA was higher in untreated PCOS rats than in controls. Low-frequency EA and exercise downregulated mRNA expression of NGF and NPY, and EA also downregulated expression of ADRB3, compared with untreated rats with DHT-induced PCOS. EA and exercise improved ovarian morphology, as reflected in a higher proportion of healthy antral follicles and a thinner theca interna cell layer than in untreated PCOS rats. These findings support the theory that increased sympathetic activity contributes to the development and maintenance of PCOS and that the effects of EA and exercise may be mediated by modulation of sympathetic outflow to the adipose tissue and ovaries. Topics: Acupuncture Therapy; Adipose Tissue; Animals; Dihydrotestosterone; Disease Models, Animal; Exercise Therapy; Female; Gene Expression Regulation; Nerve Growth Factor; Neuropeptide Y; Ovary; Polycystic Ovary Syndrome; Rats; Rats, Wistar; Receptors, Adrenergic, beta-3; Receptors, Androgen; RNA, Messenger; Sympathetic Nervous System | 2009 |
Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer's disease.
The endopeptidase neprilysin (NEP) is a major amyloid-beta (Abeta) degrading enzyme and has been implicated in the pathogenesis of Alzheimer's disease. Because NEP cleaves substrates other than Abeta, we investigated the potential role of NEP-mediated processing of neuropeptides in the mechanisms of neuroprotection in vivo. Overexpression of NEP at low levels in transgenic (tg) mice affected primarily the levels of neuropeptide Y (NPY) compared with other neuropeptides. Ex vivo and in vivo studies in tg mice and in mice that received lentiviral vector injections showed that NEP cleaved NPY into C-terminal fragments (CTFs), whereas silencing NEP reduced NPY processing. Immunoblot and mass spectrometry analysis showed that NPY 21-36 and 31-36 were the most abundant fragments generated by NEP activity in vivo. Infusion of these NPY CTFs into the brains of APP (amyloid precursor protein) tg mice ameliorated the neurodegenerative pathology in this model. Moreover, the amidated NPY CTFs protected human neuronal cultures from the neurotoxic effects of Abeta. This study supports the possibility that the NPY CTFs generated during NEP-mediated proteolysis might exert neuroprotective effects in vivo. This function of NEP represents a unique example of a proteolytic enzyme with dual action, namely, degradation of Abeta as well as processing of NPY. Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Arginine; Benzazepines; Cells, Cultured; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation; Genetic Vectors; Humans; Mice; Mice, Transgenic; Neprilysin; Nerve Degeneration; Nerve Growth Factors; Neurons; Neuropeptide Y; Peptide Fragments; Receptors, Neuropeptide Y | 2009 |
Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain.
Previous studies show that chronic ethanol treatment induces prominent changes in brain neuropeptide Y (NPY). The purpose of the present study was to explore ethanol effects at a deeper NPY-system level, measuring expression of NPY and its receptors (Y1, Y2, Y5) as well as NPY receptor binding and NPY-stimulated [(35)S]GTPgammaS functional binding. Rats received intragastric ethanol repeatedly for 4 days, and the NPY system was studied in the hippocampal dentate gyrus (DG), CA3, CA1, and piriform cortex (PirCx) and neocortex (NeoCx) during intoxication, peak withdrawal (16 hr), late withdrawal (3 days), and 1 week after last ethanol administration. NPY mRNA levels decreased during intoxication and at 16 hr in hippocampal regions but increased in the PirCx and NeoCx at 16 hr. NPY mRNA levels were increased at 3 days and returned to control levels in most regions at 1 week. Substantial changes also occurred at the receptor level. Thus Y1, Y2, and Y5 mRNA labelling decreased at 16 hr in most regions, returning to control levels at 3 days, except for PirCx Y2 mRNA, which increased at 3 days and 1 week. Conversely, increases in NPY receptor binding occurred in hippocampal regions during intoxication and in functional binding in the DG and NeoCx during intoxication and at 16 hr and in PirCx during intoxication and at 1 week. Thus this study shows that ethanol intoxication and withdrawal induce complex plastic changes in the NPY system, with decreased/increased gene expression or binding occurring in a time- and region-specific manner. These changes may play an important role in mediating ethanol-induced changes in neuronal excitability. Topics: Alcohol-Induced Disorders, Nervous System; Analysis of Variance; Animals; Brain; Disease Models, Animal; Guanosine 5'-O-(3-Thiotriphosphate); Male; Neuronal Plasticity; Neuropeptide Y; Protein Binding; Rats; Rats, Wistar; Receptors, Neuropeptide Y; RNA, Messenger; Substance Withdrawal Syndrome; Sulfur Isotopes; Time Factors; Up-Regulation | 2009 |
Disengaging insulin from corticosterone: roles of each on energy intake and disposition.
Corticosterone and insulin play complex roles in the amount and composition of calories ingested, and the utilization and deposition of this energy. Understanding the interplay of these two hormones is complicated because increasing concentrations of corticosterone dose-dependently increase circulating insulin levels. We addressed individual contributions of each hormone by controlling, at steady-state levels, corticosterone (by adrenalectomy and exogenous replacement) and insulin (by streptozotocin-induced destruction of pancreatic beta-cells and exogenous replacement) across a spectrum of concentrations in rats, creating 8 hormonal combinations. For 5 days after surgery, all rats received chow. At day 5, they were subdivided into those that continued to receive chow and those that had a choice between chow, lard, and 32% sucrose for a further 5 days. During the choice/chow period, total calories ingested were stimulated by corticosterone and choice diet, and subject to a corticosterone-insulin interaction. Sucrose, but not lard, intake was stimulated by insulin. Body weight was increased by insulin, decreased by high corticosterone, and unaffected by diet. White adipose tissue depot weights were stimulated by insulin, corticosterone, and diet. Plasma triglycerides, free fatty acids, total ketone bodies, glucose, and glycerol were all significantly increased by corticosterone and the choice diet but inhibited by insulin. In contrast, plasma leptin was only increased by insulin and diet, plasma glucagon and liver glycogen was only affected by insulin and liver triglycerides, and arcuate nucleus proopiomelanocortin mRNA was only influenced by diet. Collectively, these data show that corticosterone and insulin determine the intake, form, and compartmentalization of energy both independently and interactively. Topics: Adrenalectomy; Animals; Arcuate Nucleus of Hypothalamus; Body Weight; Corticosterone; Diabetes Mellitus, Experimental; Disease Models, Animal; Energy Intake; Energy Metabolism; Glycogen; Insulin; Leptin; Liver; Male; Neuropeptide Y; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Streptozocin; Triglycerides | 2009 |
Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers.
Maternal obesity due to long-term high-fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague-Dawley rats (8 weeks old) were fed a cafeteria-style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre- and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin-4 receptor (MC4R) and its downstream target single-minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti-related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth. Topics: Agouti-Related Protein; Animals; Animals, Newborn; Appetite Regulation; Basic Helix-Loop-Helix Transcription Factors; Blood Glucose; Disease Models, Animal; Fasting; Female; Hyperphagia; Hypothalamus; Insulin; Leptin; Male; Maternal Nutritional Physiological Phenomena; Neuropeptide Y; Obesity; Pregnancy; Prenatal Exposure Delayed Effects; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4; Repressor Proteins; RNA, Messenger | 2009 |
Messenger RNA for neuropeptide Y in the arcuate nucleus increases in parallel with plasma adrenocorticotropin during sepsis in the rat.
Loss of appetite occurs in the cecal ligation and puncture (CLP) model of sepsis in conjunction with the activation of central neural stress pathways. Neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus is upregulated by several stressors and is stimulatory to feeding. To examine the response of NPY messenger RNA in the arcuate nucleus to sepsis, we used biotinylated RNA probes and a quantitative non-isotopic in situ hybridization approach in cryo-preserved sections from rats made septic by CLP. The mRNA in arcuate neurons was upregulated from the first day after CLP. By the afternoon of the third day through the morning of the fourth day, the average grey level of NPY mRNA clusters was 30% greater after CLP than after sham surgery (P<0.05), and the integrated optical density based on both the grey level and the amount of area with detectable mRNA was 60% greater after CLP than after sham surgery (P<0.03). Both the average grey level and area with detectable staining were positively correlated to plasma ACTH (r=0.953 and 0.917, respectively, n=10 and P<0.01 in each case). Thus sepsis increases the expression of the mRNA for NPY in the arcuate nucleus in proportion to the magnitude of the stress response. However, the suppression of feeding behavior in the CLP model suggests that sepsis activates additional mechanisms that negate the orexigenic contribution of the neuronal increase in NPY mRNA. Topics: Adrenal Cortex; Adrenal Cortex Hormones; Adrenocorticotropic Hormone; Animals; Appetite; Arcuate Nucleus of Hypothalamus; Disease Models, Animal; Feeding Behavior; Male; Neurons; Neuropeptide Y; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sepsis; Stress, Physiological; Up-Regulation | 2009 |
Differential regulation of TRP channels in a rat model of neuropathic pain.
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception or neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. In situ hybridisation showed a widespread increase of expression in neurons of small, medium and large cell sizes, indicating expression in multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad subtype distribution. Expression studies during development showed that TRPML3 is an embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus, the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. Topics: Animals; Axotomy; Calcitonin Gene-Related Peptide; Disease Models, Animal; Female; Functional Laterality; Ganglia, Spinal; Gene Expression Regulation, Developmental; Hyperalgesia; Lectins; Male; Mice; Mice, Inbred BALB C; Neuralgia; Neurofilament Proteins; Neurons; Neuropeptide Y; Physical Stimulation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Time Factors; TRPC Cation Channels | 2009 |
Cervical sympathectomy causes alveolar bone loss in an experimental rat model.
Periodontal disease, a pathological destructive inflammatory condition, is characterized by alveolar bone loss. Recent studies have suggested a correlation between the sympathetic nervous system and bone remodeling. To confirm the importance of the sympathetic nervous system in bone resorption, we investigated the effects of superior cervical ganglionectomy and oral challenge with Porphyromonas gingivalis on alveolar bone loss in rats.. Rats were divided into three groups: group A underwent a sham operation as the control group; group B underwent superior cervical ganglionectomy; and group C underwent a sham operation and oral challenge with P. gingivalis. Horizontal alveolar bone loss was evaluated by measuring the distance between the cemento-enamel junction and the alveolar bone crest. Cytokine gene expression in the gingival tissues was assessed using reverse transcription-polymerase chain reaction analyses. The furcation areas of the mandibular molars were examined histologically.. Both superior cervical ganglionectomy and oral challenge with P. gingivalis resulted in accelerated alveolar bone loss. Gingival tissues in the superior cervical ganglionectomy group showed increased expression of the cytokines interleukin-1 alpha, tumor necrosis factor-alpha and interleukin-6. The density of neuropeptide Y-immunoreactive fibers was decreased following superior cervical ganglionectomy. Osteoclasts were observed in the superior cervical ganglionectomy and P. gingivalis-challenged groups.. Both superior cervical ganglionectomy and oral challenge with P. gingivalis induced alveolar bone loss. These results provide new information on the occurrence of alveolar bone loss, in that both oral challenge with P. gingivalis and superior cervical ganglionectomy are important accelerating factors for alveolar bone loss. Thus, we suggest that the sympathetic nervous system is linked with the prevention of alveolar bone loss. Topics: Alveolar Bone Loss; Alveolar Process; Animals; Bacteroidaceae Infections; Body Weight; Disease Models, Animal; Ganglionectomy; Gingiva; Interleukin-1alpha; Interleukin-6; Male; Molar; Neuropeptide Y; Organ Size; Osteoclasts; Porphyromonas gingivalis; Rats; Rats, Sprague-Dawley; Spleen; Superior Cervical Ganglion; Thymus Gland; Tooth Root; Tumor Necrosis Factor-alpha | 2009 |
[Influence of electroacupuncture of "Shuigou" (GV 26) on hippocampal CGRP and NPY contents in cerebral ischemia rats].
To observe the effect of electroacupuncture (EA) on the contents of hippocampal calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY) in cerebral ischemia (CI) rats.. Forty SD rats were randomly divided into normal control, sham operation (sham), model and EA groups with 10 cases in each. CI model was duplicated by middle cerebral artery occlusion. EA (2 Hz, 1 mA, continuous waves) was applied to "Shuigou" (GV 26) for 30 min, once daily for 5 days. Hippocampal tissue was taken for assaying the contents of CGRP and NPY with radioimmunoassay.. Compared with sham group and normal control group, hippocampal CGRP content in model group decreased apparently (P<0.01), while NPY content of model group increased significantly (P<0.01). Compared with model group, hippocampal CGRP in EA group increased considerably (P<0.01) and NPY content decreased obviously (P<0.01).. Electroacupuncture of GV26 can effectively adjust hippocampal CGRP and NPY contents in CI rats, which may contribute to its effect in improving cerebral ischemia. Topics: Acupuncture Points; Animals; Brain Ischemia; Calcitonin Gene-Related Peptide; Disease Models, Animal; Electroacupuncture; Female; Hippocampus; Humans; Male; Neuropeptide Y; Random Allocation; Rats | 2009 |
Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus.
Urokinase-type plasminogen activator receptor (uPAR) is functionally a pleiotropic mediator involved in cell adhesion, proliferation, differentiation and migration as well as in matrix degradation, apoptosis, and angiogenesis in cancer tissue. Comparable cellular alterations occur in the brain during post-injury tissue repair. As the first step to assess the role of uPAR in brain tissue remodeling, we tested a hypothesis that uPAR expression is altered in the hippocampus during epilepsy-related circuitry reorganization. Epileptogenesis was triggered by inducing status epilepticus (SE) with electrical stimulation of the amygdala in rats. To monitor the development of SE and the occurrence of spontaneous seizures animals were continuously video-EEG monitored until sacrificed (1, 2, 4 or 14 days after SE). The hippocampal expression of uPAR was studied with real time qPCR and immunohistochemistry. Double-immunohistochemistry and confocal microscopy were used to investigate the expression of uPAR in astrocytes, microglia and neurons. We show that in the normal hippocampus the expression of uPAR was low and confined to small population of astrocytes and interneurons. In animals undergoing SE, uPAR expression increased dramatically, peaking at 1 and 4 days after SE. According to double-immunohistochemistry, uPAR was highly expressed in parvalbumin positive interneurons in the hippocampus and dentate gyrus, and in a subgroup of somatostatin and neuropeptide Y positive hilar interneurons. Increased uPAR expression during post-injury phase supports its contribution to tissue remodeling in the brain. Surviving hilar interneurons that are known to be denervated due to loss of afferent inputs in post-SE brain provide a target for future studies to investigate the contribution of uPAR in reinnervation of these cells, and to identify the signaling cascades that mediate the effects of uPAR. Topics: Animals; Astrocytes; Cell Line; Disease Models, Animal; Electric Stimulation; Epilepsy; Gene Expression Regulation; Hippocampus; Humans; Immunohistochemistry; Interneurons; Kindling, Neurologic; Male; Nerve Degeneration; Neuropeptide Y; Parvalbumins; Rats; Rats, Sprague-Dawley; Receptors, Urokinase Plasminogen Activator; RNA, Messenger; Signal Transduction; Somatostatin; Up-Regulation | 2009 |
Sustained NPY overexpression in the PVN results in obesity via temporarily increasing food intake.
Increasing neuropeptide Y (NPY) signaling in the paraventricular nucleus (PVN) by recombinant adeno-associated virus (rAAV)-mediated overexpression of NPY in rats, results in hyperphagia and obesity in rats. To determine the importance of hyperphagia in the observed obesity phenotype, we pair-fed a group of AAV-NPY-injected rats to AAV-control-injected rats and compared parameters of energy balance to ad libitum fed AAV-NPY-injected rats. For 3 weeks, AAV-NPY-injected rats, received the same amount of food as ad libitum-fed rats injected with control rAAV They did not gain more body weight than these controls. When allowed access to food ad libitum, these AAV-NPY-injected rats increased food intake, which subsequently decreased when rats reached the same body weight as AAV-NPY-injected rats that were fed ad libitum for the entire study. These data indicate that overexpression of NPY in the PVN results in obesity by increasing food intake until a certain body weight is achieved. Topics: Adenoviridae; Animals; Body Temperature; Body Weight; Disease Models, Animal; Eating; Hyperphagia; Injections; Male; Neuropeptide Y; Obesity; Paraventricular Hypothalamic Nucleus; Rats; Rats, Wistar | 2009 |
Alteration of neuropeptides in the lung tissue correlates brain death-induced neurogenic edema.
Increased intracranial pressure induces neurogenic pulmonary edema (NPE), potentially explaining why only lungs from less than 20% of brain dead organ donors can be used for transplantation. This study investigated the underlying mechanisms of NPE, focusing on neuropeptides, which potently induce vasoconstriction, vasodilatation, and neurogenic inflammation.. Brain death was induced in 10 pigs by increasing the intracranial pressure. Eight additional pigs served as controls. Neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), and substance P were analyzed in plasma, bronchoalveolar lavage (BAL) fluid, and homogenized lung tissue 6 hours after brain death. Pulmonary oxygen exchange was estimated using partial pressure of arterial oxygen (Pao2)/fraction of inspired oxygen (Fio2), and pulmonary edema by wet/dry weight ratio.. Brain death induced a decrease in Pao(2)/Fio2 (p < 0.001) and increased the wet/dry weight of both apical (p = 0.01) and basal lobes (p = 0.03). NPY and CGRP concentrations were higher in the BAL fluid of brain-dead animals compared with controls (p = 0.02 and p = 0.02) and were positively correlated with the wet/dry weight ratio. NPY content in lung tissue was lower in brain-dead animals compared with controls (p = 0.04) and was negatively correlated with the wet/dry weight ratio. There were no differences in substance P concentrations between the groups.. NPY was released from the lung tissue of brain-dead pigs, and its concentration was related to the extent of pulmonary edema. NPY may be one of several crucial mediators of neurogenic pulmonary edema, raising the possibility of treatment with NPY-antagonists to increase the number of available lung donors. Topics: Animals; Biomarkers; Brain Death; Bronchoalveolar Lavage Fluid; Calcitonin Gene-Related Peptide; Disease Models, Animal; Female; Lung; Neurogenic Inflammation; Neuropeptide Y; Neuropeptides; Predictive Value of Tests; Pulmonary Edema; Substance P; Swine; Vasoconstriction; Vasodilation | 2009 |
Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.
Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well.. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC.. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered.. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Topics: Adiponectin; Animals; Anorexia; Appetite; Appetite Regulation; Arcuate Nucleus of Hypothalamus; Arthritis; Disease Models, Animal; Gene Expression Regulation; Ghrelin; Hypothalamo-Hypophyseal System; Interleukin-1beta; Leptin; Male; Neuropeptide Y; Rats; Rats, Inbred Lew; RNA, Messenger; Signal Transduction; Up-Regulation | 2009 |
Expression of genes and their responses to enzyme replacement therapy in a Fabry disease mouse model.
Fabry disease is a lysosomal storage disease caused by a deficiency of alpha-galactosidase A, which results in aberrant glycosphingolipid metabolism and accumulation of globotriaosylceramide (Gb3). Since a correlation between the level of Gb3 and clinical manifestations of Fabry disease has not been observed, we investigated potential diagnostic biomarkers. Hepatic and renal gene expression of male alpha-galactosidase A-deficient mice (Fabry mice) was compared with that of wild-type mice. Microarray analyses were performed using samples taken before and after intravenous infusion of alpha-galactosidase A. The identified genes were validated using quantitative real-time PCR and Western blot assay. Expression of hepatic Serum Amyloid A1 (Saa1), S100 Calcium-binding protein A8 and A9 (S100a8 and a9), and Lipocalin 2 (Lcn2) and renal Neuropeptide Y (Npy), Thrombospondin 2 and 4 (Tsp-2 and -4) was significantly upregulated in Fabry mice compared with wild-type mice and normalized by enzyme replacement therapy. Plasma concentrations of Lcn2 and Npy were also greater in Fabry mice and reduced to wild-type levels after enzyme replacement therapy, although the plasma concentrations of these proteins show heterogeneity. Upregulation of Saa1, S100a8, S100a9 and Lcn2 may modulate inflammation and Lcn2, Npy and Tsp may be associated with vascular and renal involvement in Fabry disease. Furthermore, these genes are promising targets for developing biomarkers for monitoring disease progression and therapeutic efficacy in patients with Fabry disease. Topics: Acute-Phase Proteins; alpha-Galactosidase; Animals; Blotting, Western; Disease Models, Animal; Fabry Disease; Gene Expression Profiling; Gene Expression Regulation; Genetic Therapy; Kidney; Lipocalin-2; Lipocalins; Liver; Mice; Neuropeptide Y; Oncogene Proteins; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; Thrombospondin 1; Trihexosylceramides | 2009 |
Electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study.
Electroconvulsive shock therapy (ECT) has been widely used as an effective and established treatment for refractory depression and schizophrenia. Some reports have shown that ECT is also effective for treating refractory neuropathic pain.. In a rat model of neuropathic pain produced by chronic constrictive injury (CCI) of the sciatic nerve, thermal hyperalgesia, and mechanical allodynia were observed from day 2 after surgery. An electroconvulsive shock (ECS) was administered to rodents once daily for 6 days on days 7-12 after CCI operation using a pulse generator. Thermal and mechanical stimulation tests were performed to assess pain thresholds. Real-time polymerase chain reaction was used to measure the gene expression levels for 5HT(1A)R, 5HT(2A)R, neuropeptide Y (NPY), and GABAA(alpha1)R in the brain.. After ECS, the latency to withdrawal from thermal stimulation was significantly increased; however, pain withdrawal thresholds in response to mechanical stimulation were not significantly changed. Expression ratios of NPY were significantly greater after ECS.. Symptoms of neuropathic pain improved and expression of NPY in the brain was increased in CCI model rats after ECS, suggesting that changes in the expression of NPY in the brain may be related to the mechanism of action of ECT in treating neuropathic pain. Topics: Animals; Brain; Brain Chemistry; Disease Models, Animal; Electroconvulsive Therapy; gamma-Aminobutyric Acid; Gene Expression Regulation; Male; Neuropeptide Y; Pain Measurement; Pain Threshold; Pain, Intractable; Peripheral Nervous System Diseases; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Serotonin, 5-HT1A; Receptor, Serotonin, 5-HT2A; Receptors, GABA-A; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sciatic Neuropathy; Serotonin; Synaptic Transmission; Up-Regulation | 2009 |
Erythropoietin exerts anti-epileptic effects with the suppression of aberrant new cell formation in the dentate gyrus and upregulation of neuropeptide Y in seizure model of rats.
We explored the effects of exogenous and endogenous erythropoietin (EPO) in a seizure model of rat. Adult male Fischer 344 rats received continuous intraventricular infusion of EPO dissolved in saline containing 1mg/ml of rat serum albumin, anti-EPO antibody, saline containing 1mg/ml of rat serum albumin or combined EPO and neuropeptide Y (NPY) Y2-receptor antagonist. Animals were behaviorally evaluated for seizure development over 6h after kainic acid injection followed by immunohistochemical assays. Mortality rate, seizure severity, apoptotic cell death and abnormal cell proliferation in the hippocampus of EPO-treated epileptic rats were significantly attenuated, compared to control rats. Anti-EPO antibody in non-EPO-treated animals worsened seizures and CA1 neuronal cell death, while NPY Y2-receptor antagonist cancelled the therapeutic effects of exogenous EPO. Both exogenous and endogenous EPO might modulate seizure severity and protect the hippocampal neurons in epileptic rats, via novel mechanistic pathways involving blockade of epileptogenic cell formation coupled with NPY receptor modulation in the hippocampus. Topics: Animals; Apoptosis; Autoantibodies; CA1 Region, Hippocampal; Cell Proliferation; Dentate Gyrus; Disease Models, Animal; Erythropoietin; Hematopoiesis; Kainic Acid; Male; Neurons; Neuropeptide Y; Rats; Rats, Inbred F344; Receptors, Neuropeptide Y; Seizures; Severity of Illness Index; Signal Transduction; Up-Regulation | 2009 |
Site-specific attenuation of food intake but not the latency to eat after hypothalamic injections of neuropeptide Y in dehydrated-anorexic rats.
Anorexia that accompanies cellular dehydration in rats (DE-anorexia) offers a relatively simple model for investigating the functional organization of neural mechanisms that can suppress feeding during dehydration. Previous studies strongly suggest that the inputs that drive ingestive behavior control neurons in the paraventricular nucleus of the hypothalamus (PVH) and lateral hypothalamic area (LHA) remain active during DE-anorexia. Here we examine whether these two regions retain their sensitivity to neuropeptide Y (NPY). NPY is an important component in two major feeding-related inputs from the arcuate nucleus and the hindbrain. We found that intake responses to NPY injections in the LHA and PVH were suppressed in DE-anorexia, but the PVH remained less sensitive to the effects of NPY than the LHA in DE-anorexic animals. Indeed the higher dose of NPY (238 pmol) completely overcame shorter periods of DE-anorexia when injected into the LHA but not the PVH. However, the latency to eat after NPY injections remained unchanged from control animals, regardless of NPY dose, injection location, or intensity of anorexia. Furthermore, the onset and size of the strong and rapidly induced compensatory feeding that follows the return of water to DE-anorexic animals was also unaffected by any NPY injections. These data support the hypothesis that DE-anorexia develops as a consequence of the premature termination of regularly initiated meals, which perhaps involves processes that alter the sensitivity of satiety mechanisms downstream to the PVH and LHA. Topics: Animals; Anorexia; Dehydration; Disease Models, Animal; Drinking; Drinking Behavior; Eating; Feeding Behavior; Hypothalamic Area, Lateral; Injections; Male; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Rats; Rats, Sprague-Dawley; Reaction Time; Satiety Response; Time Factors | 2009 |
Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity.
Leptin-stimulated Stat3 activation in proopiomelanocortin (POMC)-expressing neurons of the hypothalamus plays an important role in maintenance of energy homeostasis. While Stat3 activation in POMC neurons is required for POMC expression, the role of elevated basal Stat3 activation as present in the development of obesity has not been directly addressed. Here, we have generated and characterized mice expressing a constitutively active version of Stat3 (Stat3-C) in POMC neurons (Stat3-C(POMC) mice). On normal chow diet, these animals develop obesity as a result of hyperphagia and decreased POMC expression accompanied by central leptin and insulin resistance. This unexpected finding coincides with POMC-cell-specific, Stat3-mediated upregulation of SOCS3 expression inhibiting both leptin and insulin signaling as insulin-stimulated PIP(3) (phosphatidylinositol-3,4,5 triphosphate) formation and protein kinase B (AKT) activation in POMC neurons as well as with the fact that insulin's ability to hyperpolarize POMC neurons is largely reduced in POMC cells of Stat3-C(POMC) mice. These data indicate that constitutive Stat3 activation is not sufficient to promote POMC expression but requires simultaneous PI3K (phosphoinositide 3-kinase)-dependent release of FOXO1 repression. In contrast, upon exposure to a high-fat diet, food intake and body weight were unaltered in Stat3-C(POMC) mice compared with control mice. Taken together, these experiments directly demonstrate that enhanced basal Stat3 activation in POMC neurons as present in control mice upon high-fat feeding contributes to the development of hypothalamic leptin and insulin resistance. Topics: Agouti-Related Protein; Animals; Body Composition; Body Weight; Disease Models, Animal; Eating; Electrophoretic Mobility Shift Assay; Enzyme-Linked Immunosorbent Assay; Feedback; Gene Expression Regulation; Glucose Tolerance Test; Green Fluorescent Proteins; Hypothalamus; In Vitro Techniques; Insulin; Insulin Resistance; Leptin; Leukemia Inhibitory Factor; Membrane Proteins; Mice; Mice, Transgenic; Neural Inhibition; Neurons; Neuropeptide Y; Obesity; Patch-Clamp Techniques; Phosphatidylinositol 3-Kinases; Pro-Opiomelanocortin; Signal Transduction; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Transfection | 2009 |
A possible mechanism underlying an antidepressive-like effect of Kososan, a Kampo medicine, via the hypothalamic orexinergic system in the stress-induced depression-like model mice.
Kososan, a Kampo (Japanese herbal) medicine, has an antidepressive-like effect in behavioral animal models of depression and has been used clinically for the improvement of depressive mood. However, mechanism(s) underlying the antidepressive-like effect of kososan remain unknown. Previous studies showed that orexin-A (OX-A), a neuropeptide that is involved in feeding and arousal, exhibits an antidepressive-like property via hippocampal cell proliferation. Here, we used immunohistochemical analysis with bromodeoxyuridine (BrdU), a marker of proliferating cells, to investigate the effect of long-term treatment with kososan on the orexinergic system and on hippocampal cell proliferation. Oral administration of kososan (1.0 g/kg) or milnacipran (60 mg/kg), a serotonin and noradrenaline reuptake inhibitor, for 28 d led to an antidepressive-like effect in the stress-induced depression-like model mice and reversed the stress-induced decrease in the number of OX-A-positive cells in the lateral hypothalamic area. In addition, both kososan and milnacipran alleviated the stress-induced decrease in the number of BrdU-positive cells in the hippocampal dentate gyrus. Moreover, the antidepressive-like effect and the increase in cell proliferation and in the number of neuropeptide Y (NPY, which is closely associated with orexinergic system)-positive cells in the dentate gyrus induced by kososan were blocked by treatment with SB-334867, an orexin receptor 1 antagonist. These results suggest that kososan exerts an antidepressive-like effect via the improvement of the stress-induced decrease in hippocampal cell proliferation and that the mechanism underlying the antidepressive-like effect of kososan, but not of milnacipran, may be associated with the regulation of orexinergic and/or NPYergic transmission. Topics: Animals; Bromodeoxyuridine; Cell Proliferation; Cyclopropanes; Depression; Disease Models, Animal; Drugs, Chinese Herbal; Hippocampus; Hypothalamus; Intracellular Signaling Peptides and Proteins; Magnoliopsida; Male; Medicine, Kampo; Mice; Mice, Inbred Strains; Milnacipran; Neuropeptide Y; Neuropeptides; Neurotransmitter Agents; Norepinephrine; Orexins; Phytotherapy; Selective Serotonin Reuptake Inhibitors; Serotonin; Stress, Psychological | 2009 |
[Influence on electroacupuncture at "Qiangzhuang" acupoints for neuro-immune regulation of sub-acute aged rats].
To explore the underlying mechanism of electroacupuncture for anti-aging.. Forty Sprague-Dawley rats (female and male take one half for each), 3-month old, were divided into a control group, a model group, a routine electroacupuncture group (current intensity, 1 mA) and a strong electroacupuncture group (current intensity, 4.5 mA), 10 rats in each group. The model of aged rats was established by D-galactose in the latter three groups. The acupoints of "Guanyuan" (CV 4) and "Zusanli" (ST 36) were used for electroacupuncture treatment, six times per week for 4 weeks. After that, the level of interleukin 6 (IL-6) in the serum, as well as the expression of neuropeptide Y mRNA (NPY mRNA) and IL-6 receptor (IL-6R) in the periventricular hypothalamic nucleus (PVN) were examined and compared between each group.. In comparison of the control rats, the model rats expressed with the lower level of NPY mRNA in PVN, higher levels of IL-6 in the serum and IL-6R in PVN, which is different from each other (P < 0.05). In both routine electroacupuncture group and strong electroacupuncture group, the level of NPY mRNA in PVN was up-regulated, in contrast, the levels of IL-6 in the serum and IL-6R in PVN were cut down, which were different from those of the model group (both P < 0.05). Furthermore, the therapeutic effect of the strong electroacupuncture group is different from that of the routine electroacupuncture group (P < 0.05).. Electroacupuncture at "Qiangzhuang" acupoints plays an active role to slow down the aging process on the sub-acute aged rats through regulating the function of neuro-immune system, and the therapeutic effect of strong stimulation is better than that of routine stimulation. Topics: Acupuncture Points; Aging; Animals; Disease Models, Animal; Electroacupuncture; Female; Humans; Hypothalamus; Interleukin-6; Male; Neuroimmunomodulation; Neuropeptide Y; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Interleukin-6 | 2009 |
Commentary: "electroconvulsive stimulation (ECS) increases the expression of neuropeptide Y (NPY) in rat brains in a model of neuropathic pain: a quantitative real-time polymerase chain reaction (RT-PCR) study," by Okabe and colleagues.
Topics: Animals; Comorbidity; Depressive Disorder; Disease Models, Animal; Gene Expression Regulation; Humans; Neuropeptide Y; Pain; Pain Management; Peripheral Nervous System Diseases; Rats; Reproducibility of Results; Research Design; Synaptic Transmission; Translational Research, Biomedical | 2009 |
cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine (A-987306), a new histamine H4R antagonist that blocks pain responses against carrageenan-induced hyperalgesia.
cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzofurans; Carrageenan; Disease Models, Animal; Drug Design; Drug Evaluation, Preclinical; Humans; Hyperalgesia; Ligands; Mice; Molecular Structure; Pain; Peritonitis; Quinazolines; Rats; Receptors, G-Protein-Coupled; Receptors, Histamine; Receptors, Histamine H4; Stereoisomerism; Structure-Activity Relationship | 2008 |
Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress.
Accumulated evidence indicates a role of the hippocampal 5-hydroxy-tryptamine (5-HT) and neuropeptide Y (NPY) in the response to stress and modulation of depression, but it is unclear whether and how the hippocampal 5-HT and NPY systems make contributions to chronic unpredicted mild stress (CUMS)-induced depression. Here we observed that rats receiving a variety of chronic unpredictable mild stressors for 3 weeks showed a variety of depression-like behavioral changes, including a significant reduction in body weight, sucrose preference, and locomotion, rearing and grooming in open field test, and a significant increase in immobility time in forced swimming test. These CUMS-induced behavioral changes were suppressed or blocked by intra-hippocampal injection of 5-HT (31.25 microg/microl) or NPY (10 microg/microl). These data suggest a critical role of reduced hippocampal 5-HT and NPY neurotransmission in CUMS-induced depression. Topics: Animals; Behavior, Animal; Body Weight; Chronic Disease; Depressive Disorder; Disease Models, Animal; Exploratory Behavior; Food Preferences; Grooming; Hippocampus; Immobilization; Male; Microinjections; Motor Activity; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Serotonin; Stress, Psychological; Swimming | 2008 |
Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy.
Status epilepticus (SE) typically progresses into temporal lobe epilepsy (TLE) typified by complex partial seizures. Because sizable fraction of patients with TLE exhibit chronic seizures that are resistant to antiepileptic drugs, alternative therapies that are efficient for diminishing SE-induced chronic epilepsy have great significance. We hypothesize that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is efficacious for diminishing SE-induced chronic epilepsy through long-term survival and differentiation into GABA-ergic neurons. We induced SE in adult rats via graded intraperitoneal injections of kainic acid, bilaterally placed grafts of striatal precursors (pre-treated with fibroblast growth factor-2 and caspase inhibitor) into hippocampi at 4 days post-SE, and examined long-term effects of grafting on spontaneous recurrent motor seizures (SRMS). Analyses at 9-12 months post-grafting revealed that, the overall frequency of SRMS was 67-89% less than that observed in SE-rats that underwent sham-grafting surgery and epilepsy-only controls. Graft cell survival was approximately 33% of injected cells and approximately 69% of surviving cells differentiated into GABA-ergic neurons, which comprised subclasses expressing calbindin, parvalbumin, calretinin and neuropeptide Y. Grafting considerably preserved hippocampal calbindin but had no effects on aberrant mossy fiber sprouting. The results provide novel evidence that bilateral grafting of appropriately treated striatal precursor cells into hippocampi shortly after SE is proficient for greatly reducing the frequency of SRMS on a long-term basis in the chronic epilepsy period. Presence of a large number of GABA-ergic neurons in grafts further suggests that strengthening of the inhibitory control in host hippocampi likely underlies the beneficial effects mediated by grafts. Topics: Animals; Bromodeoxyuridine; Cell Count; Cells, Cultured; Corpus Striatum; Disease Models, Animal; Disease Progression; Embryo, Mammalian; Epilepsy, Temporal Lobe; Fibroblast Growth Factor 2; Hippocampus; Kainic Acid; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Rats; Rats, Inbred F344; Status Epilepticus; Stem Cell Transplantation; Stem Cells; Time Factors | 2008 |
Food deprivation-like effects of neuropeptide Y on heroin self-administration and reinstatement of heroin seeking in rats.
Numerous findings suggest that drug seeking and ingestive behaviors share common neurobiological mechanisms, but the relevant pathways are unknown. Dietary manipulations result in changes in endocrine the and/or neuropeptide signals, such as the hormones leptin and ghrelin, which are dynamically linked to energy balance and the regulation of feeding behavior. We have recently demonstrated that food deprivation-induced reinstatement of heroin seeking can be blocked with leptin, and others have suggested a role for ghrelin in drug-related behaviors. The feeding-relevant effects of leptin and ghrelin involve the inhibition or activation, respectively, of neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus. However, the effects of NPY, a highly potent orexigenic peptide, on drug-related behaviors have not been thoroughly studied. Here we examined the effect of acute NPY administration on the rate of heroin self-administration and the reinstatement of extinguished heroin-seeking behavior. Heroin intake (0.05mg/kg/infusion) was tested using a self-administration procedure (FR-1), 10-min post-NPY injections (0.0, 4.0, and 10microg/rat, ICV). In a different group of rats, NPY-induced reinstatement (0.0, 4.0, and 10microg/rat, ICV) of extinguished heroin seeking was assessed. NPY injections increased on-going heroin self-administration, and induced a reinstatement of extinguished heroin-seeking behavior. These findings suggest that NPY can modulate the rewarding and conditioned reinforcing effects of drugs of abuse. Topics: Animals; Behavior, Animal; Conditioning, Operant; Disease Models, Animal; Food Deprivation; Heroin; Heroin Dependence; Male; Narcotics; Neuropeptide Y; Rats; Rats, Long-Evans; Reinforcement Schedule; Reinforcement, Psychology; Self Administration | 2008 |
A protein kinase C activity localized to neuropeptide Y-like neurons mediates ethanol intoxication in Drosophila melanogaster.
Neuropeptide Y (NPY) regulates acute ethanol sensitivity and voluntary alcohol consumption in rodents. In Drosophila melanogaster, NPY-like neuropeptide F (NPF) and its receptor NPFR1 display a parallel function, suggesting that an evolutionarily conserved mechanism may underlie similar behavioral effects of ethanol in diverse organisms. We have used the fly model to uncover novel genes and molecular pathways important for acute ethanol response. Here we report a critical role of the conserved protein kinase C (PKC) pathway in mediating the intoxicating effect of ethanol. Flies expressing a pseudo-substrate inhibitor of PKC, directed by npf-gal4, displayed decreased ethanol sensitivity. Furthermore, the RNA interference analysis suggests that a calcium-independent PKC isoform (PKC98E, related to mammalian novel PKCs) is largely responsible for the behavioral phenotype. Finally, we provide evidence that the NPF/PKC-dependent mechanism selectively affects acute sensitivity but not rapid tolerance to ethanol intoxication. These findings reveal an uncharacterized role of PKC in NPY/NPF-mediated acute ethanol sensitivity in flies and possibly mammals. Topics: Alcohol-Induced Disorders, Nervous System; Animals; Axons; Brain; Calcium Signaling; Central Nervous System Depressants; Dendrites; Disease Models, Animal; Drosophila melanogaster; Drosophila Proteins; Drug Resistance; Enzyme Activation; Ethanol; Female; Isoenzymes; Neurons; Neuropeptide Y; Neuropeptides; Protein Kinase C; RNA Interference; Time Factors | 2008 |
Y1 receptor knockout increases nociception and prevents the anti-allodynic actions of NPY.
Recent pharmacologic studies in our laboratory have suggested that the spinal neuropeptide Y (NPY) Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. To rule out off-target effects, the present study used Y1-receptor-deficient (-/-) mice to further explore the contribution of Y1 receptors to pain modulation.. Y1(-/-) mice exhibited reduced latency in the hotplate test of acute pain and a longer-lasting heat allodynia in the complete Freund's adjuvant (CFA) model of inflammatory pain. Y1 deletion did not change CFA-induced inflammation. Upon targeting the spinal NPY systems with intrathecal drug delivery, NPY reduced tactile and heat allodynia in the CFA model and the partial sciatic nerve ligation model of neuropathic pain. Importantly, we show for the first time that NPY does not exert these anti-allodynic effects in Y1(-/-) mice. Furthermore, in nerve-injured CD1 mice, concomitant injection of the potent Y1 antagonist BIBO3304 prevented the anti-allodynic actions of NPY. Neither NPY nor BIBO3304 altered performance on the Rotorod test, arguing against an indirect effect of motor function.. The Y1 receptor contributes to pain inhibition and to the analgesic effects of NPY. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Arginine; Behavior, Animal; Disease Models, Animal; Hot Temperature; Hyperalgesia; Inflammation; Male; Mice; Mice, Knockout; Neuropeptide Y; Pain; Pain Measurement; Receptors, Neuropeptide Y; Sciatic Neuropathy | 2008 |
Nerve stimulation induced overflow of neuropeptide Y and modulation by angiotensin II in spontaneously hypertensive rats.
The sympathetic nervous system and renin-angiotensin system are both thought to contribute to the development and maintenance of hypertension in experimental models such as the spontaneously hypertensive rat (SHR). We demonstrated that periarterial nerve stimulation (NS) increased the perfusion pressure (PP) and neuropeptide Y (NPY) overflow from perfused mesenteric arterial beds of SHRs at 4-6, 10-12, and 18-20 wk of age, which correspond to prehypertensive, developing hypertensive, and maintained hypertensive stages, respectively, in the SHR. NS also increased PP and NPY overflow from mesenteric beds of Wistar-Kyoto (WKY) normotensive rats. NS-induced increases in PP and NPY were greater in vessels obtained from SHRs of all three ages compared with WKY rats. ANG II produced a greater increase in PP in preparations taken from SHRs than WKY rats. ANG II also resulted in a greater increase in basal NPY overflow from 10- to 12-wk-old and 18- to 20-wk-old SHRs than age-matched WKY rats. ANG II enhanced the NS-induced overflow of NPY from SHR preparations more than WKY controls at all ages studied. The enhancement of NS-induced NPY overflow by ANG II was blocked by the AT1 receptor antagonist EMD-66684 and the angiotensin type 2 receptor antagonist PD-123319. In contrast, ANG II greatly enhanced norepinephrine overflow in the presence of PD-123319. Both captopril and EMD-66684 decreased neurotransmitter overflow from SHR mesenteric beds; therefore, we conclude that an endogenous renin-angiotensin system is active in this preparation. It is concluded that the ANG II-induced enhancement of sympathetic nerve stimulation may contribute to the development and maintenance of hypertension in the SHR. Topics: Adrenergic alpha-2 Receptor Antagonists; Adrenergic alpha-Antagonists; Age Factors; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Arginine; Blood Pressure; Captopril; Disease Models, Animal; Electric Stimulation; Hypertension; Imidazoles; Mesenteric Arteries; Neuropeptide Y; Prazosin; Pyridines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 2; Receptors, Adrenergic, alpha-2; Receptors, Neuropeptide Y; Splanchnic Circulation; Sympathetic Nervous System | 2008 |
Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis.
Neurogenic inflammation plays a major role in the pathogenesis of inflammatory bowel disease (IBD). We examined the role of neuropeptide Y (NPY) and neuronal nitric oxide synthase (nNOS) in modulating colitis.. Colitis was induced by administration of dextran sodium sulphate (3% DSS) or streptomycin pre-treated Salmonella typhimurium (S.T.) in wild type (WT) and NPY (NPY(-/-)) knockout mice. Colitis was assessed by clinical score, histological score and myeloperoxidase activity. NPY and nNOS expression was assessed by immunostaining. Oxidative stress was assessed by measuring catalase activity, glutathione and nitrite levels. Colonic motility was assessed by isometric muscle recording in WT and DSS-treated mice.. DSS/S.T. induced an increase in enteric neuronal NPY and nNOS expression in WT mice. WT mice were more susceptible to inflammation compared to NPY(-/-) as indicated by higher clinical & histological scores, and myeloperoxidase (MPO) activity (p<0.01). DSS-WT mice had increased nitrite, decreased glutathione (GSH) levels and increased catalase activity indicating more oxidative stress. The lower histological scores, MPO and chemokine KC in S.T.-treated nNOS(-/-) and NPY(-/-)/nNOS(-/-) mice supported the finding that loss of NPY-induced nNOS attenuated inflammation. The inflammation resulted in chronic impairment of colonic motility in DSS-WT mice. NPY -treated rat enteric neurons in vitro exhibited increased nitrite and TNF-alpha production.. NPY mediated increase in nNOS is a determinant of oxidative stress and subsequent inflammation. Our study highlights the role of neuronal NPY and nNOS as mediators of inflammatory processes in IBD. Topics: Animals; Catalase; Colitis; Dextran Sulfate; Disease Models, Animal; Gene Deletion; Glutathione; Inflammation; Inflammatory Bowel Diseases; Mice; Mice, Knockout; Neuropeptide Y; Nitric Oxide Synthase Type I; Nitrites; Oxidative Stress; Peroxidase | 2008 |
[A study of the different effect on the expression of calcitonin gene related peptide and neuropeptide Y in tissue engineered bone with vascular bundle graft in vivo and that with sensory nerve tract graft in vivo].
To evaluate the different effect on the expression of Calcitonin gene related peptide (CGRP)and neuropeptide Y (NPY) between tissue engineered bone with vascular bundle graft in vivo and that with sensory nerve tract graft in vivo.. Thirty-six healthy New Zealand rabbits were divided into 3 groups randomly and equally: vascular bundle group (A), sensory nerve tract group (B), tissue-engineering group (C). Group A segmental bone defect of 1.5 cm long was made at the right femur in each animal. After plate fixation, the defects were implanted respectively with the engineered bone prepared in the above-mentioned 3 methods. At 3, 6 and 12 months post-operatively, the distribution of CGRP and NPY in the new bone were detected by immunohistochemistry and analyzed semi-quantitatively by image analysis software.. CGRP and NPY immuno-histochemical results indicated their contents increased significantly in all 3 groups as time passed (P = 0.000). Compared with group B, the contents of CGRP and NPY in group A significantly increased at 3 months (P = 0.000), but there was no statistic difference between them at 6 or 12 months (P > 0.05). The expression of CGRP and NPY in both group A and B were significantly more than that in group C at 3, 6 or 12 months (P = 0.000).. Implantation of vascular bundle into tissue-engineered bone can significantly improve the CGRP and NPY contents at early 3 months comparing with Implantation of sensory tract into tissue-engineered bone, but the changes are not significant at 6 or 12 months post-operatively. Topics: Animals; Blood Vessels; Bone Substitutes; Calcitonin Gene-Related Peptide; Disease Models, Animal; Femur; Male; Neuropeptide Y; Peripheral Nerves; Rabbits; Random Allocation; Tissue Engineering | 2008 |
Changes in leptin, ghrelin, growth hormone and neuropeptide-Y after an acute model of MDMA and methamphetamine exposure in rats.
Club drug abuse is a growing problem in the United States. Beyond addiction and toxicity are endocrine effects which are not well characterized. Specifically, the changes in appetite following exposure to drugs of abuse are an interesting but poorly understood phenomenon. Serum hormones such as leptin, ghrelin, growth hormone (GH), and neuropeptide-Y (NP-Y) are known to affect appetite, but have not been studied extensively with drugs of abuse. In this work, we examine the effects of club drugs 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy) and methamphetamine (METH) (doses of 5, 20 and 40 mg/kg) on serum concentrations of these hormones in adult male Sprague-Dawley rats 6, 12, 24 and 48 hours after drug administration. In a dose-dependent manner, MDMA was shown to cause transient significant decreases in serum leptin and GH followed by a base line recovery after 24 hours. Conversely, serum ghrelin increased and normalized after 24 hours. Interestingly, serum NP-Y showed a steady decrease in both treatment of MDMA and METH at different time points and dosages. In humans, abuse of these drugs reduces eating. As evident from these data, acute administration of METH and MDMA had significant effects on different serum hormone levels involved in appetite regulation. Future studies should be performed to see how chronic, low dose drug administration would affect hormone levels and try to answer questions about the physiological mechanisms involved in the anorexic paradigm observed in drug use. Topics: Adrenergic Uptake Inhibitors; Amphetamine-Related Disorders; Animals; Appetite; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Ghrelin; Growth Hormone; Leptin; Male; Methamphetamine; N-Methyl-3,4-methylenedioxyamphetamine; Neuropeptide Y; Radioimmunoassay; Rats; Rats, Sprague-Dawley | 2008 |
Oxidative stress attenuates NO-induced modulation of sympathetic neurotransmission in the mesenteric arterial bed of spontaneously hypertensive rats.
Current evidence suggests that hyperactivity of the sympathetic nervous system and endothelial dysfunction are important factors in the development and maintenance of hypertension. Under normal conditions the endothelial mediator nitric oxide (NO) negatively modulates the activity of the norepinephrine portion of sympathetic neurotransmission, thereby placing a "brake" on the vasoconstrictor ability of this transmitter. This property of NO is diminished in the isolated, perfused mesenteric arterial bed taken from the spontaneously hypertensive rat (SHR), resulting in greater nerve-stimulated norepinephrine and lower neuropeptide Y (NPY) overflow from this mesenteric preparation compared with that of the normotensive Wistar-Kyoto rat (WKY). We hypothesized that increased oxidative stress in the SHR contributes to the dysfunction in the NO modulation of sympathetic neurotransmission. Here we demonstrate that the antioxidant N-acetylcysteine reduced nerve-stimulated norepinephrine and increased NPY overflow in the mesenteric arterial bed taken from the SHR. Furthermore, this property of N-acetylcysteine was prevented by inhibiting nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester, demonstrating that the effect of N-acetylcysteine was due to the preservation of NO from oxidation. Despite a reduction in norepinephrine overflow, the nerve-stimulated perfusion pressure response in the SHR mesenteric bed was not altered by the inclusion of N-acetylcysteine. Studies including the Y(1) antagonist BIBO 3304 with N-acetylcysteine demonstrated that this preservation of the perfusion pressure response was due to elevated NPY overflow. These results demonstrate that the reduction in the bioavailability of NO as a result of elevated oxidative stress contributes to the increase in norepinephrine overflow from the SHR mesenteric sympathetic neuroeffector junction. Topics: Acetylcysteine; Animals; Antioxidants; Arginine; Blood Pressure; Disease Models, Animal; Electric Stimulation; Enzyme Inhibitors; Hypertension; Male; Mesenteric Arteries; Neuropeptide Y; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Norepinephrine; Oxidative Stress; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Neuropeptide Y; Splanchnic Circulation; Superoxides; Sympathetic Nervous System | 2008 |
Effect of acupuncture on anxiety-like behavior during nicotine withdrawal and relevant mechanisms.
Acupuncture, likely the most well-known 'alternative' medical treatment, has been shown to have effects in several types of animal model of drug dependence, including nicotine addiction. We investigated the effect of acupuncture on anxiety-like behavior and corticotrophin-releasing factor (CRF) and neuropeptide Y (NPY) mRNA expression in the amygdala during nicotine withdrawal. Rats were given repeated nicotine injections (0.1mg/kg s.c., once daily for 7 days) or saline. Acupuncture groups were treated with acupuncture at acupoint HT7 or ST36 during withdrawal. The anxiogenic response was measured at 72h after the termination of nicotine injection using an elevated plus maze. CRF and NPY mRNA levels were also evaluated using reverse transcription polymerase chain reaction (RT-PCR) analysis at this time. Rats undergoing nicotine withdrawal (NW) were less likely to explore the open arms of the plus maze compared with the saline-treated controls. The percentage of open arm entries in the HT7 acupuncture group, but not in the ST36 acupuncture group, was significantly increased compared with the NW group. Consistent with this behavior, CRF mRNA levels in the NW group were increased compared with the control group. CRF mRNA levels in the HT7 acupuncture group were significantly decreased compared with the NW group. However, NPY mRNA levels were not different among the groups. These findings indicate that increases in CRF may be involved in the negative affect state associated with nicotine withdrawal and that acupuncture may attenuate anxiety-like behavior following nicotine withdrawal by modulating CRF in the amygdala. Topics: Acupuncture; Amygdala; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Corticotropin-Releasing Hormone; Disease Models, Animal; Male; Maze Learning; Motor Activity; Neuropeptide Y; Nicotine; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome | 2008 |
Botulinum neurotoxin E (BoNT/E) reduces CA1 neuron loss and granule cell dispersion, with no effects on chronic seizures, in a mouse model of temporal lobe epilepsy.
Mesial temporal lobe epilepsy (MTLE) is often the result of an early insult that induces a reorganization in hippocampal circuitry leading, after a latent period, to chronic epilepsy. Hippocampal rearrangements during the latent phase include neuronal loss, axonal and dendritic plasticity, neurogenesis, and cell repositioning, but the role of these changes in epilepsy development is unclear. Here we have tested whether administration of the synaptic blocker botulinum neurotoxin E (BoNT/E) interferes with development of spontaneous seizures and histopathological changes following an episode of status epilepticus (SE). SE was induced by unilateral intrahippocampal injection of kainic acid in mice and BoNT/E was delivered to the same hippocampus 3 h later. We found that treatment with BoNT/E prolonged the duration of the latent period but did not block the occurrence of spontaneous seizures. At the histopathological level, BoNT/E reduced loss of CA1 pyramidal neurons and dispersion of dentate granule cells. Downregulation of reelin expression along the hippocampal fissure was also suppressed by BoNT/E treatment. Our findings indicate that administration of BoNT/E after SE inhibits specific morphological changes in hippocampal circuitry but not the development of spontaneous seizures. This indicates a dissociation between certain anatomical modifications and establishment of chronic epilepsy in MTLE. Topics: Action Potentials; Animals; Anti-Dyskinesia Agents; Botulinum Toxins; Cell Count; Disease Models, Animal; Drug Interactions; Epilepsy, Temporal Lobe; Gene Expression Regulation; Hippocampus; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Neural Inhibition; Neurons; Neuropeptide Y; Reelin Protein; Synaptosomal-Associated Protein 25 | 2008 |
Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2.
Alzheimer's disease (AD) is characterized by three primary pathologies in the brain: amyloid plaques, neurofibrillary tangles, and neuron loss. Mouse models have been useful for studying components of AD but are limited in their ability to fully recapitulate all pathologies. We crossed the APPSwDI transgenic mouse, which develops amyloid beta (Abeta)-protein deposits only, with a nitric oxide synthase 2 (NOS2) knock-out mouse, which develops no AD-like pathology. APPSwDI/NOS2(-/-) mice displayed impaired spatial memory compared with the APPSwDI mice, yet they have unaltered levels of Abeta. APPSwDI mice do not show tau pathology, whereas APPSwDI/NOS2(-/-) mice displayed extensive tau pathology associated with regions of dense microvascular amyloid deposition. Also, APPSwDI mice do not have any neuron loss, whereas the APPSwDI/NOS2(-/-) mice have significant neuron loss in the hippocampus and subiculum. Neuropeptide Y neurons have been shown to be particularly vulnerable in AD. These neurons appear to be particularly vulnerable in the APPSwDI/NOS2(-/-) mice as we observe a dramatic reduction in the number of NPY neurons in the hippocampus and subiculum. These data show that removal of NOS2 from an APP transgenic mouse results in development of a much greater spectrum of AD-like pathology and behavioral impairments. Topics: Alzheimer Disease; Animals; Cerebral Amyloid Angiopathy; Disease Models, Animal; Disease Progression; Hippocampus; Immunohistochemistry; Memory Disorders; Mice; Mice, Transgenic; Neurons; Neuropeptide Y; Nitric Oxide Synthase Type II | 2008 |
Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala.
The amygdala modulates memory consolidation with the storage of emotionally relevant information and plays a critical role in fear and anxiety. We examined changes in neuronal morphology and neurotransmitter content in the amygdala of rats exposed to a single prolonged stress (SPS) as a putative animal model for human post-traumatic stress disorder (PTSD). Rats were perfused 7 days after SPS, and intracellular injections of Lucifer Yellow were administered to neurons of the basolateral (BLA) and central amygdala (CeA) to analyze morphological changes at the cellular level. A significant increase of dendritic arborization in BLA pyramidal neurons was observed, but there was no effect on CeA neurons. Neuropeptide Y (NPY) was abundant in BLA under normal conditions. The local concentration and number of immunoreactive fibers of NPY in the BLA of SPS-exposed rats were increased compared with the control. No differences were observed in this regard in the CeA. Double immunostaining by fluorescence and electron microscopy revealed that NPY immunoreactive terminals were closely associated with calcium/calmodulin II-dependent protein kinase (CaMKII: a marker for pyramidal neurons)-positive neurons in the BLA, which were immunopositive to glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). SPS had no significant effect on the expression of CaMKII and MR/GR expression in the BLA. Based on these findings, we suggest that changes in the morphology of pyramidal neurons in the BLA by SPS could be mediated through the enhancement of NPY functions, and this structural plasticity in the amygdala provides a cellular and molecular basis to understand for affective disorders. Topics: Afferent Pathways; Amygdala; Animals; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cell Shape; Chronic Disease; Dendrites; Disease Models, Animal; Fluorescent Antibody Technique; Isoquinolines; Male; Microscopy, Electron, Transmission; Neuronal Plasticity; Neurons; Neuropeptide Y; Neurotransmitter Agents; Presynaptic Terminals; Pyramidal Cells; Rats; Rats, Sprague-Dawley; Receptors, Glucocorticoid; Stress Disorders, Post-Traumatic; Stress, Psychological; Time Factors | 2008 |
Brain chromatin remodeling: a novel mechanism of alcoholism.
The treatment of alcoholism requires the proper management of ethanol withdrawal symptoms, such as anxiety, to prevent further alcohol use and abuse. In this study, we investigated the potential role of brain chromatin remodeling, caused by histone modifications, in alcoholism. We found that the anxiolytic effects produced by acute alcohol were associated with a decrease in histone deacetylase (HDAC) activity and increases in acetylation of histones (H3 and H4), levels of CREB (cAMP-responsive element binding) binding protein (CBP), and neuropeptide Y (NPY) expression in the amygdaloid brain regions of rats. However, the anxiety-like behaviors during withdrawal after chronic alcohol exposure were associated with an increase in HDAC activity and decreases in acetylation of H3 and H4, and levels of both CBP and NPY in the amygdala. Blocking the observed increase in HDAC activity during alcohol withdrawal with the HDAC inhibitor, trichostatin A, rescued the deficits in H3 and H4 acetylation and NPY expression (mRNA and protein levels) in the amygdala (central and medial nucleus of amygdala) and prevented the development of alcohol withdrawal-related anxiety in rats as measured by the elevated plus maze and light/dark box exploration tests. These results reveal a novel role for amygdaloid chromatin remodeling in the process of alcohol addiction and further suggest that HDAC inhibitors may be potential therapeutic agents in treating alcohol withdrawal symptoms. Topics: Alcoholism; Animals; Behavior, Animal; Brain; Central Nervous System Depressants; Chromatin Assembly and Disassembly; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Enzyme Inhibitors; Ethanol; Exploratory Behavior; Gene Expression; Histone Acetyltransferases; Histone Deacetylases; Hydroxamic Acids; Male; Maze Learning; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Substance Withdrawal Syndrome | 2008 |
Estradiol and neuropeptide Y (intra-lateral septal) reduce anxiety-like behavior in two animal models of anxiety.
Anxiolytic-like effects of intra-lateral septal nuclei (LSN) infusions of the neuropeptide Y (NPY) alone or combined with estradiol benzoate were assessed in ovariectomized Wistar rats in two animal models of anxiety-like behavior. In a conflict test, immediately punished responses were assessed: 17-beta-estradiol (50.0microg/rat, P<0.05) plus vehicle (intra-LSN) or intra-LSN infusions of NPY (2.5microg/microl, P<0.05; 3.0microg/mul, P<0.05) plus vehicle (systemic route) or the combination of subthreshold doses of 17-beta-estradiol (25.0microg/kg) plus intra-LSN infusions of NPY (2.0microg/mul, P<0.05) increased the amount of immediately punished reinforcers. In the elevated plus-maze test several spatial-temporal variables were evaluated: 17-beta-estradiol (50.0microg/kg, P<0.05) plus vehicle (intra-LSN) or intra-LSN infusions of NPY (2.5microg/mul, P<0.05; 3.0microg/mul, P<0.05) plus vehicle (systemic route) or the combination of subthreshold doses of 17-beta-estradiol (25.0microg/kg) plus intra-LSN infusions of NPY (2.0microg/mul, P<0.05) produced anxiolytic-like actions without affecting locomotion. It is concluded that estradiol or NPY may produce anxiolytic-like actions and that subthreshold doses of estradiol and subthreshold doses of NPY when combined produced anxiolytic-like actions. Topics: Animals; Anti-Anxiety Agents; Anxiety Disorders; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Estradiol; Female; Motor Activity; Neuropeptide Y; Ovariectomy; Rats; Rats, Wistar | 2008 |
Neuropeptide Y in the arcuato-paraventricular pathway and diet selection in the vasopressin-deficient Brattleboro rat.
Neuropeptide Y (NPY) is one of the most important brain peptides involved in feeding behavior. It influences both food choice and fluid homeostasis. The paraventricular and arcuate nuclei belong to the main pathway through which NPY stimulates carbohydrate intake. In this study, we measured NPY in various hypothalamic microdissected areas in Brattleboro di/di rats, a rat model of diabetes insipidus with specific dietary preferences. We confirmed that this rat is characterized by an increased fat intake (+10%; p<0.001) and a decreased carbohydrate intake (-10%; p<0.001) leading to a completely different dietary profile than that of di/+ controls. This profile was associated with a decrease in NPY in the paraventricular nucleus (-33%; p<0.005) and in the ventromedial nucleus (-24%; p<0.002). Intake of carbohydrate was negatively correlated with the gradient of NPY concentration between the arcuate and paraventricular nuclei. NPY could therefore contribute to the qualitative changes of feeding behavior in the Brattleboro rat through altered transport/release of the peptide and participate in the balance of neuropeptides that determines food choice in this strain of rat. Topics: Animals; Appetite Regulation; Arcuate Nucleus of Hypothalamus; Diabetes Insipidus; Dietary Carbohydrates; Dietary Fiber; Disease Models, Animal; Down-Regulation; Feeding Behavior; Male; Neural Pathways; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Rats; Rats, Brattleboro; Species Specificity; Up-Regulation; Vasopressins; Ventromedial Hypothalamic Nucleus | 2008 |
Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression.
Previously we reported that basal neuropeptide Y (NPY)-like immunoreactivity-(LI) in hippocampus of the "depressed" Flinders Sensitive Line (FSL) rats was lower compared to the control Flinders Resistant Line (FRL) and that electroconvulsive stimuli (ECS) raise NPY-LI in discrete brain regions. Here we studied NPY mRNA expression, NPY Y(1) receptor (Y(1)) mRNA expression and binding sites, and behavior under basal conditions (Sham) and after repeated ECS. Baseline NPY and Y(1) mRNAs in the CA1-2 regions and dentate gyrus were lower while the Y(1) binding was higher in the FSL. ECS had larger effects on both NPY and behavior in the FSL rats. ECS increased NPY mRNA in the CA1-2, dentate gyrus and hypothalamus in FSL, but only in the dentate gyrus in FRL. ECS also increased Y(1) mRNA in the CA1-2, dentate gyrus and the parietal cortex in both strains, while in the hypothalamus the increase was observed only in the FSL rats. Consistently with Y(1) mRNA increase, Y(1) binding was downregulated in the corresponding regions. ECS decreased FSL immobility in the Porsolt swim test. These findings suggest that NPY is involved in depressive disorder and that antidepressant effects of ECS may in part be mediated through NPY. Topics: Analysis of Variance; Animals; Autoradiography; Behavior, Animal; Depression; Disease Models, Animal; Electroconvulsive Therapy; Gene Expression Regulation; In Situ Hybridization; Male; Neuropeptide Y; Rats; Rats, Inbred Strains; Receptors, Neuropeptide Y | 2007 |
Up-regulation of NPY gene expression in hypothalamus of rats with experimental chronic renal failure.
Anorexia is possibly one of the most important causes of malnutrition in uremic patients. The cause of this abnormality is still unknown. Considering that: (a) NPY is one of the most important stimulants of food intake; (b) eating is a central nervous system regulated process and (c) NPY is expressed in hypothalamus, we hypothesized that the decrease of NPY gene expression in the hypothalamus could be an important factor contributing to anorexia associated with uremic state. In contrast to the prediction, the results presented in this paper indicate that the NPY gene expression in the hypothalamus of chronic renal failure (CRF) rats was significantly higher than in the hypothalamus of control (pair-fed) rats. Moreover, we found that serum NPY concentration in CRF rats was higher than in control (pair-fed) animals. The increase of plasma NPY concentration in CRF rats may be due to the greater synthesis of the neuropeptide in liver, since higher level of NPY mRNA was found in liver of CRF rats. The results obtained revealed that experimental chronic renal failure is associated with the increase of NPY gene expression in hypothalamus and liver of rats. Topics: Animals; Anorexia; Disease Models, Animal; Gene Expression Regulation; Hypothalamus; Kidney Failure, Chronic; Liver; Male; Neuropeptide Y; Rats; Rats, Wistar; RNA, Messenger; Up-Regulation | 2007 |
Changes in neuropeptide Y protein expression following photothrombotic brain infarction and epileptogenesis.
This study characterized morphological changes in the cortex and hippocampus of Sprague-Dawley rats following photothrombotic infarction and epileptogenesis with emphasis on the distribution of neuropeptide Y (NPY) expression. Animals were lesioned in the left sensorimotor cortex and compared with age-matched naive and sham-operated controls by immunohistochemical techniques at 1, 3, 7, and 180 days post-lesioning (DPL). NPY immunostaining was assessed by light microscopy and quantified by the optical fractionator technique using unbiased stereological methods. At 1, 3, and 7 DPL, the number of NPY-positive somata in the lesioned cortex was increased significantly compared to controls and the contralateral cortex. At 180 DPL, lesioned epileptic animals with frequent seizure activity demonstrated significant increases of NPY expression in the cortex, CA1, CA3, hilar interneurons, and granule cells of the dentate gyrus. In addition to NPY immunostaining, neuronal degeneration, cell death/cell loss, and astroglial response were assessed with cell-specific markers. Nissl and NeuN staining showed reproducible infarctions at each investigated time point. FJB-positive somata were most abundant in the infarct core at 1 DPL, decreased markedly at 3 DPL, and virtually absent by 7 DPL. Activated astroglia were detected in the cortex and hippocampus following lesioning and the development of seizure activity. In summary, NPY protein expression and morphological changes following cortical photothrombosis were time-, region-, and pathologic state-dependent. Alterations in NPY expression may reflect reactive or compensatory responses of the rat brain to acute infarction and to the development and expression of epileptic seizures. Topics: Animals; Astrocytes; Brain; Brain Infarction; Dentate Gyrus; Disease Models, Animal; DNA-Binding Proteins; Epilepsy; Fluoresceins; Gliosis; Hippocampus; Immunohistochemistry; Intracranial Thrombosis; Light Coagulation; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Nuclear Proteins; Organic Chemicals; Rats; Rats, Sprague-Dawley; Somatosensory Cortex; Time Factors; Up-Regulation | 2007 |
Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor.
A couple of papers indicate that patients with depression show a decrease in serum neuropeptide Y (NPY). To study the role of NPY in depression, we examined the effects of infusion of NPY into the hippocampus of learned helplessness (LH) rats (an animal model of depression). Infusion of NPY into the cerebral ventricle of LH rats showed antidepressant-like effects. Infusion of NPY into the CA3 region, but not the dentate gyrus (DG), produced antidepressant-like effects in the LH paradigm. Infusion of NPY did not affect locomotor activity or aversive learning ability. Coadministration of BIBO3304 (a Y1 receptor antagonist) with NPY to the CA3 region blocked the antidepressant-like effects of NPY, whereas coadministration of NPY with BIIE0246 (a Y2 receptor antagonist) to the CA3 region failed to block antidepressant-like effects. Furthermore, infusions of [Leu(31) Pro(34)]PYY (a Y1 and Y5 receptor agonist) alone and BIIE0246 alone into the CA3 region produced the antidepressant-like effects in LH rats. These results suggest that infusion of NPY into the CA3 region of hippocampus of LH rats produces antidepressant-like activity through Y1 receptors and attenuating effects through Y2 receptors. Topics: Animals; Antidepressive Agents; Arginine; Avoidance Learning; Behavior, Animal; Benzazepines; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Exploratory Behavior; Helplessness, Learned; Hippocampus; Injections, Intraventricular; Male; Neuropeptide Y; Peptide YY; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, G-Protein-Coupled; Receptors, Neuropeptide | 2007 |
Adjuvant neuropeptides can improve neuropathic ligament healing in a rat model.
Diminished healing in neuropathic tissues suggests an important regulatory role for peripheral neurogenic factors in connective tissue healing. Although neurogenic factors, including neuropeptides, can induce cell proliferation and influence inflammatory cell chemotaxis in vitro, there is little appreciation of the potential of neuropeptides to affect connective tissue healing in vivo. We created both efferent and afferent peripheral neuropathies in 55 female Wistar rats. First, we showed that neuropathy led to impaired healing of ruptured ligaments. We then showed that local delivery of specific neuropeptides could reverse the functional deficits of these neuropathic ligaments in only 2 weeks. In substance P and vasoactive intestinal peptide-treated medial collateral ligaments (MCLs), the mechanical properties of these healing neuropathic tissues returned to values at or above normally innervated, intact ligaments. In addition, neuropeptide Y stimulated MCL healing in this model. These findings suggest a new paradigm to improve neuropathic soft connective tissue healing. Topics: Animals; Calcitonin Gene-Related Peptide; Disease Models, Animal; Female; Femoral Nerve; Ligaments; Neuropeptide Y; Neuropeptides; Peripheral Nervous System Diseases; Rats; Rats, Wistar; Rupture; Substance P; Sympathectomy; Vasoactive Intestinal Peptide; Wound Healing | 2007 |
Neuropeptide Y suppresses absence seizures in a genetic rat model primarily through effects on Y receptors.
Neuropeptide Y (NPY) potently suppresses absence seizures in a model of genetic generalized epilepsy, genetic absence epilepsy rats of Strasbourg (GAERS). Here we investigated the Y-receptor subtype(s) on which NPY exerts this anti-absence effect. A dual in vivo approach was used: the cumulative duration of seizures was quantified in adult male GAERS in 90-min electroencephalogram recordings following intracerebroventricular (i.c.v.) injection of: (i) subtype-selective agonists of Y1 ([Leu31Pro34]NPY, 2.5 nmol), Y2 (Ac[Leu(28,31)]NPY24-36, 3 nmol), Y5 receptors [hPP1(-17),Ala31,Aib32]NPY, 4 nmol), NPY (3 nmol) or vehicle; and following (ii) i.c.v. injection of antagonists of Y1 (BIBP3226, 20 nmol), Y2 (BIIE0246, 20 nmol) and Y5 (NPY5RA972, 20 nmol) receptors or vehicle, followed by NPY (3 nmol). Injection of the Y1- and Y5-selective agonists resulted in significantly less mean seizure suppression (37.4% and 53.9%, respectively) than NPY (83.2%; P < 0.05), while the Y2 agonist had similar effects to NPY (62.3% suppression, P = 0.57). Food intake was not increased following injection of the Y2 agonist, while significant increases in food intake were seen following NPY and the other Y-subtype agonists. Compared with vehicle, NPY injection suppressed seizures following the Y1 and Y5 antagonists (45.3% and 80.1%, respectively, P < 0.05), but not following the Y2 antagonist (5.1% suppression, P = 0.46). We conclude that NPY Y2 receptors are more important than Y1 and Y5 receptors in mediating the effect of NPY to suppress absence seizures in a genetic rat model. Y2 receptor agonists may represent targets for novel drugs against genetic generalized epilepsies without resulting in appetite stimulation. Topics: Analysis of Variance; Animals; Disease Models, Animal; Drug Interactions; Electroencephalography; Epilepsy, Absence; Male; Neuropeptide Y; Rats; Rats, Mutant Strains; Receptors, Neuropeptide Y | 2007 |
The intake of physiological doses of leptin during lactation in rats prevents obesity in later life.
There is epidemiological evidence that perinatal nutritional factors may have long-term effects on obesity. Which nutrients or food components are involved in this programming mechanism are unknown. Breast milk contains leptin, a hormone that regulates food intake and energy expenditure, and previous studies in rats have shown that leptin orally administered during lactation exerts anorexigenic effects.. To evaluate whether supplementation with physiological doses of oral leptin during lactation has long-term effects on body weight regulation.. A daily oral dose of leptin (equivalent to five times the amount of leptin ingested normally from maternal milk during the suckling period) or the vehicle was given to suckling male rats during lactation. Animals were fed after weaning with a normal fat (NF) or a high-fat (HF) diet. We followed body weight and food intake of animals until the age of 6 months, and measured the size of adipose tissue depots, the thermogenic capacity, the expression of leptin in the stomach and adipose tissues and the expression of two appetite-related peptides (neuropeptide Y (NPY) and proopiomelanocortin (POMC)), leptin receptor (OB-Rb) and suppressor of cytokine signalling 3 (SOCS-3) in the hypothalamus at the age of 6 months.. Leptin-treated animals had, in adulthood, lower body weight and fat content and ate fewer calories than their untreated controls. Unlike adipocitary leptin production, adult animals that were leptin-treated during lactation displayed higher gastric leptin production without changes in OB-Rb mRNA levels. In addition, in response to HF diet, leptin-treated animals (contrary to controls) showed lower hypothalamic NPY/POMC mRNA ratio. Hypothalamic OB-Rb mRNA levels decreased in control animals as an effect of HF diet feeding, but remained unchanged in leptin-treated animals; SOCS-3 mRNA levels were lower in leptin-treated animals than in their controls, both under normal or HF diet.. The animals that received leptin during lactation become more protected against fat accumulation in adult life and seem to be more sensitive to the short- and long-term regulation of food intake by leptin. Thus, leptin plays an important role in the earlier stages of neonatal life, as a component of breast milk, in the prevention of later obesity. Topics: Adipose Tissue; Administration, Oral; Aging; Animals; Animals, Newborn; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Gastric Mucosa; Lactation; Leptin; Male; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Rats; Rats, Wistar; RNA, Messenger; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins | 2007 |
Olfactory bulbectomy increases food intake and hypothalamic neuropeptide Y in obesity-prone but not obesity-resistant rats.
Obese individuals often suffer from depression. The olfactory bulbectomy (OBX) model is an animal model of depression that produces behavioral, physiological, and neurochemical alterations resembling clinical depression. The OBX model was employed to assess depression-related changes in food intake in obesity-prone, Osborne-Mendel (OM) rats and obesity-resistant, S5B/Pl rats. OBX increased food intake in OM rats beginning 7 days following surgery, however, OBX did not alter food intake in S5B/Pl rats at any time point. Fourteen days following surgery, OBX significantly increased locomotor activity (total lines crossed and rears) in the openfield test in OM and S5B/Pl rats. Fifteen days following surgery, prepro-neuropeptide Y (NPY) mRNA levels were significantly increased in the hypothalamus of bulbectomized OM rats and in the medial nucleus of the amygdala of bulbectomized OM and S5B/Pl rats. OBX decreased NPY Y2 receptor mRNA levels in the hypothalamus and medial nucleus of the amygdala in OM rats, while increasing NPY Y2 receptor mRNA levels in the medial nucleus of the amygdala of S5B/Pl rats. These data indicate that though both obesity-prone and obesity-resistant strains were susceptible to the locomotor effects of OBX, food intake and hypothalamic prepro-NPY mRNA were only increased in OM rats. Therefore, strain specific alterations in hypothalamic NPY may account for increased food intake in the obesity-prone rats following OBX, and suggests a potential mechanism to explain the comorbidity of obesity and depression. Topics: Animals; Body Weight; Disease Models, Animal; Eating; Exploratory Behavior; Hypothalamus; Male; Neuropeptide Y; Obesity; Olfactory Bulb; Rats; Rats, Inbred Strains; Receptors, Neuropeptide Y; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors | 2007 |
Neuropeptide Y facilitates activity-based-anorexia.
The hypothesis that treatment with neuropeptide Y (NPY) can increase running activity and decrease food intake and body weight was tested. Female rats with a running wheel lost more weight than sedentary rats and ran progressively more as the availability of food was gradually reduced. When food was available for only 1h/day, the rats lost control over body weight. Correlatively, the level of NPY mRNA was increased in the hypothalamic arcuate nucleus. This phenomenon, activity-based-anorexia, was enhanced by intracerebroventricular infusion of NPY in rats which had food available during 2h/day. By contrast, NPY stimulated food intake but not wheel running in rats which had food available continuously. These findings are inconsistent with the prevailing theory of the role of the hypothalamus in the regulation of body weight according to which food intake is a homeostatic process controlled by "orexigenic" and "anorexigenic" neural networks. However, the finding that treatment with NPY, generally considered an "orexigen", can increase physical activity and decrease food intake and cause a loss of body weight is in line with the clinical observation that patients with anorexia nervosa are physically hyperactive and eat only little food despite having depleted body fat and up-regulated hypothalamic "orexigenic" peptides. Topics: Adaptation, Physiological; Animals; Anorexia Nervosa; Appetite Regulation; Arcuate Nucleus of Hypothalamus; Body Weight; Disease Models, Animal; Eating; Female; Motor Activity; Neuropeptide Y; Rats; Rats, Wistar; RNA, Messenger | 2007 |
Weight gain model in prepubertal rats: prediction and phenotyping of obesity-prone animals at normal body weight.
Male Sprague-Dawley rats maintained from birth on a high-fat diet were examined to determine whether a specific measure before puberty can identify and allow one to characterize prepubertal rats at normal weight with high vs low risk for adult obesity.. Measures from weaning (day 21) to around puberty (day 45) were taken of weight gain, absolute body weight and daily energy intake on a high-fat diet and related to the amount of body fat accumulated at maturity (80-100 days of age). Rats identified by a specific prepubertal measure as obesity-prone (OP) vs obesity-resistant (OR) were then characterized before and after puberty.. Prepubertal weight gain from days 30 to 35 of age was the strongest and earliest positive correlate of ultimate body fat accrual in adult rats. The highest (8-10 g/day) compared to lowest (5-7 g/day) weight-gain scores identified accurately and reproducibly distinct OP and OR subgroups at day 35 that became obese or remained lean, respectively, as adults. The OP rats with rapid prepubertal weight gain and 50% greater adiposity at maturity (day 100) exhibited the expected phenotype of already-obese rats. These included elevated levels of leptin, insulin, triglycerides and glucose, increased galanin (GAL) peptide levels in the paraventricular nucleus (PVN) and reduced neuropeptide Y (NPY) levels in the arcuate nucleus (ARC). Before puberty (day 35), the OP rats with normal fat pad weights, energy intake and endocrine profile similar to OR rats exhibited these disturbances characteristic of obese rats. They had decreased capacity for fat oxidation in muscle, increased GAL expression in PVN and reduced expression of NPY and agouti-related protein in ARC.. Prepubertal weight gain can identify OP rats on day 35 when they have minimal body fat but exhibit specific metabolic and neurochemical disturbances expected to promote obesity and characteristics of already-obese adult rats. Topics: Aging; Animals; Animals, Newborn; Arcuate Nucleus of Hypothalamus; Body Weight; Dietary Fats; Disease Models, Animal; Energy Metabolism; Galanin; Genetic Predisposition to Disease; Male; Neuropeptide Y; Obesity; Paraventricular Hypothalamic Nucleus; Phenotype; Predictive Value of Tests; Rats; Risk Factors; Weight Gain | 2007 |
Involvement of Y(5) receptors in neuropeptide Y agonist-induced analgesic-like effect in the rat hot plate test.
Neuropeptide Y (NPY) induces analgesic-like effects after central administration across diverse pain models in rodents. In spinal pain models, previous studies indicate a prominent role for Y(1) receptors at mediating this effect of NPY. In supraspinal pain models like the hot plate test, the NPY receptors involved have not been thoroughly explored. By intracerebroventricular (i.c.v.) administration of selective NPY receptor ligands, the possible involvement of Y(5) receptors in analgesic-like mechanisms was investigated using the hot plate test in rats. Both NPY and selective Y(5) agonists induced analgesic-like effects as revealed by prolonged hot plate latencies. Further consistent with a role for Y(5) receptors, pretreatment with a selective Y(5) receptor antagonist blocked the Y(5) agonist-induced analgesic-like effect. The present study indicates involvement of Y(5) receptors probably at the supraspinal level in mediation of NPY agonist-induced analgesic-like effects in the hot plate test. Topics: Analgesics; Animals; Disease Models, Animal; Hot Temperature; Injections, Intraventricular; Neuropeptide Y; Pain; Peptide Fragments; Rats; Receptors, Neuropeptide Y | 2007 |
Search for biological correlates of depression and mechanisms of action of antidepressant treatment modalities. Do neuropeptides play a role?
Dysregulation of the monoaminergic systems is likely a sufficient but not a necessary cause of depression. A wealth of data indicates that neuropeptides, e.g., NPY, CRH, somatostatin, tachykinins and CGRP play a role in affective disorders and alcohol use/abuse. This paper focuses on NPY in etiology and pathophysiology of depression. Decreased peptide and mRNA NPY were found in hippocampus of both the genetic, e.g., the FSL strain, and environmental rat models of depression, e.g., chronic mild stress and early life maternal separation paradigms. Rat models of alcoholism also show altered NPY. Furthermore, NPY is also reduced in CSF of depressed patients. Antidepressive treatments tested so far (lithium, topiramate, SSRIs, ECT and ECS, wheel running) increase NPY selectively in rat hippocampus and in human CSF. Moreover, NPY given icv to rat has antidepressive effects which are antagonized by NPY-Y1 blockers. The data support our hypothesis that the NPY system dysregulation constitutes one of the biological underpinnings of depression and that one common mechanism of action of antidepressive treatment modalities may be effects on NPY and its receptors. In a novel paradigm, early life maternal separation was superimposed on "depressed" FSL and control rats and behavioral and brain neurochemistry changes observed in adulthood. The consequences were more deleterious in genetically vulnerable FSL. Early antidepressive treatment modulated the adult sequelae. Consequently, if these data are confirmed, the ethical and medical question that will be asked is whether it is permissible and advisable to consider prophylactically treating persons at risk. Topics: Animals; Antidepressive Agents; Depressive Disorder; Disease Models, Animal; Electroconvulsive Therapy; Fructose; Hippocampus; Humans; Lithium Compounds; Maternal Deprivation; Neuropeptide Y; Rats; Rats, Inbred Strains; RNA, Messenger; Selective Serotonin Reuptake Inhibitors; Social Environment; Topiramate | 2007 |
Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel.
Paclitaxel-induced sensory neuropathy is a problematic side-effect of cancer chemotherapy. Previous studies in rodents have shown paclitaxel treatment to have many effects on different parts of the peripheral nervous system, but those responsible for its bothersome clinical side-effects are still unclear. In the current study, we sought to obtain information about the involvement of sensory neurons in paclitaxel neurotoxicity at the level of the dorsal root ganglion. Rats were treated with a clinically relevant dose of paclitaxel (87.5mg/m(2) weekly for a total of nine doses) to induce a sensory neuropathy; then their L5 dorsal root ganglia were studied by morphometry and immunohistochemistry. Paclitaxel treatment was generally well tolerated, and slowed conduction velocity and prolonged conduction latencies in the peripheral sensory nerves without altering conduction in the central or motor pathways of the H-reflex arc. In the L5 dorsal root ganglion, nucleolus size and the number of neurons with eccentric nuclei were increased only in a subpopulation of dorsal root ganglion neurons with cell body cross-sectional areas greater than 1750 microm(2), which made up less than 10% of the total population. Paclitaxel treatment increased immunohistochemical staining for activating transcription factor-3 (ATF-3), c-Jun and neuropeptide Y (NPY) but only in a small percentage of neuronal cell bodies and mainly in those with large cell bodies. In conclusion, we have demonstrated that nucleolar enlargement, nuclear eccentricity, ATF-3, c-Jun and NPY are neuronal markers of paclitaxel-induced sensory neuropathy, however, these axotomy-like cell body reactions are infrequent and occur in mainly large-sized sensory neurons. Topics: Activating Transcription Factor 3; Animals; Antineoplastic Agents, Phytogenic; Cell Nucleolus; Cell Size; Disease Models, Animal; Female; Ganglia, Spinal; H-Reflex; Immunohistochemistry; Neural Conduction; Neurons, Afferent; Neuropeptide Y; Neurotoxicity Syndromes; Paclitaxel; Peripheral Nervous System Diseases; Proto-Oncogene Proteins c-jun; Rats; Rats, Wistar; Reaction Time; Up-Regulation | 2007 |
Inflammation and inflammatory agents activate protein kinase C epsilon translocation and excite guinea-pig submucosal neurons.
Properties of enteric neurons are transformed by inflammation and protein kinase C (PKC) isoforms are involved both in long-term changes in enteric neurons, and in transducing the effects of substances released during inflammation. We investigated roles of PKCepsilon in submucosal neurons by studying translocation in response to inflammatory mediators, effects on neuron excitability, and the changes in PKCepsilon distribution in a trinitrobenzene sulphonate model of ileitis.. Immunohistochemical detection and analysis of association with membrane and cytosolic fractions, and Western blot analysis of cytosolic and particulate fractions were used to quantify translocation. Electrophysiology methods were used to measure effects on neuron excitability.. All submucosal neurons were immunoreactive for the novel PKC, PKCepsilon, and direct PKC activators, phorbol 12,13-dibutyrate, ingenol 3,20-dibenzoate, and the PKCepsilon-specific activator, transactivator of transduction-Psiepsilon receptor for activated C kinase, all caused PKCepsilon translocation from cytoplasm to surfaces of the neurons. Electrophysiologic studies showed that the stimulant of novel PKCs, ingenol (1 micromol/L), increased excitability of all neurons. Stimulation of protease-activated receptors caused PKCepsilon translocation selectively in vasoactive intestinal peptide secretomotor neurons, whereas a neurokinin 3 tachykinin receptor agonist caused translocation in neuropeptide Y and calretinin neurons. In all cases translocation was reduced significantly by a PKCepsilon-specific translocation inhibitor peptide. Increased PKCepsilon at the plasma membrane occurred in all neurons 6-7 days after an inflammatory stimulus.. Major targets for PKCepsilon include ion channels near the plasma membrane. PKCepsilon is likely to have a significant role in controlling the excitability of submucosal neurons and is probably an intermediate in causing hyperexcitability after inflammation. Topics: Action Potentials; Animals; Blotting, Western; Calbindin 2; Cell Membrane; Cytoplasm; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Activators; Guinea Pigs; Ileitis; Ileum; In Vitro Techniques; Inflammation Mediators; Kinetics; Neuropeptide Y; Oligopeptides; Peptide Fragments; Phorbol 12,13-Dibutyrate; Protein Kinase C-epsilon; Protein Transport; Receptor, PAR-2; Receptors, Neurokinin-3; S100 Calcium Binding Protein G; Signal Transduction; Submucous Plexus; Substance P; Trinitrobenzenesulfonic Acid; Trypsin; Vasoactive Intestinal Peptide | 2007 |
Does epileptiform activity contribute to cognitive impairment in Alzheimer's disease?
Alzheimer's disease is a devastating neurological disorder. The role of hyperexcitability in the disease's cognitive decline is not completely understood. In this issue of Neuron, Palop et al. report both limbic seizures and presumed homeostatic responses to seizures in an animal model of Alzheimer's. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Cognition Disorders; Dentate Gyrus; Disease Models, Animal; Epilepsy; Homeostasis; Humans; Mutation; Neural Inhibition; Neuropeptide Y | 2007 |
Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y.
The potent anticonvulsant properties of neuropeptide Y (NPY) are generally attributed to a Y2 receptor-mediated inhibition of glutamatergic synaptic transmission. Independent studies have shown that NPY increases brain dopamine content, possibly via interaction with sigma 1 receptors. Recently, we showed that increased extracellular hippocampal dopamine attenuates pilocarpine-induced limbic seizures via activation of hippocampal D2 receptors. Our aim in this study was to elucidate the role of increased hippocampal dopamine in the mechanism of the anticonvulsant action of NPY and to investigate the involvement of Y2 and sigma 1 receptors in this process. Limbic seizures were evoked in freely moving rats by intrahippocampal administration of pilocarpine via a microdialysis probe. NPY was administered intracerebroventricularly, intrahippocampally via the microdialysis probe, or coadministered intrahippocampally with the D2 receptor antagonist remoxipride, the Y2 receptor antagonist BIIE0246 or the sigma 1 receptor antagonist BD1047. Changes in hippocampal extracellular dopamine were monitored, and behavioural changes indicative of seizure activity were scored. Intracerebroventricular (10 nmol/3 microL) and intrahippocampal (20-50 microm) NPY administration increased hippocampal dopamine and attenuated pilocarpine-induced seizures. Hippocampal D2 receptor blockade (4 microm remoxipride) reversed the anticonvulsant effect of NPY. Y2 receptor blockade (1 microm BIIE0246) reversed the anticonvulsant effect of NPY but did not prevent NPY-induced increases in hippocampal dopamine. Sigma 1 receptor blockade (10 microm BD1047) abolished NPY-induced increases in hippocampal dopamine and reversed the anticonvulsant effect of NPY. Our results indicate that NPY-induced increases in hippocampal dopamine are mediated via sigma 1 receptors and contribute to the anticonvulsant effect of NPY via increased activation of hippocampal D2 receptors. This novel mechanism of anticonvulsant action of NPY is separate from, and may be complementary to, the well established Y2 receptor-mediated inhibition of hippocampal excitability. Topics: Analysis of Variance; Animals; Anticonvulsants; Behavior, Animal; Chromatography, High Pressure Liquid; Disease Models, Animal; Dopamine; Dopamine Antagonists; Dose-Response Relationship, Drug; Epilepsy; Ethylenediamines; Hippocampus; Male; Microdialysis; Neuropeptide Y; Pilocarpine; Rats; Rats, Wistar; Receptors, sigma; Remoxipride; Severity of Illness Index; Sigma-1 Receptor; Time Factors | 2007 |
Effects of subcutaneous leptin injections on hypothalamic gene profiles in lean and ob/ob mice.
Leptin-deficient ob/ob mice are more sensitive to exogenous leptin than lean mice and leptin treatment normalizes many of the phenotypic characteristics of ob/ob mice. The primary objective of this experiment was to investigate whether this altered leptin sensitivity in ob/ob mice was reflected in the hypothalamic mRNA profile.. Fifteen-week-old female ob/ob and lean mice were treated with 14 days of subcutaneous (sc) infusion of phosphate-buffered saline (PBS) or leptin (10 mug/d) using osmotic pumps. Real-time Taqman reverse transcription polymerase chain reaction (RT-PCR) (ABI Microfluidic cards) was used to quantitatively compare the mRNA levels of selected hypothalamic genes in these groups.. Hypothalamic mRNA levels for ob/ob control mice were higher for agouti-related protein (AGRP), neuropeptide Y (NPY), and arginine vasopressin (AVP), and lower for cocaine- and amphetamine-regulated transcript (CART), cAMP response element binding protein (CREB)-1, proopiomelanocortin (POMC)-1, and urocortin (UCN)-3 compared with lean controls. In leptin-treated ob/ob mice, hypothalamic mRNA levels were reduced for NPY, AGRP, AVP, and increased for suppressor of cytokine signaling 3 (SOCS3) compared with ob/ob controls. Leptin treatment dramatically up-regulated hypothalamic mRNA level of POMC1 in both lean and ob/ob mice. Strong correlations were observed between hypothalamic Janus kinase 2 (JAK2) and CREB1, STAT3 and CREB1, JAK2 and STAT3, NPY and AVP in all samples.. ob/ob and lean mice have different hypothalamic mRNA expression patterns (particularly those of feeding-related genes), and selected genes in ob/ob mice are more sensitive to exogenous leptin stimulation compared with lean mice. Topics: Animals; Arginine Vasopressin; Body Weight; Cyclic AMP Response Element-Binding Protein; Disease Models, Animal; Eating; Female; Gene Expression Profiling; Hypothalamus; Injections, Subcutaneous; Janus Kinase 2; Leptin; Mice; Mice, Obese; Nerve Tissue Proteins; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; RNA, Messenger; STAT3 Transcription Factor; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Thinness; Urocortins | 2007 |
[The effect of low frequency transcranial magnetic stimulation on neuropeptide-Y expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine].
To analyze the effect of low frequency transcranial magnetic stimulation (LF-TMS) on changing neuropeptide-Y (NPY) expression and apoptosis of hippocampus neurons in epilepsy rats induced by pilocarpine (PLO).. Thirty male Sprague Dawley rats (240 g +/- 20 g) were randomly divided into 2 groups. I group simply celiac injected pilocarpine. II group celiac injected PLO after LF-TMS. Pathological item included HE staining, NPY immunohistochemical staining and apoptosis staining.. HE staining revealed neurons of hippocampus were obviously death and cell's structure was destroyed in PLO group. The PLO + LF-TMS group was less injured and destroyed. Using One-Way ANOVA, NPY immunohistochemical staining shown the positive cell number was increased at all areas of hippocampus in PLO group contrasting with the low positive cell number in the PLO + LF-TMS group. In PLO group the number of apoptosis cell at hippocampus areas was significant higher than the PLO + LF-TMS group.. Using the PLO evoked epilepsy model, LF-TMS alleviated neurons injury at hippocampus area, so LF-TMS might playing an important role in resisting the progressing of epilepsy. The positive cell number of NPY increased at all areas of hippocampus, which indicated the close relation between NPY and epilepsy. NPY might have some function on resisting epilepsy. Topics: Animals; Apoptosis; Disease Models, Animal; Epilepsy, Temporal Lobe; Hippocampus; Male; Neurons; Neuropeptide Y; Pilocarpine; Random Allocation; Rats; Rats, Sprague-Dawley; Transcranial Magnetic Stimulation | 2007 |
Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls.
Physical activity has documented beneficial effect in treatment of depression. Recently, we found an antidepressant-like effect of running in an animal model of depression, the Flinders Sensitive Line (FSL) and demonstrated that it was associated with increased hippocampal cell proliferation. In this study, we analyzed levels of mRNAs encoding the neuropeptide Y (NPY) and the opioid peptides dynorphin and enkephalin in hippocampus and correlated these to cell proliferation in the FSL and in the 'nondepressed' Flinders Resistant Line (FRL) strain, with/without access to running wheels. Running increased NPY mRNA in dentate gyrus and the CA4 region in FSL, but not in FRL rats. NPY mRNA increase was correlated to increased cell proliferation in the subgranular zone of dentate gyrus. Baseline dynorphin and enkephalin mRNA levels in the dentate gyrus were lower in the FSL compared to the FRL strain. Running had no effect on dynorphin and enkephalin mRNAs in the FSL strain but it decreased dynorphin mRNA, and there was a trend to increased enkephalin mRNA in the FRL rats. Thus, it would appear that the CNS effects of running are different in 'depressed' and control animals; modification of NPY, a peptide associated with depression and anxiety, in depressed animals, vs effects on opioids, associated with the reward systems, in healthy controls. Our data support the hypothesis that NPY neurotransmission in hippocampus is malfunctioning in depression and that antidepressive treatment, in this case wheel running, will normalize it. In addition, we also show that the increased NPY after running is correlated to increased cell proliferation, which is associated with an antidepressive-like effect. Topics: Analysis of Variance; Animals; Bromodeoxyuridine; Cell Count; Cell Proliferation; Depression; Disease Models, Animal; Dynorphins; Enkephalins; Exercise Therapy; Hippocampus; Immunohistochemistry; In Situ Hybridization; Male; Neuropeptide Y; Rats; Rats, Inbred Strains; Running | 2006 |
Increased infarct size and lack of hyperphagic response after focal cerebral ischemia in peroxisome proliferator-activated receptor beta-deficient mice.
Peroxisome proliferator-activated receptors (PPARs) are involved in energy expenditure, regulation of inflammatory processes, and cellular protection in peripheral tissues. Among the different types of PPARs, PPARbeta is the only one to be widely expressed in cortical neurons. Using PPARbeta knockout (KO) mice, we report here a detailed investigation of the role of PPARbeta in cerebral ischemic damage, associated inflammatory and antioxidant processes as well as food intake regulation after middle cerebral artery occlusion (MCAO). The PPARbeta KO mice had a two-fold increase in infarct size compared with wild-type (WT) mice. Brain oxidative stress was dramatically enhanced in these KO mice, as documented by an increased content of malondialdehyde, decreased levels of glutathione and manganese superoxide dismutase, and no induction of uncoupling protein 2 (UCP2) mRNA. Unlike WT mice, PPARbeta KO mice showed a marked increase of prooxidant interferon-gamma but no induction of nerve growth factor and tumor necrosis factor alpha after MCAO. In WT mice, MCAO resulted in inflammation-specific transient hyperphagia from day 3 to day 5 after ischemia, which was associated with an increase in neuropeptide Y (NPY) mRNA. This hyperphagic phase and NPY mRNA induction were not observed in PPARbeta KO mice. Furthermore, our study also suggests for the first time that UCP2 is involved in MCAO food intake response. These data indicate that PPARbeta plays an important role in integrating and regulating central inflammation, antioxidant mechanisms, and food intake after MCAO, and suggest that the use of PPARbeta agonists may be of interest for the prevention of central ischemic damage. Topics: Animals; Brain Ischemia; Cerebral Infarction; Disease Models, Animal; Gene Expression Profiling; Glutathione; Hyperphagia; Infarction, Middle Cerebral Artery; Interferon-gamma; Ion Channels; Lipid Peroxidation; Male; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondrial Proteins; Nerve Growth Factor; Neuropeptide Y; PPAR-beta; RNA, Messenger; Superoxide Dismutase; Uncoupling Protein 2 | 2006 |
Possible role of CRF peptides in burn-induced hypermetabolism.
Hypermetabolism and anorexia are significant problems associated with major burn trauma. Recent studies have shown that hypothalamic corticotropin releasing factor (CRF) elevates metabolic rate, while neuropeptide Y (NPY) reduces it. CRF also elicits anorexia, while NPY stimulates feeding. We hypothesized that elevation of CRF and decrease of NPY may be mediators of these negative effects of burn trauma. Therefore, we assessed concentrations of CRF and NPY in hypothalamus of burned rats one, three, and twenty-one days after a 30% body surface area, full-thickness, open flame burn. In addition we determined whether a biochemical lesion of CRF receptors using 3rd ventricle injections of a saporin-CRF conjugated peptide would decrease resting energy expenditure (REE). We found a three-day period of anorexia, with REE significantly increasing three days after the burn trauma. Concentrations of NPY were increased in the PVN-containing dorsomedial region of the hypothalamus 1 and 3 days after burn trauma, but were increased further in the day 1 pair-fed rats suggesting this change was a consequence of the anorexia. Levels of CRF were decreased in the ventromedial region of the hypothalamus in day 1 and day 3 burned and PF rats. Treatment with the saporin-CRF conjugate normalized REE and reduced CRF receptor-2 density in the hypothalamus of burned rats, and blocked CRF-induced hypermetabolism in sham-burned rats. Although these results suggest a role of CRF receptors in mediating burn-induced hypermetabolism, CRF itself may not be the principle ligand, as suggested by the significant elevation of hypothalamic urocortin 15 days after burn injury. Topics: Animals; Anorexia; Burns; Corticotropin-Releasing Hormone; Disease Models, Animal; Energy Metabolism; Hypothalamus; Immunotoxins; Male; N-Glycosyl Hydrolases; Neuropeptide Y; Plant Proteins; Rats; Rats, Sprague-Dawley; Ribosome Inactivating Proteins, Type 1; Saporins | 2006 |
Enhanced Y1-receptor-mediated vasoconstrictive action of neuropeptide Y (NPY) in superior mesenteric arteries in portal hypertension.
Vascular hyporeactivity to catecholamines contributes to arterial vasodilation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY) is a sympathetic neurotransmitter facilitating adrenergic vasoconstriction via Y1-receptors on the vascular smooth muscle. Therefore, we investigated its role for vascular reactivity in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham operated rats.. In vitro perfused SMA vascular beds of rats were tested for the cumulative dose-response to NPY dependent on the presence and level of alpha1-adrenergic vascular tone (methoxamine MT: 0.3-10 microM). Moreover, the effect of NPY (50 nM) on vascular responsiveness to alpha1-adrenergic stimulation (MT: 0.3-300 microM) was evaluated. Y1-receptor function was tested by Y1-selective inhibition using BIBP-3226 (1 microM).. NPY dose-dependently and endothelium-independently enhanced MT-pre-constriction in SMA. This potentiation was increasingly effective with increasing adrenergic pre-stimulation and being more pronounced in PVL rats as compared to sham rats at high MT concentrations. NPY enhanced vascular contractility only in PVL rats correcting the adrenergic vascular hyporeactivity. Y1-receptor inhibition completely abolished NPY-evoked vasoconstrictive effects.. NPY endothelium-independently potentiates adrenergic vasoconstriction via Y1-receptors being more pronounced in portal hypertension improving mesenteric vascular contractility and thereby correcting the splanchnic vascular hyporeactivity. This makes NPY a superior vasoconstrictor counterbalancing arterial vasodilation in portal hypertension. Topics: Adrenergic alpha-Agonists; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Portal; In Vitro Techniques; Male; Mesenteric Artery, Superior; Muscle, Smooth, Vascular; Neuropeptide Y; Norepinephrine; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Vasoconstriction | 2006 |
Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy.
The links among the extent of hippocampal neurodegeneration, the frequency of spontaneous recurrent motor seizures (SRMS), and the degree of aberrant mossy fiber sprouting (MFS) in temporal lobe epilepsy (TLE) are a subject of contention because of variable findings in different animal models and human studies. To understand these issues further, we quantified these parameters at 3-5 months after graded injections of low doses of kainic acid (KA) in adult F344 rats. KA was administered every 1 hr for 4 hr, for a cumulative dose of 10.5 mg/kg bw, to induce continuous stages III-V motor seizures for >3 hr. At 4 days post-KA, the majority of rats (77%) exhibited moderate bilateral neurodegeneration in different regions of the hippocampus; however, 23% of rats exhibited massive neurodegeneration in all hippocampal regions. All KA-treated rats displayed robust SRMS at 3 months post-KA, and the severity of SRMS increased over time. Analyses of surviving neurons at 5 months post-KA revealed two subgroups of rats, one with moderate hippocampal injury (HI; 55% of rats) and another with widespread HI (45%). Rats with widespread HI exhibited greater loss of CA3 pyramidal neurons and robust aberrant MFS than rats with moderate HI. However, the frequency of SRMS (approximately 3/hr) was comparable between rats with moderate and widespread HI. Thus, in comparison with TLE model using Sprague-Dawley rats (Hellier et al. [1998] Epilepsy Res. 31:73-84), a much lower cumulative dose of KA leads to robust chronic epilepsy in F344 rats. Furthermore, the occurrence of SRMS in this model is always associated with considerable bilateral hippocampal neurodegeneration and aberrant MFS. However, more extensive hippocampal CA3 cell loss and aberrant MFS do not appear to increase the frequency of SRMS. Because most of the features are consistent with mesial TLE in humans, the F344 model appears ideal for testing the efficacy of potential treatment strategies for mesial TLE. Topics: Animals; Behavior, Animal; Cell Death; Disease Models, Animal; Electroencephalography; Epilepsy, Temporal Lobe; Fluoresceins; Forelimb; Functional Laterality; Hippocampus; Immunohistochemistry; In Situ Nick-End Labeling; Kainic Acid; Male; Mossy Fibers, Hippocampal; Neuropeptide Y; Organic Chemicals; Phosphopyruvate Hydratase; Rats; Rats, Inbred F344; Seizures; Silver Staining; Time Factors | 2006 |
Changes in neuropeptide FF and NPY immunohistochemical patterns in rat brain under heroin treatment.
Immunohistochemical distribution patterns of neuropeptide FF (NPFF) and neuropeptide tyrosine (NPY) were studied in the brain of rats submitted to two different protocols of heroin treatment. In drug-naive rats, acutely injected heroin significantly depleted NPFF-immunoreactive material within the neurons of the nucleus of solitary tract (NTS), significantly decreased the density of NPFF-immunoreactive nerve fibers within the median eminence, pituitary stalk, and neurohypophysis, and markedly increased NPY-immunoreactive neurons and nerve fibers in the thalamic paraventricular nucleus and bed nucleus of stria terminalis. In drug-sensitized rats, heroin significantly increased the number and immunostaining intensity of the NPFF-immunoreactive neurons within the NTS and induced minor changes in the NPFF-immunoreactive nerve fiber network of the median eminence, pituitary stalk, and neurohypophysis and a relatively minor increase in NPY neurons in the thalamic paraventricular nucleus and bed nucleus of stria terminalis. These heroin-induced changes suggest that NPFF is involved in regulating the effects of the heroin injection and in the mechanisms underlying behavioral sensitization. They also add further support to the key role of NPY in any conditions tending to change the animal homeostasis. Topics: Animals; Brain; Brain Chemistry; Disease Models, Animal; Heroin; Heroin Dependence; Hypothalamo-Hypophyseal System; Immunohistochemistry; Male; Midline Thalamic Nuclei; Narcotics; Neuropeptide Y; Oligopeptides; Pituitary Gland; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Septal Nuclei; Solitary Nucleus | 2006 |
Neuropeptide Y Y1 receptors mediate morphine-induced reductions of natural killer cell activity.
Morphine suppresses a number of immune parameters, such as natural killer (NK) cell activity and lymphocyte proliferation, by acting through mu-opioid receptors in the central nervous system. Prior studies have implicated the sympathetic nervous system in mediating the immunomodulatory effects of acute morphine treatment. However, the peripheral mechanism whereby morphine inhibits NK cell activity is not fully understood. The aim of the present study was to investigate the role of the sympathetic transmitter neuropeptide Y (NPY) in mediating morphine-induced immune alterations. The results showed that administration of the selective NPY Y1 receptor antagonist BIBP3226 blocked morphine's effect on splenic NK activity but did not attenuate the suppression splenocyte proliferative responses to Con-A or LPS. Furthermore, intravenous NPY administration produced a dose-dependent inhibition of splenic NK activity but did not suppress lymphocyte proliferation. Recent studies from our laboratory have demonstrated that morphine modulates NK activity through a central mechanism that requires the activation of dopamine D1 receptors in the nucleus accumbens. Results from the present study showed that microinjection of the D1 receptor agonist SKF-38393 into the nucleus accumbens shell induced a suppression of NK activity that was reversed by BIBP3226. Collectively, these findings demonstrate that NPY Y1 receptors mediate morphine's suppressive effect on NK activity and further suggest that opioid-induced increases in nucleus accumbens D1 receptor activation inhibit splenic NK activity via NPY released from the sympathetic nervous system. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Anti-Anxiety Agents; Arginine; Disease Models, Animal; Dopamine Agonists; Dose-Response Relationship, Drug; Down-Regulation; Drug Interactions; Immune Tolerance; Killer Cells, Natural; Male; Morphine; Morphine Dependence; Narcotics; Neuroimmunomodulation; Neuropeptide Y; Nucleus Accumbens; Rats; Rats, Inbred Lew; Receptors, Dopamine D1; Receptors, Neuropeptide Y; Spleen; Sympathetic Nervous System | 2006 |
Estrus variation in anxiolytic-like effects of intra-lateral septal infusions of the neuropeptide Y in Wistar rats in two animal models of anxiety-like behavior.
Anxiolytic-like effects of intra-lateral septal infusions of the neuropeptide Y (NPY) were assessed during several estrus phases in Wistar rats tested in two animal models of anxiety-like behavior. In a conflict operant test, results showed that during late proestrus, intra-lateral septal nuclei infusions of NPY (1.0 microg/microl, P<0.05; 2.0 microg/microl, P<0.05; 2.5 microg/microl, P<0.05) increased the number of immediately punished responses. During metestrus-diestrus only the highest doses of NPY (2.5 microg/microl, P<0.05) increased the number of immediately punished reinforcers. In the elevated plus-maze test, results showed that during late proestrus, intra-lateral septal nuclei infusions of NPY (1.0 microg/microl, P<0.05; 2.0 microg/microl, P<0.05) produced anxiolytic-like actions. During metestrus-diestrus only the highest doses of NPY (2.0 microg/microl, P<0.05) produced anxiolytic-like actions. Neither NPY nor estrus phases significantly modified the number of closed arms entries in the elevated plus-maze test. It is concluded that anxiolytic-like effects of NPY vary within the estrus cycle in Wistar rats. Topics: Animals; Anti-Anxiety Agents; Behavior, Animal; Brain; Disease Models, Animal; Estrus; Female; Humans; Maze Learning; Neuropeptide Y; Rats; Rats, Wistar; Septal Nuclei | 2006 |
Lack of neuropeptide Y attenuates the somatic signs of opiate withdrawal.
Recent evidence suggests that neuropeptide Y (NPY) may be involved in the neurobiological responses to drugs of abuse. This study was designed to assess the possible contribution of NPY to opiate withdrawal behaviors. Here we report that mice lacking the NPY gene show normal conditioned place aversion to opiate withdrawal, but show attenuated opiate withdrawal somatic signs. Topics: Animals; Avoidance Learning; Behavior, Animal; Brain; Brain Chemistry; Conditioning, Psychological; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Fear; Limbic System; Male; Mice; Mice, Knockout; Morphine; Motor Activity; Narcotic Antagonists; Narcotics; Neural Pathways; Neuropeptide Y; Opioid-Related Disorders; Substance Withdrawal Syndrome | 2006 |
Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer.
Electroconvulsive shock (ECS) is the most effective treatment for depression, but the mechanism underlying the therapeutic action of this treatment is still unknown. To better understand the molecular changes that may be necessary for the clinical effectiveness of ECS we have combined the technologies of gene expression profiling using cDNA microarrays with T7-based RNA amplification and laser microdissection to identify regulated genes in the dentate gyrus granule cell layer of the hippocampus. We have identified genes previously reported to be up-regulated following ECS, including brain-derived neurotrophic factor, neuropeptide Y, and thyrotrophin releasing hormone, as well as several novel genes. Notably, we have identified additional genes that are known to be involved in neuroprotection, such as growth arrest DNA damage inducible beta (Gadd45beta), and the excitatory amino acid transporter-1 (EAAC1/Slc1A1). In addition, via in situ hybridization we show that EAAC1 is specifically up-regulated in the dentate gyrus, but not in other hippocampal subfields. This study demonstrates the utility of microarray analysis of microdissected subregions of limbic brain regions and identifies novel ECS-regulated genes. Topics: Animals; Antigens, Differentiation; Brain-Derived Neurotrophic Factor; Dentate Gyrus; Depressive Disorder; Disease Models, Animal; Electroshock; Excitatory Amino Acid Transporter 3; Gene Expression; Gene Expression Profiling; Glutamic Acid; Male; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Rats; Rats, Sprague-Dawley; RNA, Messenger; Thyrotropin-Releasing Hormone | 2006 |
Effects of topiramate on the chronic constriction injury model in the rat.
We studied the effects of topiramate at a relatively low dose of 20 mg/kg/d in rats that underwent chronic constriction injury (CCI) to the sciatic nerve. Fourteen rats underwent CCI and were then divided into two groups: one treated with topiramate and the other with an equal volume of saline. A further group of six rats was sham operated and treated with topiramate. Rats were examined over a period of 13 days for the presence of mechanoallodynia (von Frey hairs) and mechanohyperalgesia (pinprick test) and then euthanized and the degree of nerve injury was assessed by measuring the expression of neuropeptide Y (NPY) in dorsal root ganglia with enzyme-linked immunosorbent assay. Topiramate, at a lower dose than previously reported, significantly delayed the onset of allodynia and both delayed and attenuated the peak hyperalgesia observed. NPY levels were not significantly different between the operated groups.. Topiramate is employed in various pain conditions and this study suggests that lower doses may be effective in neuropathic pain. Clinically this may mean reduced side effects. Additionally the potential of topiramate as a neuroprotectant is studied and, although the results were negative, this area needs further research. Topics: Analysis of Variance; Animals; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Fructose; Ganglia, Spinal; Male; Neuropeptide Y; Neuroprotective Agents; Pain Measurement; Rats; Rats, Sprague-Dawley; Reaction Time; Sciatic Neuropathy; Time Factors; Topiramate | 2006 |
Effect of short-term cigarette smoke exposure on body weight, appetite and brain neuropeptide Y in mice.
Although nicotinic receptors have been demonstrated in hypothalamic appetite-regulating areas and nicotine administration alters food intake and body weight in both animals and humans, the mechanisms underlying the effects of smoking on appetite circuits remain unclear. Conflicting effects of nicotine on the major orexigenic peptide, neuropeptide Y (NPY), have been observed in the brain, but the effects of smoking are unknown. Thus, we aimed to investigate how cigarette smoking affects body weight, food intake, plasma leptin concentration, hypothalamic NPY peptide, adipose mass and mRNA expression of uncoupling proteins (UCP), and tumor necrosis factor (TNF) alpha. Balb/C mice (8 weeks) were exposed to cigarette smoke (three cigarettes, three times a day for 4 consecutive days) or sham exposed. Body weight and food intake were recorded. Plasma leptin and brain NPY were measured by radioimmunoassay. UCPs and TNF alpha mRNA were measured by real-time PCR. Food intake dropped significantly from the first day of smoking, and weight loss became evident within 2 days. Brown fat and retroperitoneal white fat masses were significantly reduced, and plasma leptin concentration was decreased by 34%, in line with the decreased fat mass. NPY concentrations in hypothalamic subregions were similar between two groups. UCP1 mRNA was decreased in white fat and UCP3 mRNA increased in brown fat in smoking group. Short-term cigarette smoke exposure led to reduced body weight, food intake, and fat mass. The reduction in plasma leptin concentration may have been too modest to increase NPY production; alternatively, change in NPY or its function might have been offset by nicotine or other elements in cigarette smoke. Topics: Adipose Tissue; Animals; Appetite Regulation; Body Weight; Brain; Carrier Proteins; Disease Models, Animal; Down-Regulation; Drug Administration Schedule; Energy Metabolism; Hypothalamus; Ion Channels; Leptin; Male; Membrane Proteins; Mice; Mice, Inbred BALB C; Mitochondrial Proteins; Neuropeptide Y; Nicotine; RNA, Messenger; Smoking; Time Factors; Tobacco Use Disorder; Tumor Necrosis Factor-alpha; Uncoupling Protein 1; Uncoupling Protein 3 | 2005 |
Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat.
The anti-obesity effects of crude saponin (CS) of Korean red ginseng (KRG) were investigated in the rat fed a high-fat (HF) diet. Male Sprague-Dawley (SD) rats became obese by feeding the HF diet over 5 weeks, while the control rats were fed a normal diet, and then both groups were treated with CS (200 mg/kg, i.p.) for 3 weeks. The body weight, food consumption, adipose tissues, and expression of appetite peptides such as leptin and neuropeptide Y (NPY) were investigated in rats fed normal and HF diet after treatment of CS. Administration of CS reduced body weight, food intake, and fat content in HF diet rats in a manner similar to those of the normal diet fed rats. The hypothalamic NPY expression and serum leptin level were reduced in HF diet rats after CS treatment. Our results suggest that CS may be useful in the treatment of obesity and related disorders as anti-obesity agents. Topics: Adipose Tissue; Animals; Body Weight; Dietary Fats; Disease Models, Animal; Drug Administration Schedule; Eating; Gene Expression; Hypothalamus; Injections, Intraperitoneal; Korea; Leptin; Male; Neuropeptide Y; Obesity; Panax; Plants, Medicinal; Rats; Rats, Sprague-Dawley; Saponins; Time Factors | 2005 |
Suppression of ethanol self-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: evidence for sensitization in rats with a history of dependence.
Evidence from genetically modified mice suggests a role for NPY in regulation of ethanol intake, but results of pharmacological studies have been more variable. We have previously shown that potentiation of NPY signaling through antagonism at NPY-Y2 receptors decreases operant responding for ethanol in Wistar rats without a history of dependence. Here, we examined the effects of Y2-antagonism in animals with a history of dependence induced by long-term intermittent exposure to ethanol vapor. The Y2-receptor antagonist BIIE0246 suppressed operant responding for ethanol (approximately 50%, p=0.01), at a dose (0.5 nmol i.c.v.) which was ineffective in subjects without a history of dependence. Responding for the ethanol-free control solution was unaffected. These data confirm that antagonism at central NPY-Y2 receptors selectively suppresses motivation to self-administer ethanol, and indicate that the NPY system is sensitized in animals with a history of dependence. This may render the NPY system, and Y2 receptors in particular, an attractive target for treatment of alcohol dependence. Topics: Alcoholism; Animals; Arginine; Benzazepines; Brain; Brain Chemistry; Disease Models, Animal; Ethanol; Male; Neuropeptide Y; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Self Administration | 2005 |
Neuropeptide Y suppresses absence seizures in a genetic rat model.
Evidence from studies in rodents and humans support an anti-seizure action of neuropeptide Y (NPY) in focal, acquired epilepsy. However, the effects of NPY in generalized genetic epilepsy remain unexplored. In this study, adult male Genetic Absence Epilepsy Rats of Strasbourg (GAERS) were implanted with extradural electrodes and an intracerebroventricular (icv) cannula. Six and 12 nmol NPY or vehicle was administered icv in a random order (n=6), and the effect of NPY on seizure activity quantitated from a 90-min EEG recording. A rapid onset and sustained seizure suppression was observed following NPY treatment compared to vehicle, with both 6 and 12 nmol NPY having a significantly decreased mean percentage time in seizure (5.7 +/- 1.4% and 5.0 +/- 1.7% vs. 15.8 +/- 3.4%) and mean number of seizures per minute (0.5 +/- 0.1 and 0.4 +/- 0.1 vs. 1.1 +/- 0.1). There was no significant difference between the degree of seizure suppression after 6 and 12 nmol NPY. The results of this study demonstrate that NPY suppresses absence seizures in GAERS. This suggests that NPY modulates pathological oscillatory thalamocortical activity and may represent a new therapeutic approach for the treatment of generalized epilepsies. Topics: Action Potentials; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Epilepsy, Absence; Male; Neuropeptide Y; Rats | 2005 |
Neuropeptide expression in rats exposed to chronic mild stresses.
To investigate a possible link between some neuropeptides and depression, we analyzed their mRNA levels in brains of rats exposed to chronic mild stresses (CMS; a stress-induced anhedonia model), a commonly used model of depression. Rats exposed for 3 weeks to repeated, unpredictable, mild stressors exhibited an increased self-stimulation threshold, reflecting the development of an anhedonic state, which is regarded as an animal model of major depression. In situ hybridization was employed to monitor mRNA levels of neuropeptide Y (NPY), substance P and galanin in several brain regions. In the CMS rats, NPY mRNA expression levels were significantly decreased in the hippocampal dentate gyrus but increased in the arcuate nucleus. The substance P mRNA levels were increased in the anterodorsal part of the medial amygdaloid nucleus, in the ventromedial and dorsomedial hypothalamic nuclei and the lateral hypothalamic area, whereas galanin mRNA levels were decreased in the latter two regions. These findings suggest a possible involvement of these three peptides in mechanisms underlying depressive disorders and show that similar peptide changes previously demonstrated in genetic rat models also occur in the present stress-induced anhedonia model. Topics: Amygdala; Animals; Arcuate Nucleus of Hypothalamus; Brain; Brain Mapping; Chronic Disease; Dentate Gyrus; Depressive Disorder, Major; Disease Models, Animal; Galanin; Gene Expression Regulation; Hypothalamus; Male; Neuropeptide Y; Neuropeptides; Rats; Rats, Wistar; RNA, Messenger; Self Stimulation; Stress, Psychological; Substance P | 2005 |
Effects of altered amygdalar neuropeptide Y expression on anxiety-related behaviors.
Neuropeptide Y (NPY) decreases anxiety-related behaviors in various animal models of anxiety. The purpose of the present study was to examine the role of the amygdalar NPY system in anxiety-related responses in the elevated plus maze. The first experiment determined if herpes virus-mediated alterations in amygdalar NPY levels would alter anxiety-related behaviors in the elevated plus maze. Viral vectors encoding NPY, NPY antisense, or LacZ (control virus) were bilaterally injected into the amygdala, and 4 days postinjection, rats were tested in the elevated plus maze test. NPY-like immunoreactivity (NPY-ir) was measured in the amygdala of these rats. In rats injected with the viral vector encoding NPY, reduced anxiety-related behaviors in the elevated plus maze accompanied by moderate increases in NPY-ir were detected compared to NPY-antisense viral vector-treated subjects. Elevated plus maze behavior did not differ compared to LacZ-treated controls. NPY overexpression at this time point was also suggested by enhanced NPY mRNA expression seen in the amygdala 4 days postinjection using real-time polymerase chain reaction analysis. Experiment 2 was conducted to provide further evidence for a role of amygdalar NPY in regulating anxiety-related behaviors in the elevated plus maze test. The nonpeptide NPY Y1 receptor antagonist, BIBP 3226 (1.5 microg/microl), was bilaterally injected into the amygdala and rats were tested in the elevated plus maze test. Rats receiving BIBP 3226 exhibited increased anxiety-related behaviors in this test. The results of these experiments provide further support for the role of amygdalar NPY in anxiety-related behaviors. Topics: Amygdala; Animals; Anti-Anxiety Agents; Anxiety; Arginine; Behavior, Animal; Disease Models, Animal; DNA, Antisense; Gene Expression Regulation; Genetic Vectors; Immunohistochemistry; Male; Maze Learning; Neuropeptide Y; Rats; Rats, Long-Evans; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors | 2005 |
Up-regulation of neuropeptide Y levels and modulation of glutamate release through neuropeptide Y receptors in the hippocampus of kainate-induced epileptic rats.
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability. Topics: Animals; Disease Models, Animal; Drug Interactions; Epilepsy; Glutamic Acid; Hippocampus; Kainic Acid; Male; Neuropeptide Y; Peptide Fragments; Potassium Chloride; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Up-Regulation | 2005 |
Patterns of dentate granule cell responses to perforant path stimulation in epileptic mice with granule cell dispersion.
In adult mice, intrahippocampal administration of kainic acid induces a structural modification of the granule cell layer reminiscent of granule cell dispersion (GCD) seen in humans with temporal lobe epilepsy. We tested that GCD might be involved in the patterns of granule cell responses to perforant path stimulation by recording field potentials in vivo after kainic acid-induced status epilepticus until the phase of chronic seizure activity in presence of GCD or after its alteration by K252a co-treatment, an inhibitor of tyrosine kinase activities. Stimulation triggered bursts of multiple population spikes, the number of which progressively increased with time whereas their amplitude decreased in parallel with the progressive decrease in granule cell density. The population spike threshold was reached for a lower excitatory synaptic drive than in controls, as assessed by the initial slope of the field excitatory post-synaptic potential. This indicates that, for identical synaptic responses, granule cells were closer to the firing threshold. Fast inhibition, assessed by paired pulse stimulation, was compromised immediately after the initial status epilepticus, consistent with the rapid loss of most hilar cells. Neither the epileptic course nor the epileptiform responses of the granule cells were modified and manipulation by alteration following GCD manipulation while granule cell neuropeptide-Y immunostaining was substantially decreased. In this mouse model of TLE, granule cells display a progressive increase in epileptiform responses to afferent input until the occurrence of spontaneous seizures. The population spike amplitude decreases in parallel with GCD while the granule cell excitability is enhanced. Consequently, data from field potentials in epilepsy experiments should be interpreted with care, taking into account the possible variations in the neuronal density in the recorded area. Topics: Action Potentials; Animals; Behavior, Animal; Carbazoles; Cell Count; Disease Models, Animal; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Enzyme Inhibitors; Epilepsy; Hippocampus; Immunohistochemistry; Indole Alkaloids; Kainic Acid; Mice; Neurons; Neuropeptide Y; Perforant Pathway; Staining and Labeling; Time Factors | 2005 |
Endogenous neuropeptide Y prevents recurrence of experimental febrile seizures by increasing seizure threshold.
Febrile seizures (FSs) typically occur at the onset of fever and do not recur within the same febrile episode despite enduring or increased hyperthermia. Recurrent seizures during the same febrile episode are considered "complex," with potentially altered prognosis. A characterized immature rat model of FS was used to test the hypotheses that (1) a first FS influences the threshold temperature for subsequent ones, and (2) the underlying mechanisms involve the release and actions of the endogenous inhibitory hippocampal neuropeptide Y (NPY). Experimental FSs were induced two or three times, at 3- to 4-h intervals, and threshold temperatures measured. To determine the potential effects of seizure-induced endogenous NPY on thresholds for subsequent seizures, an antagonist of the major hippocampal NPY receptor (type 2) was infused prior to induction of the second seizure. As an indicator of NPY release, NPY expression was determined 4 and 24 h later. Threshold core and brain temperatures for hyperthermic seizures were consistent with those observed during human fever. Threshold temperatures for a second and third seizure were significantly and progressively higher than those required for the first. This "protective" effect involved induction of endogenous NPY because it was abolished by the NPY antagonist. In addition, NPY mRNA expression was increased in dentate gyrus, CA3 and CA1, after an experimental FS, consistent with peptide release. Collectively these data indicate that the absence of repetitive seizures during a febrile episode involves the inhibitory actions of endogenous NPY, suggesting that the signaling cascade triggered by this peptide might provide targets for therapeutic intervention. Topics: Age Factors; Animals; Body Temperature; Disease Models, Animal; Fever; Hippocampus; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Recurrence; Seizures, Febrile | 2005 |
[The study on mechanism of appetite regulation in diet-induced obesity resistant rats].
To explore the cause of decreasing intake food of diet-induced obesity resistant (DIO-R) rats.. Fifty male Sprague-dawley (SD) rats were randomly divided into control group and high-fat group and they were fed with basic diet and high-fat diet respectively for 13 weeks. DIO-R and diet-induced obesity (DIO) rats were selected according to their body weight and the quantity of energy intake, then observing the changes of the total food intake, the level of serum leptin and plasma NPY were determined by radioimmunoassay and the contents of the melanocortin receptor-4 (MCR-4) in brain were determined by Western Blot.. The total food intake of DIO-R rats was (1 679.1 +/- 146.8) g. The total food intake of DIO rats was (1 818.4 +/- 148.9) g. The total food intake of DIO-R rats was lower than that of DIO rats (P < 0.05). The level of plasma NPY of DIO-R rats was (795.24 +/- 83.59) ng/L. The level of plasma NPY of DIO rats was (1 007.14 +/- 172.83) ng/L. The level of plasma NPY of DIO-R rats was lower than that of the DIO rats (P < 0.05). The levels of serum leptin of basic, DIO-R and DIO rats was (4.80 +/- 0.75) microg/L, (9.17 +/- 1.19) microg/L and (9.32 +/- 1.04) microg/L. The level of serum leptin of rats in high-fat diet group was increased as compared with the rats in basic diet group, but there was no significant difference between DIO-R and DIO rats (P > 0.05). The levels of brain MCR-4 of basic, DIO-R and DIO rats were (342 +/- 31) mm2, (455 +/- 33) mm2, (355 +/- 30) mm2. High fat diets increased the content of brain MCR-4 in DIO-R rats.. DIO-R rats decreased appetite by increasing expression of ob gene to reduce activity of NPY pathway and activate the MCR-4 pathway, and thus inhibit the increase body of weight. Topics: Animals; Appetite; Blotting, Western; Body Weight; Brain; Dietary Fats; Disease Models, Animal; Energy Intake; Leptin; Male; Neuropeptide Y; Obesity; Radioimmunoassay; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4 | 2005 |
Interaction between neuropeptide Y and alpha-melanocyte stimulating hormone in amygdala regulates anxiety in rats.
Neuropeptide Y (NPY) and alpha-melanocyte stimulating hormone (alpha-MSH) have been implicated in pathophysiology of feeding and certain mood disorders, including anxiety and depression. Both the peptides are abundantly present in CNS, especially in the hypothalamus and amygdala. Although they are known to exert opposite effects, particularly with reference to anxiety, the underlying mechanisms are not known. We were interested in studying the interaction between these two peptides in the regulation of anxiety, within the framework of amygdala. We administered agents like NPY, alpha-MSH, selective melanocortin-4 receptor (MC4-R) antagonist HS014 and NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY, alone and in combinations, unilaterally in right amygdala of rats and measured the response using elevated plus maze test. While NPY and [Leu(31), Pro(34)]-NPY increased the time spent and number of entries in the open arms suggesting anxiolytic-like effects, alpha-MSH resulted in opposite responses. Anxiolytic-like effect of NPY (10 nM) or [Leu(31), Pro(34)]-NPY (5 nM) was significantly reduced following prior alpha-MSH (250 ng) administration. Co-administration of HS014 (1 nM) and NPY (5 nM) or [Leu(31), Pro(34)]-NPY (1 nM) at subeffective doses evoked synergistic anxiolysis. Since the closed arm entries displayed by animals of all the groups were in a similar range, the effects might not be ascribed to the changes in general locomotor activity. These results suggest that endogenous alpha-MSH and NPY containing systems may interact in the amygdala and regulate exploratory behavior in an animal model of anxiety. Topics: alpha-MSH; Amygdala; Animals; Anxiety; Disease Models, Animal; Drug Interactions; Exploratory Behavior; Male; Maze Learning; Neuropeptide Y; Peptides, Cyclic; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 4 | 2005 |
Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus.
Major aspects of temporal lobe epilepsy (TLE) can be reproduced in mice following a unilateral injection of kainic acid into the dorsal hippocampus. This treatment induces a non-convulsive status epilepticus and acute lesion of CA1, CA3c and hilar neurons, followed by a latent phase with ongoing ipsilateral neuronal degeneration. Spontaneous focal seizures mark the onset of the chronic phase. In striking contrast, the ventral hippocampus and the contralateral side remain structurally unaffected and seizure-free. In this study, functional and neurochemical alterations of the contralateral side were studied to find candidate mechanisms underlying the lack of a mirror focus in this model of TLE. A quantitative analysis of simultaneous, bilateral EEG recordings revealed a significant decrease of theta oscillations ipsilaterally during the latent phase and bilaterally during the chronic phase. Furthermore, the synchronization of bilateral activity, which is very high in control, was strongly reduced already during the latent phase and the decrease was independent of recurrent seizures. Immunohistochemical analysis performed in the contralateral hippocampus of kainate-treated mice revealed reduced calbindin-labeling of CA1 pyramidal cells; down-regulation of CCK-8 and up-regulation of NPY-labeling in mossy fibers; and a redistribution of galanin immunoreactivity. These changes collectively might limit neuronal excitability in CA1 and dentate gyrus, as well as glutamate release from mossy fiber terminals. Although these functional and neurochemical alterations might not be causally related, they likely reflect long-ranging network alterations underlying the independent evolution of the two hippocampal formations during the development of an epileptic focus in this model of TLE. Topics: Action Potentials; Animals; Brain Chemistry; Calbindins; Chronic Disease; Disease Models, Animal; Down-Regulation; Electroencephalography; Epilepsy; Epilepsy, Temporal Lobe; Functional Laterality; Galanin; Hippocampus; Kainic Acid; Mice; Mossy Fibers, Hippocampal; Nerve Degeneration; Neural Pathways; Neuropeptide Y; Neurotoxins; Pyramidal Cells; S100 Calcium Binding Protein G; Sincalide; Status Epilepticus; Theta Rhythm; Up-Regulation | 2005 |
Hepatic vagotomy alters limbic and hypothalamic neuropeptide responses to insulin-dependent diabetes and voluntary lard ingestion.
Hypothalamic anorexigenic [corticotropin-releasing factor (CRF) and proopiomelanocortin] peptides decrease and the orexigen, neuropeptide Y, increases with diabetic hyperphagia. However, when diabetic rats are allowed to eat lard (saturated fat) as well as chow, both caloric intake and hypothalamic peptides normalize. These neuropeptide responses to lard require an intact hepatic vagus [la Fleur et al. (2003) Diabetes, 52, 2321-2330]. Here, we delineate temporal interactions after lard consumption +/- hepatic vagotomy (HV) between feeding and brain neuropeptide expression in insulin-dependent diabetic rats. CRF-mRNA was reduced in the paraventricular nuclei (PVN) by 6 h after presentation of lard, before caloric intake increased in HV-diabetic rats, and did not increase at 30 or 36 h, as it did in shamHV-diabetic rats eating lard. CRF-mRNA was increased in the bed nuclei of the stria terminalis of HV-diabetic rats compared with shamHV-diabetic rats only when caloric intake was high at 30 or 36 h. At 36 h, shamHV-diabetic rats eating chow had increased CRF-mRNA in the central amygdala but diabetic rats eating lard had decreased CRF-mRNA, whereas HV-diabetic rats eating chow or lard had normal CRF-mRNA in the central amygdala. We conclude that eating lard restores peptide expression to normal in the hypothalamus of diabetic rats, and because decreased CRF-mRNA in the PVN precedes the increase in caloric intake in HV-diabetic rats eating lard, that the loss of a hepatic vagal signal to PVN may be responsible for increased intake; moreover, CRF-mRNA in limbic structures is also sensitive to both HV and lard ingestion in diabetic rats. Topics: Animals; Body Weight; Diabetes Mellitus, Experimental; Dietary Fats; Disease Models, Animal; Energy Intake; Hypothalamus; In Situ Hybridization; Insulin; Limbic System; Liver; Male; Neuropeptide Y; Neuropeptides; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Vagotomy | 2005 |
Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats.
The changes in concentrations of neuropeptide Y (NPY), norepinephrine and epinephrine were investigated in the rat hearts 1, 2, 4, 6, 9 and 12 months after administration of streptozotocin (STZ; 65 mg/kg i.v.). About 30% of diabetic animals displayed symptoms of partial spontaneous recovery, i.e. decreasing blood glucose levels and increasing insulin concentrations in the plasma and pancreas. NPY concentrations in the atria of diabetic rats did not differ from those in age-matched control rats 1, 2, 4, 6 months in the right atria and even 9 months after STZ in the left atria. However, uncompensated diabetes led to a significant decrease in NPY levels 9 and 12 months after STZ administration in the right and left atria, respectively. In the ventricles, NPY concentrations were significantly decreased 6 months after the onset of diabetes. Interestingly, partial spontaneous recovery of diabetes was associated with increased NPY levels in the atria. Myocardial norepinephrine concentrations increased 1 month after STZ and then declined reaching approximately 60% of the respective control values 12 months after the onset of the disease. Partial spontaneous recovery of diabetes had no effect on norepinephrine concentrations. Myocardial epinephrine concentrations did not differ from those found in controls till month 9 of the disease and they became significantly lower at month 12. Partial recovery of diabetes resulted in epinephrine concentrations not differing from the control values at month 12 of diabetes. Regarding to preferential localization of norepinephrine in the sympathetic postganglionic fibers and that of NPY also in intrinsic ganglion neurons, intrinsic neuronal circuits seem to be less susceptible to STZ-induced damage than extrinsic nerves and they might be able to recover after amelioration of diabetes. Topics: Age Factors; Analysis of Variance; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Epinephrine; Female; Glucose Tolerance Test; Heart Atria; Immunohistochemistry; Insulin; Neuropeptide Y; Norethandrolone; Pancreas; Radioimmunoassay; Rats; Rats, Wistar; Streptozocin; Time Factors | 2005 |
Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors.
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo. Topics: Animals; Cells, Cultured; Convulsants; Cyclohexanes; Disease Models, Animal; Epilepsy; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Female; Gene Expression Regulation; Genetic Predisposition to Disease; Hippocampus; Kainic Acid; Male; Mice; Mice, Inbred BALB C; Mice, Knockout; Neurons; Neuropeptide Y; Organ Culture Techniques; Receptors, Neuropeptide Y; Synaptic Transmission; Xanthenes | 2005 |
Distinct forebrain and caudal brainstem contributions to the neuropeptide Y mediation of ghrelin hyperphagia.
Neuropeptide Y (NPY) has been implicated in the downstream mediation of ghrelin hyperphagia, with the site of action for both peptides considered to be intrinsic to the hypothalamus. Here, however, we observed robust hyperphagia with caudal brainstem (CBS) (fourth intracerebroventricular) ghrelin delivery and, moreover, that this response was reversed with coadministration of either of two NPY receptor antagonists (1229U91 and D-Tyr27,36, D-Thr32 NPY27-36) with contrasting NPY receptor subtype-binding properties. The same results were obtained after forebrain (third intracerebroventricular) administration, but the sites for both ghrelin and antagonist action were open to question, given the caudal flow of cerebrospinal fluid (CSF) through the ventricular system. To control for this, we occluded the cerebral aqueduct to restrict CSF flow between the forebrain and CBS ventricles and tested all combinations (same and cross ventricle) of ghrelin (150 pmol/1 microl) and NPY receptor antagonist delivery. With fourth intracerebroventricular ghrelin delivery after aqueduct occlusion, preadministration of either of the two antagonists through the same cannula reversed the hyperphagic response but neither was effective when delivered to the third ventricle. With third intracerebroventricular ghrelin administration, however, 1229U91 reversed the ingestive response only when delivered to the fourth ventricle, whereas D-Tyr27,36) D-Thr32 NPY27-36 was effective only when delivered to the forebrain. These results demonstrate distinct mediating pathways (due to location and subtypes of relevant NPY receptor) for the hyperphagic response driven separately by forebrain and CBS ghrelin administration. Topics: Animals; Brain Stem; Cerebral Ventricles; Disease Models, Animal; Ghrelin; Hyperphagia; Injections, Intraventricular; Male; Neuropeptide Y; Peptide Hormones; Peptides, Cyclic; Prosencephalon; Rats; Rats, Sprague-Dawley; Time Factors | 2005 |
Role of serotonin (5-HT) in the antidepressant-like properties of neuropeptide Y (NPY) in the mouse forced swim test.
Neuropeptide Y (NPY) is thought to be implicated in depressive disorders. The mouse forced swim test (FST) is an animal model widely used as a predictor of the efficacy of antidepressant drugs. The present study was undertaken to explore the possible contribution of endogenous serotonin (5-HT) systems in the behavioral effects elicited by NPY in this model. The selective serotonin re-uptake inhibitor (SSRI), fluoxetine, was also tested for comparison. 5-HT was depleted prior to testing by the administration of the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA; 300 mg/kg, i.p., each day for 3 days; control mice received saline-vehicle over the same period). On the fourth day, mice received NPY (3 nmol, I.C.V.), fluoxetine (16 mg/kg, i.p.) or saline injections before testing in the FST. Both NPY and fluoxetine significantly reduced immobility time in saline-treated control animals. Pre-treatment with PCPA significantly blocked the effects of fluoxetine in the FST, confirming the role of endogenous 5-HT. Similarly, pre-treatment with PCPA also significantly attenuated the anti-immobility effects of NPY, thus suggesting a role for 5-HT in the effects of NPY in the FST. Quantitative receptor autoradiography revealed increases in specific [125I][Leu31, Pro34]PYY sites that were sensitive to BIBP3226 (Y1-like sites) in various brain regions. Specific [125I]GR231118 and [125I]PYY(3-36) binding levels were not changed following PCPA treatment, suggesting that depletion of endogenous 5-HT resulted in an apparent increase in the level of Y1 sites in their high-affinity state. Taken together, these results suggest a role for 5-HT-related systems in the antidepressant-like properties of NPY. Topics: Animals; Antidepressive Agents; Disease Models, Animal; Fenclonine; Fluoxetine; Male; Mice; Motor Activity; Neuropeptide Y; Selective Serotonin Reuptake Inhibitors; Serotonin; Swimming | 2005 |
Reduced number of CRF-containing neurons in the central amygdala correlated with enhanced locomotor activity following early postnatal corticosterone treatment in the Wistar rat.
In the present study, newborn rats were implanted with corticosterone (CORT) containing polymers at postnatal day 0 (releasing rate 320-80 microg CORT/kg body weight and day). Controls received a CORT-free implant. All implants were removed at postnatal day 12. At the age of 16-20 weeks, these animals were tested for emotional behavior using an elevated plus-maze and fear-sensitized acoustic startle response. On the elevated plus-maze significant differences were found between hormone treated and control animals. The CORT-group demonstrated higher numbers of entries into closed arms and all arms, and the time spent in the center of the maze was significantly enhanced. Hormone-treated and control rats showed a significant fear sensitization of the acoustic startle response. However, no significant differences were observed between the two groups. The number of CRF-immunopositive neurons in the central nucleus of the amygdala was decreased after CORT treatment, whereas the number of NPY-immunopositive neurons and total number of neurons in the amygdala did not differ significantly between both groups. In conclusion, early postnatal stress induced by CORT administration in neonatal rats led to a higher locomotor activity correlated with changes in the number of CRF containing neurons in the central nucleus of the amygdala. Topics: Amygdala; Analysis of Variance; Animals; Animals, Newborn; Anxiety; Corticosterone; Corticotropin-Releasing Hormone; Disease Models, Animal; Exploratory Behavior; Female; Male; Motor Activity; Neurons; Neuropeptide Y; Random Allocation; Rats; Rats, Wistar; Reflex, Startle; Statistics, Nonparametric; Stress, Psychological; Tissue Distribution | 2005 |
Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs.
Reactivation of latent varicella zoster virus (VZV) within sensory trigeminal and dorsal root ganglia (DRG) neurons produces shingles (zoster), often accompanied by a chronic neuropathic pain state, post-herpetic neuralgia (PHN). PHN persists despite latency of the virus within human sensory ganglia and is often unresponsive to current analgesic or antiviral agents. To study the basis of varicella zoster-induced pain, we have utilised a recently developed model of chronic VZV infection in rodents. Immunohistochemical analysis of DRG following VZV infection showed the presence of a viral immediate early gene protein (IE62) co-expressed with markers of A- (neurofilament-200; NF-200) and C- (peripherin) afferent sensory neurons. There was increased expression of neuropeptide Y (NPY) in neurons co-expressing NF-200. In addition, there was an increased expression of alpha2delta1 calcium channel, Na(v)1.3 and Na(v)1.8 sodium channels, the neuropeptide galanin and the nerve injury marker, Activating Transcription Factor-3 (ATF-3) as determined by Western blotting in DRG of VZV-infected rats. VZV infection induced increased behavioral reflex responsiveness to both noxious thermal and mechanical stimuli ipsilateral to injection (lasting up to 10 weeks post-infection) that is mediated by spinal NMDA receptors. These changes were reversed by systemic administration of gabapentin or the sodium channel blockers, mexiletine and lamotrigine, but not by the non-steroidal anti-inflammatory agent, diclofenac. This is the first time that the profile of VZV infection-induced phenotypic changes in DRG has been shown in rodents and reveals that this profile appears to be broadly similar (but not identical) to changes in other neuropathic pain models. Topics: Amines; Animals; Anticonvulsants; Behavior, Animal; Cyclohexanecarboxylic Acids; Disease Models, Animal; Fluorescent Antibody Technique; Gabapentin; Galanin; gamma-Aminobutyric Acid; Ganglia, Spinal; Herpes Zoster; Herpesvirus 3, Human; Immediate-Early Proteins; Immunohistochemistry; Lamotrigine; Mexiletine; Neuralgia; Neuralgia, Postherpetic; Neurons, Afferent; Neuropeptide Y; Rats; Receptors, N-Methyl-D-Aspartate; Reflex; Sodium Channels; Trans-Activators; Triazines; Viral Envelope Proteins; Virus Latency | 2005 |
Expression changes of thrombospondin-1 and neuropeptide Y in myocardium of STZ-induced rats.
Diabetic cardiomyopathy was the most dangerous diabetic complication facing diabetics, with its exact mechanisms remaining obscure. Our study was conducted to investigate the expression of thrombospondin-1 (TSP-1) and neuropeptide Y (NPY) in myocardium of streptozotocin (STZ)-induced diabetic rats. We employed streptozotocin (STZ)-induced diabetic rats to study the alteration of the TSP-1 and NPY expression in the left ventricle myocardium in diabetic and normal group by immunohistochemistry and immunofluorescence. The data of weight, blood sugar and urine sugar indicated no significant difference between the two groups before the animal model was induced. Four weeks after the induction of diabetes the weight of the diabeteic animals was 189.1+/-18.4 g, plasma glucose was 23.7+/-3.25 mmol/L and urine glucose was (++) to (+++); whereas the weight of the control animals was 260.5+/-32.1 g, plasma glucose was 4.9+/-0.5 mmol/L and urine glucose undetectable (-). The differences between the control and the diabetes group were distinct. A significant increase of the TSP-1 and NPY expression was also observed in the diabetic rat's heart. The number of the NPY positive myocardium and the light density of the positive myocardium in the left ventricle of the diabetic model were 17.3+/-2.1 and 102.5+/-9.3/mm(2), respectively, which were considered as increased when compared with the control that were 10.1+/-2.6 and 61.2+/-6.7, respectively. Our results support the view that high glucose conditions can induce an increased synthesis of TSP-1 through the PKC-TGF-beta-TSP-1 pathway, which in turn facilitate TGF-beta activation. Additionally, the activation of PKC may further lead to the over-expression of NPY. This may be involved in diabetic cardiomyopathy. Topics: Animals; Biomarkers; Blood Glucose; Diabetes Mellitus, Experimental; Disease Models, Animal; Disease Progression; Heart Ventricles; Immunohistochemistry; Myocardium; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Streptozocin; Thrombospondin 1; Ventricular Dysfunction, Left | 2005 |
Neonatal thyroxine treatment: changes in the number of corticotropin-releasing-factor (CRF) and neuropeptide Y (NPY) containing neurons and density of tyrosine hydroxylase positive fibers (TH) in the amygdala correlate with anxiety-related behavior of wis
Neonatal hyperthyroidism induces persisting alterations in the adult brain, e.g. in spatial learning and hippocampal morphology. In the present study, the relationship between anxiety-related behavior and amygdala morphology was investigated in the adult rat after transient neonatal hyperthyroidism (daily s.c. injections of 7.5 microg L-thyroxine in 0.5 ml 0.9% NaCl solution from postnatal day p1 to p12). The behavioral tests used to study anxiety-related behavior were the motility test, elevated plus-maze and fear-sensitized acoustic startle response. In the amygdala, the number of neurons containing the anxiogenic peptide corticotropin releasing factor (CRF-ir and CRF mRNA) and anxiolytic neuropeptide Y (NPY-ir), the total number of neurons and the density of tyrosine hydroxylase immunoreactive (TH-ir) fibers were quantified. Thyroxine-treated pups presented an accelerated development including opening of eyes and snout elongation as typical signs of hyperthyroidism. Thyroxine-treated adult animals displayed a reduced anxiety in the motility box and elevated plus maze, a reduction in the number of CRF-ir neurons in the central nucleus of the amygdala, as well as an increase in the number of NPY-ir neurons and density of TH-ir fibers in nuclei of the basolateral complex of the amygdala. Moreover, there was a reduction in the total number of neurons in all nuclei of the basolateral complex (despite the higher number of NPY-ir neurons), but not central nucleus of the amygdala. The number of CRF-ir neurons in the central nucleus correlated positively with anxiety-related behavior, and the number of NPY-ir neurons and the density of TH-ir fibers in the basolateral complex correlated inversely with anxiety-related behavior. The findings suggested a shift toward an anxiolytic rather than anxiogenic distribution of peptidergic neurons and fibers in the amygdala at adult age following transient neonatal hyperthyroidism. Topics: Amygdala; Analysis of Variance; Animals; Animals, Newborn; Anxiety; Behavior, Animal; Cell Count; Corticotropin-Releasing Hormone; Disease Models, Animal; Electroshock; Female; Immunohistochemistry; In Situ Hybridization; Male; Maze Learning; Motor Activity; Nerve Fibers; Neurons; Neuropeptide Y; Pregnancy; Rats; Rats, Wistar; Reaction Time; Reflex, Startle; Thyroxine; Tyrosine 3-Monooxygenase | 2004 |
Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus.
Neuropeptide Y (NPY) inhibits seizures in experimental models and reduces excitability in human epileptic tissue. We studied the effect of long-lasting NPY overexpression in the rat hippocampus with local application of recombinant adeno-associated viral (AAV) vectors on acute kainate seizures and kindling epileptogenesis. Transgene expression was significantly increased by 7 d, reached maximal expression by 2 weeks, and persisted for at least 3 months. Serotype 2 AAV vector increased NPY expression in hilar interneurons, whereas the chimeric serotype 1/2 vector caused far more widespread expression, also including mossy fibers, pyramidal cells, and the subiculum. EEG seizures induced by intrahippocampal kainate were reduced by 50-75%, depending on the vector serotype, and seizure onset was markedly delayed. In rats injected with the chimeric serotype 1/2 vector, status epilepticus was abolished, and kindling acquisition was significantly delayed. Thus, targeted NPY gene transfer provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies. Topics: Animals; Dependovirus; Disease Models, Animal; Electroencephalography; Epilepsy; Gene Expression; Gene Transfer Techniques; Genetic Therapy; Genetic Vectors; Hippocampus; Injections, Intraventricular; Kainic Acid; Kindling, Neurologic; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Seizures; Treatment Outcome | 2004 |
Neuropeptidergic characterization of the leptin receptor mutated obese Koletsky rat.
Leptin regulates energy homeostasis and reproduction as evidenced by dysfunctions characterized in several genetic models of leptin pathway deficiency, such as the ob/ob and db/db mice and fa/fa Zucker rat. An additional model, the obese (f/f) Koletsky rat with a nonsense leptin receptor mutation has not been fully characterized. These rats are obese, hyperphagic, diabetic, and infertile; however, little else is known about the effects of the mutation. We have characterized alterations in hypothalamic appetite regulating neuropeptides as well as energy expenditure, metabolic hormones, and the reproductive axis of obese f/f rats. As expected, obese rats of both sexes were hyperinsulinemic, hyperglycemic, and hyperleptinemic. They exhibited reduced uncoupling protein-1 mRNA expression in brown fat, indicating reduced energy expenditure. In addition, hypothalamic expression of orexigenic neuropeptide Y and agouti-related peptide mRNA levels was upregulated while the anorexigenic cocaine and amphetamine regulated transcript and proopiomelanocortin mRNA levels were reduced. We also observed reproductive axis perturbations including reduced hypothalamic luteinizing hormone releasing hormone, serum estradiol and testosterone, and increased serum progesterone levels. In conclusion, obese Koletsky rats are phenotypically similar to other leptin pathway deficiency models with reduced energy expenditure and hypothalamic neuropeptidergic alterations that could account for their obesity and infertility. Topics: Adipose Tissue, Brown; Agouti-Related Protein; alpha-MSH; Amphetamines; Animals; Body Weight; Carrier Proteins; Cocaine; Diabetes Mellitus, Experimental; Disease Models, Animal; Female; Genotype; Hypothalamus; Intercellular Signaling Peptides and Proteins; Ion Channels; Male; Membrane Proteins; Mitochondrial Proteins; Mutation; Neuropeptide Y; Neuropeptides; Obesity; Oligonucleotides; Peptides; Phenotype; Proteins; Rats; Receptors, Cell Surface; Receptors, Leptin; Reproduction; Reverse Transcriptase Polymerase Chain Reaction; Uncoupling Protein 1; Up-Regulation | 2004 |
Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molecular layer after status epilepticus in mice.
Mossy fiber sprouting (MFS), a common feature of human temporal lobe epilepsy and many epilepsy animal models, contributes to hippocampal hyperexcitability. The molecular events responsible for MFS are not well understood, although the growth-associated protein GAP-43 has been implicated in rats. Here, we focus on the hyaluronan receptor CD44, which is involved in routing of retinal axons during development and is upregulated after injury in many tissues including brain. After pilocarpine-induced status epilepticus (SE) in mice most hilar neurons died and neuropeptide Y (NPY) immunoreactivity appeared in the dentate inner molecular layer (IML) after 10-31 days indicative of MFS. Strong CD44 immunoreactivity appeared in the IML 3 days after pilocarpine, then declined over the next 4 weeks. Conversely, GAP-43 immunoreactivity was decreased in the IML at 3-10 days after pilocarpine-induced SE. After SE induced by repeated kainate injections, mice did not show any hilar cell loss or changes in CD44 or GAP-43 expression in the IML, and MFS was absent at 20-35 days. Thus, after SE in mice, early loss of GAP-43 and strong CD44 induction in the IML correlated with hilar cell loss and subsequent MFS. CD44 is one of the earliest proteins upregulated in the IML and coincides with early sprouting of mossy fibers, although its function is still unknown. We hypothesize that CD44 is involved in the response to axon terminal degeneration and/or neuronal reorganization preceding MFS. Topics: Animals; Dentate Gyrus; Disease Models, Animal; Epilepsy, Temporal Lobe; GAP-43 Protein; Growth Cones; Hyaluronan Receptors; Immunohistochemistry; Kainic Acid; Mice; Mossy Fibers, Hippocampal; Nerve Degeneration; Neuronal Plasticity; Neuropeptide Y; Pilocarpine; Status Epilepticus; Up-Regulation | 2004 |
Vascular and brain neuropeptide Y in banded and spontaneously hypertensive rats.
Debate exists regarding the relative importance of neuropeptide Y (NPY) in the pathogenesis of genetic and non-genetic hypertension. NPY concentrations were compared in conduit, mesenteric and renal vasculatures and in hypothalamic and medullary regions of age-matched normotensive control, aortic banded and spontaneously hypertensive rats (SHRs). Lower NPY concentrations were measured in the pre-optic area of banded rats compared to controls and SHR. Renal vein NPY levels were reduced in banded animals, whereas renal artery levels were decreased in SHR. In mesenteric arteries, NPY concentration was selectively increased in SHR. These findings suggest that local hemodynamic alterations influence endogenous levels of this potent vasoconstrictor. Topics: Animals; Aorta; Blood Pressure; Body Weight; Brain; Disease Models, Animal; Hypertension; Male; Muscle, Smooth, Vascular; Neuropeptide Y; Rats; Rats, Inbred F344; Rats, Inbred SHR | 2004 |
Topiramate normalizes hippocampal NPY-LI in flinders sensitive line 'depressed' rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: implications for mood-stabilizing and weight loss-inducing effects.
Topiramate is currently used in the treatment of epilepsy, but this anticonvulsant drug has also been reported to exert mood-stabilizing effects and induce weight loss in patients. Neuropeptide Y (NPY) is abundantly and widely distributed in the mammalian central nervous system and centrally administered NPY markedly reduces pharmacologically induced seizures and induces antidepressant-like activity as well as feeding behavior. Two other peptides, galanin and corticotropin-releasing hormone (CRH), have also been proposed to play a modulatory role in mood, appetite, and seizure regulation. Consequently, we investigated the effects of single and repeated topiramate (10 days, once daily: 40 mg/kg i.p.) or vehicle treatment in 'depressed' flinders sensitive line (FSL) and control Flinders resistant line (FRL) rats on brain regional peptide concentrations of NPY, galanin, and CRH. The handling associated with repeated injections reduced hippocampal levels of NPY- and galanin-like immunoreactivities (LI) while NPY- and CRH-LI levels were increased in the hypothalamus, regardless of strain or treatment. In the hippocampus, concentrations of NPY-LI, galanin-LI, and CRH-LI were lower in FSL than FRL animals. Repeated topiramate treatment selectively normalized NPY-LI in this region in the FSL animals. In the hypothalamus, galanin-LI was reduced in FSL compared to FRL animals. Topiramate elevated the hypothalamic concentrations of NPY-LI, CRH-LI, and galanin-LI in both strains. Furthermore, topiramate elevated serum leptin but not corticosterone levels. The present findings show that topiramate has distinct effects on abnormal hippocampal levels of NPY, with possible implications for its anticonvulsant and mood-stabilizing effects. Furthermore, stimulating hypothalamic NPY-LI, CRH-LI and galanin-LI as well as serum leptin levels may be associated with the weight loss-inducing effects of topiramate. Topics: Affect; Animals; Anticonvulsants; Corpus Striatum; Corticosterone; Corticotropin-Releasing Hormone; Depression; Disease Models, Animal; Drug Administration Schedule; Frontal Lobe; Fructose; Galanin; Hippocampus; Hypothalamus; Leptin; Male; Neuropeptide Y; Occipital Lobe; Radioimmunoassay; Rats; Rats, Inbred Strains; Species Specificity; Topiramate; Weight Loss | 2003 |
Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids.
Demyelinating diseases can be associated with painful sensory phenomena such as tactile allodynia and hyperalgesia. To study the mechanisms underlying demyelination-induced pain, we have characterized a novel model of demyelination of the sciatic or saphenous nerve. Topical lysolecithin application causes focal demyelination of afferent nerve A-fibers without axonal loss, as assessed either by electron and light microscopy or by immunohistochemical analysis of dorsal root ganglia (DRG) for a neuronal injury marker, activating transcription factor 3. Focal demyelination is accompanied by spontaneous action potentials in afferents and increased expression of neuropeptide Y and Na(v)1.3 sodium channels specifically in DRG neurons that coexpress a specific marker of myelinated afferents. In contrast, expression of tetrodotoxin-resistant, Na(v)1.8 sodium channels is specifically decreased in the same subgroup of DRG cells. Central sensitization of somatosensory processing is also induced, with increased behavioral reflex responsiveness to thermal and mechanical stimuli. These changes are reversed by intrathecal administration of an NMDA receptor antagonist or cannabinoid (CB) receptor agonist, but not by a mu-opioid receptor agonist. Recovery of behavioral reflexes occurred approximately 3 weeks after lysolecithin treatment. This is the first time that demyelination of afferent A-fibers has been shown to specifically induce neuropathic pain and indicates that axonal damage is not a prerequisite for development of the pain state. The profile of phenotypic changes in DRG is distinct from other pain models and displays a sensitivity to NMDA and CB receptor agents that may be exploitable therapeutically. Topics: Action Potentials; Animals; Behavior, Animal; Cannabinoids; Demyelinating Diseases; Disease Models, Animal; Drug Administration Routes; Excitatory Amino Acid Antagonists; Ganglia, Spinal; Immunohistochemistry; Lysophosphatidylcholines; Mice; Mice, Inbred C57BL; Mononeuropathies; Nerve Fibers, Myelinated; Neurons, Afferent; Neuropeptide Y; Pain; Peripheral Nerves; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, mu; Reflex; Sciatic Nerve; Sodium Channels | 2003 |
Characterization of the effects of pancreatic polypeptide in the regulation of energy balance.
Pancreatic polypeptide (PP) belongs to a family of peptides including neuropeptide Y and peptide YY. We examined the role of PP in the regulation of body weight as well as the therapeutic potential of PP.. We measured food intake, gastric emptying, oxygen consumption, and gene expression of hypothalamic neuropeptides, gastric ghrelin, and adipocytokines in mice after administering PP intraperitoneally. Peptide gene expression was also examined in PP-overexpressing mice. Vagal and sympathetic nerve activities were recorded after intravenous administration in rats. Effects of repeated administrations of PP on energy balance and on glucose and lipid metabolism were examined in both ob/ob obese mice and fatty liver Shionogi (FLS)-ob/ob obese mice.. Peripherally administered PP induced negative energy balance by decreasing food intake and gastric emptying while increasing energy expenditure. The mechanism involved modification of expression of feeding-regulatory peptides (decrease in orexigenic neuropeptide Y, orexin, and ghrelin along with an increase in anorexigenic urocortin) and activity of the vagovagal or vagosympathetic reflex arc. PP reduced leptin in white adipose tissue and corticotropin-releasing factor gene expression. The expression of gastric ghrelin and hypothalamic orexin was decreased in PP-overexpressing mice. Repeated administrations of PP decreased body weight gain and ameliorated insulin resistance and hyperlipidemia in both ob/ob obese mice and FLS-ob/ob obese mice. Liver enzyme abnormalities in FLS-ob/ob obese mice were also ameliorated by PP.. These observations indicate that PP may influence food intake, energy metabolism, and the expression of hypothalamic peptides and gastric ghrelin. Topics: Animals; Body Weight; Carrier Proteins; Disease Models, Animal; Eating; Energy Metabolism; Gastric Emptying; Gene Expression; Ghrelin; Hypothalamus; Injections, Intraperitoneal; Intracellular Signaling Peptides and Proteins; Male; Mice; Neuropeptide Y; Neuropeptides; Obesity; Orexins; Oxygen Consumption; Pancreatic Polypeptide; Peptide Hormones; Peptide YY | 2003 |
Changes in NPY-mediated modulation of hippocampal [3H]D-aspartate outflow in the kindling model of epilepsy.
The anticonvulsant effect of NPY may depend on Y(2) and/or Y(5) receptor-mediated inhibition of glutamate release in critical areas, such as the hippocampus. However, Y(2) and Y(5) receptor levels have been reported to increase and decrease, respectively, in the epileptic hippocampus, implicating that the profile of NPY effects may change accordingly. The aim of this study was to evaluate the differential effects of NPY on glutamate release in the normal and in the epileptic hippocampus. Thus, we pharmacologically characterized the effects of NPY on the release of [(3)H]D-aspartate, a valid marker of endogenous glutamate, from synaptosomes prepared from the whole hippocampus and from the three hippocampal subregions (dentate gyrus and CA1 and CA3 subfields) of control and kindled rats, killed 1 week after the last stimulus-evoked seizure. In the whole hippocampus, NPY does not significantly affect stimulus-evoked [(3)H]D-aspartate overflow. In synaptosomes prepared from control rats, NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow only in the CA1 subfield (approx. -30%). Both Y(2) and Y(5) receptor antagonists (respectively, 1 microM BIIE0246 and 1 microM CGP71683A) prevented this effect, suggesting the involvement of both receptor types. In contrast, in synaptosomes prepared from kindled rats NPY significantly inhibited 15 mM K(+)-evoked [(3)H]D-aspartate overflow in the CA1 subfield and in the dentate gyrus (approx. -30%). Only the Y(2) (not the Y(5)) antagonist prevented these effects. These data indicate a critical role for the Y(2) receptor in the inhibitory control of glutamate release in the kindled hippocampus and, thus, suggest that the anticonvulsant effect of NPY in the epileptic brain is most likely Y(2), but not Y(5), receptor-mediated. Topics: Animals; D-Aspartic Acid; Disease Models, Animal; Epilepsy; Hippocampus; Kindling, Neurologic; Male; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Tritium | 2003 |
Ontogeny of diet-induced obesity in selectively bred Sprague-Dawley rats.
Outbred Sprague-Dawley rats selectively bred for their propensity to develop diet-induced obesity (DIO) become heavier on low-fat diet than those bred to be diet resistant (DR) beginning at approximately 5 wk of age. Here we assessed the development of metabolic and neural functions for insights into the origins of their greater weight gain. From week 5 to week 10, chow-fed DIO rats gained 15% more body weight and ate approximately 14% more calories but had only slightly greater adiposity and plasma leptin than DR rats. From day 3 through week 10, DIO and DR rats had similar mRNA expression of arcuate nucleus neuropeptide Y, proopiomelanocortin, agouti-related peptide, and all splice variants of the leptin receptor (OB-R). When fed a high-energy (HE; 31% fat) diet, 7-wk-old DIO rats had a 240% increase in plasma leptin levels after only 3 days. Despite this early leptin rise, they maintained a persistent hyperphagia and became more obese than chow-fed DIO rats and DR rats fed chow or HE diet. Their failure to reduce caloric intake, despite high levels of leptin, suggests that selectively bred DIO rats might have reduced leptin sensitivity similar to that seen in the outbred DIO parent strain. Topics: Adipose Tissue; Agouti-Related Protein; Animal Feed; Animals; Arcuate Nucleus of Hypothalamus; Breeding; Disease Models, Animal; Energy Intake; Energy Metabolism; Female; Insulin; Intercellular Signaling Peptides and Proteins; Leptin; Male; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Proteins; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Receptors, Leptin; RNA, Messenger | 2003 |
Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model.
The rodent pilocarpine model of epilepsy exhibits hippocampal sclerosis and spontaneous seizures and thus resembles human temporal lobe epilepsy. Use of the many available mouse mutants to study this epilepsy model would benefit from a detailed neuropathology study. To identify new features of epileptogenesis, we characterized glial and neuronal pathologies after pilocarpine-induced status epilepticus (SE) in CF1 and C57BL/6 mice focusing on the hippocampus. All CF1 mice showed spontaneous seizures by 17-27 days after SE. By 6 h there was virtually complete loss of hilar neurons, but the extent of pyramidal cell death varied considerably among mice. In the mossy fiber pathway, neuropeptide Y (NPY) was persistently upregulated beginning 1 day after SE; NPY immunoreactivity in the supragranular layer after 31 days indicated mossy fiber sprouting. beta2 microglobulin-positive activated microglia, normally absent in brains without SE, became abundant over 3-31 days in regions of neuronal loss, including the hippocampus and the amygdala. Astrogliosis developed after 10 days in damaged areas. Amyloid precursor protein immunoreactivity in the thalamus at 10 days suggested delayed axonal degeneration. The mortality after pilocarpine injection was very high in C57BL/6 mice from Jackson Laboratories but not those from Charles River, suggesting that mutant mice in the C57BL/6(JAX) strain will be difficult to study in the pilocarpine model, although their neuropathology was similar to CF1 mice. Major neuropathological changes not previously studied in the rodent pilocarpine model include widespread microglial activation, delayed thalamic axonal death, and persistent NPY upregulation in mossy fibers, together revealing extensive and persistent glial as well as neuronal pathology. Topics: Amyloid beta-Protein Precursor; Animals; Axons; Behavior, Animal; Cell Death; Disease Models, Animal; Disease Progression; Epilepsy; Gliosis; Hippocampus; Mice; Mice, Inbred C57BL; Neuroglia; Neurons; Neuropeptide Y; Pilocarpine; Species Specificity; Survival Rate | 2003 |
Anterograde delivery of brain-derived neurotrophic factor to striatum via nigral transduction of recombinant adeno-associated virus increases neuronal death but promotes neurogenic response following stroke.
To explore the role of brain-derived neurotrophic factor for survival and generation of striatal neurons after stroke, recombinant adeno-associated viral vectors carrying brain-derived neurotrophic factor or green fluorescent protein genes were injected into right rat substantia nigra 4-5 weeks prior to 30 min ipsilateral of middle cerebral artery occlusion. The brain-derived neurotrophic factor-recombinant adeno-associated viral transduction markedly increased the production of brain-derived neurotrophic factor protein by nigral cells. Brain-derived neurotrophic factor was transported anterogradely to the striatum and released in biologically active form, as revealed by the hypertrophic response of striatal neuropeptide Y-positive interneurons. Animals transduced with brain-derived neurotrophic factor-recombinant adeno-associated virus also exhibited abnormalities in body posture and movements, including tilted body to the right, choreiform movements of left forelimb and head, and spontaneous, so-called 'barrel' rotation along their long axis. The continuous delivery of brain-derived neurotrophic factor had no effect on the survival of striatal projection neurons after stroke, but exaggerated the loss of cholinergic, and parvalbumin- and neuropeptide Y-positive, gamma-aminobutyric acid-ergic interneurons. The high brain-derived neurotrophic factor levels in the animals subjected to stroke also gave rise to an increased number of striatal cells expressing doublecortin, a marker for migrating neuroblasts, and cells double-labelled with the mitotic marker, 5-bromo-2'-deoxyuridine-5'monophosphate, and early neuronal (Hu) or striatal neuronal (Meis2) markers. Our findings indicate that long-term anterograde delivery of high levels of brain-derived neurotrophic factor increases the vulnerability of striatal interneurons to stroke-induced damage. Concomitantly, brain-derived neurotrophic factor potentiates the stroke-induced neurogenic response, at least at early stages. Topics: alpha-Methyltyrosine; Analysis of Variance; Animals; Behavior, Animal; Brain-Derived Neurotrophic Factor; Bromodeoxyuridine; Cell Count; Cell Death; Cell Size; Choline O-Acetyltransferase; Corpus Striatum; Dependovirus; Disease Models, Animal; Doublecortin Domain Proteins; Doublecortin Protein; ELAV Proteins; Electroencephalography; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Green Fluorescent Proteins; Homeodomain Proteins; Immunohistochemistry; Infarction, Middle Cerebral Artery; Luminescent Proteins; Male; Microscopy, Confocal; Microtubule-Associated Proteins; Nerve Tissue Proteins; Neurons; Neuropeptide Y; Neuropeptides; Parvalbumins; Radiation-Sensitizing Agents; Rats; Rats, Wistar; RNA-Binding Proteins; Stroke; Substantia Nigra; Transduction, Genetic | 2003 |
Neuropeptide Y delays hippocampal kindling in the rat.
Chronic intrahippocampal infusion of the neurotrophin brain-derived neurotrophic factor (BDNF) has been shown to delay kindling epileptogenesis in the rat and several lines of evidence suggest that neuropeptide Y could mediate these inhibitory effects. Chronic infusion of BDNF leads to a sustained overexpression of neuropeptide Y in the hippocampus, which follows a time course similar to that of the suppressive effects of BDNF on kindling. In vivo, acute applications of neuropeptide Y or agonists of its receptors exert anticonvulsant properties, especially on seizures of hippocampal origin. In this study, we examined how chronic infusion of this neuropeptide in the hippocampus affected kindling epileptogenesis. A 7-day continuous infusion of neuropeptide Y in the hippocampus delayed the progression of hippocampal kindling in the rat, whereas anti-neuropeptide Y immunoglobulins had an aggravating effect. These results show that neuropeptide Y exerts anti-epileptogenic properties on seizures originating within the hippocampus and lend support to the hypothesis that BDNF delays kindling at least in part through upregulation of this neuropeptide. They also suggest that the seizure-induced upregulation of neuropeptide Y constitutes an endogenous mechanism counteracting excessive hippocampal excitability. Topics: Animals; Antibodies; Brain-Derived Neurotrophic Factor; Disease Models, Animal; Epilepsy; Hippocampus; Kindling, Neurologic; Male; Neurons; Neuropeptide Y; Rats; Rats, Wistar; Reaction Time; Synaptic Transmission; Up-Regulation | 2003 |
The influence of inflammation on the expression of neuropeptides in the ileum-projecting primary sensory neurones in the pig.
In the present study the ELISA test was used to investigate the influence of chemically-induced ileitis on the dorsal root ganglia (DRG) neurons in the pig. The preliminary retrograde fluorescent tracing study revealed that ileum-projecting sensory neurones (IPN) are located in the thoracic ganglia (Th; Th8-Th13). The ileum wall in experimental (E) pigs was subjected to multiple injection with 4% paraformaldehyde to induce inflammation, while in the control (C) animals the organ was injected with 0.1 M phosphate buffer. Three days later the DRGs (Th8-Th13) collected from all the animals were evaluated for VIP, SP, CGRP, NPY, GAL and SOM content with an ELISA test. It was found that the inflammation increased clearly the tissue level of SP, GAL and SOM. Topics: Animals; Calcitonin Gene-Related Peptide; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Female; Fluorescent Dyes; Formaldehyde; Galanin; Ganglia, Spinal; Ileitis; Ileum; Neurons, Afferent; Neuropeptide Y; Neuropeptides; Polymers; Somatostatin; Substance P; Sus scrofa; Thoracic Vertebrae; Up-Regulation; Vasoactive Intestinal Peptide; Visceral Afferents | 2003 |
Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain.
Glial cell line-derived neurotrophic factor (GDNF) is necessary for the development of sensory neurons, and appears to be critical for the survival of dorsal root ganglion (DRG) cells that bind the lectin IB4. Intrathecal infusion of GDNF has been shown to prevent and reverse the behavioral expression of experimental neuropathic pain arising from injury to spinal nerves. This effect of GDNF has been attributed to a blockade of the expression of the voltage gated, tetrodotoxin-sensitive sodium channel subtype, Na(V)1.3, in the injured DRG. Here we report that GDNF given intrathecally via osmotic-pump to nerve-injured rats (L5/L6 spinal nerve ligation) prevented the changes in a variety of neurochemical markers in the DRG upon injury. They include a loss of binding of IB4, downregulation of the purinergic receptor P2X(3), upregulation of galanin and neuropeptide Y immunoreactivity in large diameter DRG cells, and expression of the transcription factor ATF3. GDNF infusion concomitantly prevented the development of spinal nerve ligation-induced tactile hypersensitivity and thermal hyperalgesia. These observations suggest that high dose, exogenous GDNF has a broad neuroprotective role in injured primary afferent. The receptor(s) that mediates these effects of GDNF is not known. GDNF's ability to block neuropathic pain states is not likely to be specific to Na(V)1.3 expression. Topics: Activating Transcription Factors; Animals; Blood Proteins; Disease Models, Animal; Functional Laterality; Galanin; Ganglia, Spinal; Glial Cell Line-Derived Neurotrophic Factor; Humans; Immunohistochemistry; Lectins; Male; Nerve Growth Factors; Neurons; Neuropeptide Y; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2; Receptors, Purinergic P2X3; Time Factors; Transcription Factors | 2003 |
Hypothalamic neuronal histamine in genetically obese animals: its implication of leptin action in the brain.
Leptin regulates feeding behavior and energy metabolism by affecting hypothalamic neuromodulators. The present study was designed to examine hypothalamic neuronal histamine, a recently identified mediator of leptin signaling in the brain, in genetic obese animals. Concentrations of hypothalamic histamine and tele-methylhistamine (t-MH), a major histamine metabolite, were significantly lower in obese (ob/ob) and diabetic (db/db) mice, and Zucker fatty (fa/fa) rats, leptin-deficient and leptin-receptor defective animals, respectively, relative to lean littermates (P < 0.05 for each). A bolus infusion of leptin (1.0 microg) into the lateral ventricle (ilvt) significantly elevated the turnover rate of hypothalamic neuronal histamine, as assessed by pargyline-induced accumulation of t-MH, in ob/ob mice compared with phosphate-buffered saline (PBS) infusions (P < 0.05). However, this same treatment did not affect hypothalamic histamine turnover in db/db mice. In agouti yellow (A(y)/a) mice, animals defective in pro-opiomelanocortin (POMC) signaling, normal levels of histamine, and t-MH were seen in the hypothalamus at 4 weeks of age when obesity had not yet developed. These amine levels in A(y)/a mice showed no change until 16 weeks of age, although the mice were remarkably obese by this time. Infusions of corticotropin releasing hormone (CRH), one of neuropeptide related to leptin signaling, into the third ventricle (i3vt) increased histamine turnover in the hypothalamus of Wistar King A rats (P < 0.05 versus PBS infusion). Infusion of neuropeptide Y (NPY) or alpha-melanocyte stimulating hormone (MSH), a POMC-derived peptide failed to increase histamine turnover. These results indicate that lowered activity of hypothalamic neuronal histamine in ob/ob and db/db mice, and fa/fa rats may be due to insufficiency of leptin action in the brains of these animals. These results also suggest that disruption of POMC signaling in A(y)/a mice may not impact on neuronal histamine. Moreover, CRH but neither POMC-derived peptide nor NPY may act as a signal to neuronal histamine downstream of the leptin signaling pathway. Topics: alpha-MSH; Animals; Corticotropin-Releasing Hormone; Disease Models, Animal; Histamine; Hypothalamus; Injections, Intraventricular; Leptin; Male; Methylhistamines; Mice; Mice, Inbred C57BL; Mice, Obese; Neuropeptide Y; Obesity; Pro-Opiomelanocortin; Rats; Rats, Wistar; Rats, Zucker; Third Ventricle | 2003 |
Rapid and long-term alterations of hippocampal GABAB receptors in a mouse model of temporal lobe epilepsy.
Alterations of gamma-aminobutyric acid (GABA)B receptor expression have been reported in human temporal lobe epilepsy (TLE). Here, changes in regional and cellular expression of the GABAB receptor subunits R1 (GBR1) and R2 (GBR2) were investigated in a mouse model that replicates major functional and histopathological features of TLE. Adult mice received a single, unilateral injection of kainic acid (KA) into the dorsal hippocampus, and GABAB receptor immunoreactivity was analysed between 1 day and 3 months thereafter. In control mice, GBR1 and GBR2 were distributed uniformly across the dendritic layers of CA1-CA3 and dentate gyrus. In addition, some interneurons were labelled selectively for GBR1. At 1 day post-KA, staining for both GBR1 and GBR2 was profoundly reduced in CA1, CA3c and the hilus, and no interneurons were visible anymore. At later stages, the loss of GABAB receptors persisted in CA1 and CA3, whereas staining increased gradually in dentate gyrus granule cells, which become dispersed in this model. Most strikingly, a subpopulation of strongly labelled interneurons reappeared, mainly in the hilus and CA3 starting at 1 week post-KA. In double-staining experiments, these cells were selectively labelled for neuropeptide Y. The number of GBR1-positive interneurons also increased contralaterally in the hilus. The rapid KA-induced loss of GABAB receptors might contribute to epileptogenesis because of a reduction in both presynaptic control of transmitter release and postsynaptic inhibition. In turn, the long-term increase in GABAB receptors in granule cells and specific subtypes of interneurons may represent a compensatory response to recurrent seizures. Topics: Animals; Cell Count; Cholecystokinin; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; Hippocampus; Immunohistochemistry; Kainic Acid; Male; Mice; Neuropeptide Y; Receptors, GABA-B; Somatostatin; Time; Time Factors | 2003 |
VGF is required for obesity induced by diet, gold thioglucose treatment, and agouti and is differentially regulated in pro-opiomelanocortin- and neuropeptide Y-containing arcuate neurons in response to fasting.
Targeted deletion of the gene encoding the neuronal and neuroendocrine secreted polypeptide VGF (nonacronymic) produces a lean, hypermetabolic mouse. Consistent with this phenotype, VGF mRNA levels are regulated in the hypothalamic arcuate nucleus in response to fasting. To gain insight into the site(s) and mechanism(s) of action of VGF, we further characterized VGF expression in the hypothalamus. Double-label studies indicated that VGF and pro-opiomelanocortin were coexpressed in lateral arcuate neurons in the fed state, and that VGF expression was induced after fasting in medial arcuate neurons that synthesize neuropeptide Y (NPY). Like NPY, VGF mRNA induction in this region of the hypothalamus in fasted mice was inhibited by exogenous leptin. In leptin-deficient ob/ob and receptor-mutant db/db mice, VGF mRNA levels in the medial arcuate were elevated. To identify neural pathways that are functionally compromised by Vgf ablation, VGF mutant mice were crossed with obese A(y)/a (agouti) and ob/ob mice. VGF deficiency completely blocked the development of obesity in A(y)/a mice, whereas deletion of Vgf in ob/ob mice attenuated weight gain but had no impact on adiposity. Hypothalamic levels of NPY and agouti-related polypeptide mRNAs in both double-mutant lines were dramatically elevated 10- to 15-fold above those of wild-type mice. VGF-deficient mice were also found to resist diet- and gold thioglucose-induced obesity. These data and the susceptibility of VGF mutant mice to monosodium glutamate-induced obesity are consistent with a role for VGF in outflow pathways, downstream of hypothalamic and/or brainstem melanocortin 4 receptors, that project via the autonomic nervous system to peripheral metabolic tissues and regulate energy homeostasis. Topics: Agouti Signaling Protein; Animals; Arcuate Nucleus of Hypothalamus; Aurothioglucose; Diet; Disease Models, Animal; Energy Metabolism; Fasting; Gene Targeting; Immunohistochemistry; In Situ Hybridization; Intercellular Signaling Peptides and Proteins; Leptin; Male; Mice; Mice, Knockout; Mice, Mutant Strains; Nerve Growth Factors; Neural Pathways; Neurons; Neuropeptide Y; Neuropeptides; Obesity; Pro-Opiomelanocortin; Proteins; Rats; Rats, Sprague-Dawley; RNA, Messenger; Satiety Response; Sodium Glutamate | 2002 |
Regulation of neuropeptide Y in the rat amygdala following unilateral olfactory bulbectomy.
While the mechanisms are not fully understood, olfactory bulbectomy (OBX) is a well-known rat model of depression and depression-related disorders such as anxiety and aggression. Alterations in neuropeptide Y (NPY) levels in the brain have been linked to depression and have been shown to be involved in the response to stress. This study explored the possible regulation of NPY immunoreactivity in specific regions of the amygdala 14 days after OBX in adult male Sprague-Dawley rats (n=6). Unilateral OBX and immunohistochemistry permitted comparisons of NPY in the ipsilateral amygdala with NPY in the contralateral (sham) amygdala. OBX resulted in significant increases (P<0.05) in NPY immunoreactivity in the anterior medial amygdala (threefold) and the posterior medial amygdala (2.5-fold). These regions receive projections from the accessory olfactory bulb (AOB). In contrast, the anterior and posterolateral cortical nuclei of the amygdala receive projections from the main olfactory bulb (MOB). NPY was not increased in these nuclei. These data show that not only does OBX increase NPY immunoreactivity in the amygdala, but also suggest that the AOB plays a prominent role in this regulation. Topics: Amygdala; Animals; Denervation; Depressive Disorder; Disease Models, Animal; Functional Laterality; Immunohistochemistry; Male; Neuropeptide Y; Olfactory Bulb; Olfactory Pathways; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Stress, Physiological; Up-Regulation | 2002 |
Neuropeptide Y expression in a mouse model of oxygen-induced retinopathy.
Neuropeptide Y (NPY) is a potent vaso-constrictor and angiogenic agent that is found in the retina. The goal of this study was to determine the expression of NPY and its receptors, NPY Y1 and NPY Y2, in a mouse model of oxygen-induced retinopathy.. Retinal NPY, NPY Y1, and NPY Y2 mRNA expression were evaluated using reverse transcriptase-polymerase chain reaction. Neuropeptide Y cellular localization was determined using immunohistochemistry.. Retinal NPY mRNA expression was increased by 2.3-fold from P7 to P12, and 2.8-fold from P7 to P17 in oxygen-reared animals. Retinal NPY Y1 was increased 1.9-fold from P7 to P12 in room-air-reared animals. There was no change in NPY Y1 expression following exposure to oxygen. Retinal NPY Y2 expression in oxygen-reared animals increased by 2.8-fold from P7 to P12 and by 2.7-fold from P12 to P17. There was no change in NPY Y2 expression in room-air-reared animals. Retinal NPY and NPY Y2 expression increased concomitant with vasoconstriction and neovascularization seen in this model by evaluation of retinal whole mounts. Neuropeptide Y protein was detectable by immunohistochemistry mainly between the inner and outer nuclear layers and increased with hyperoxic exposure at P12 and also increased during the period of relative retinal hypoxia at P17.. Retinal NPY and NPY Y2 receptor expression are altered in the development of oxygen-induced retinopathy of the mouse, during both the hyperoxic vasoconstrictive phase and the period of retinal neovascularization. Alteration in the production of NPY and the NPY Y2 receptor may be avenues for potential modification in the development of retinopathy. Topics: Animals; Disease Models, Animal; Humans; Immunoenzyme Techniques; Infant, Newborn; Mice; Mice, Inbred C57BL; Neuropeptide Y; Oxygen; Receptors, Neuropeptide Y; Retinal Neovascularization; Retinal Vessels; Retinopathy of Prematurity; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2002 |
Selective mediation of nerve injury-induced tactile hypersensitivity by neuropeptide Y.
Prevention of nerve injury-induced tactile, but not thermal, hypersensitivity is achieved by ipsilateral lesions of the dorsal columns or lidocaine microinjection into the nucleus gracilis (n. gracilis). These and other data support the possibility that tactile hyperresponsiveness after nerve injury may be selectively mediated by a low-threshold myelinated fiber pathway to the n. gracilis. Here we identify a transmitter that might selectively mediate such injury-induced tactile hypersensitivity. Neuropeptide Y (NPY), normally not detected in the dorsal root ganglion (DRG) or in the n. gracilis of rats, became markedly upregulated at both sites and in the spinal cord after spinal nerve injury. Injury-induced NPY-IR occurred predominately in large-diameter DRG cells, and the NPY-IR in the n. gracilis was blocked by dorsal rhizotomy or dorsal column lesion. NPY microinjection into the n. gracilis of uninjured rats elicited reversible tactile, but not thermal, hypersensitivity only in the ipsilateral hindpaw. Administration of anti-NPY antiserum, but not control serum or preabsorbed serum, into the n. gracilis ipsilateral to nerve injury reversed tactile, but not thermal, hypersensitivity. Similarly, microinjection of the NPY antagonists NPY(18-36) and (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2-(diphenylacetyl)-argininamide trifluoroacetate, into the n. gracilis ipsilateral to the injury reversed tactile, but not thermal, hypersensitivity. Antagonist administration into the contralateral n. gracilis had no effect on injury-induced hypersensitivity. These data suggest the selective mediation of nerve injury-induced tactile hypersensitivity by upregulated NPY via large fiber input to n. gracilis. Selective reversal of injury-induced tactile allodynia by NPY receptor antagonists would have significant implications for human neuropathic conditions. Topics: Animals; Arginine; Benzazepines; Disease Models, Animal; Disease Progression; Ganglia, Spinal; Hyperalgesia; Immune Sera; Ligation; Lumbosacral Region; Male; Medulla Oblongata; Microinjections; Nerve Crush; Neuropeptide Y; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Rhizotomy; Spinal Cord; Spinal Nerves | 2002 |
Anorexigenic melanocortin signaling in the hypothalamus is augmented in association with failure-to-thrive in a transgenic mouse model for Prader-Willi syndrome.
As in Prader-Willi syndrome (PWS) infants, mouse models of PWS display failure-to-thrive during the neonatal period. In rodents, the hypothalamic neuropeptide, Neuropeptide Y (NPY) and Agouti-related peptide (AgrP) stimulate while alpha-melanocyte stimulating hormone (alpha-MSH) inhibits appetite. We hypothesized that altered expression of these neuropeptides in the hypothalamus may underlie the failure-to-thrive in PWS neonatal mice. To test this hypothesis we evaluated mRNA expression of Npy, Agrp, and Pomc by in situ hybridization in the hypothalamic arcuate nucleus (ARC) of 3-day-old female and male PWS neonates. The results showed that Agrp mRNA expression was decreased relative to wild-type (WT) controls in neonates of both sexes, while mRNA expression of Pomc was upregulated in PWS neonates. Since AgrP and the Pomc-derived peptide, alpha-MSH, are functional antagonists at melanocortin 4 receptors in the hypothalamic regulation of appetitive behavior, these results show that robust anorexigenic melanocortin signaling, may contribute to the failure-to-thrive in PWS neonatal mice. Topics: Agouti-Related Protein; Animals; Animals, Newborn; Anorexia; Arcuate Nucleus of Hypothalamus; Disease Models, Animal; Female; In Situ Hybridization; Intercellular Signaling Peptides and Proteins; Male; Mice; Mice, Transgenic; Neuropeptide Y; Prader-Willi Syndrome; Pro-Opiomelanocortin; Proteins; RNA, Messenger; Signal Transduction; Up-Regulation | 2002 |
Differential changes in messenger RNA expressions and binding sites of neuropeptide Y Y1, Y2 and Y5 receptors in the hippocampus of an epileptic mutant rat: Noda epileptic rat.
The anti-convulsive effects of neuropeptide Y have been suggested in several animal models of epilepsy. We have found the sustained increase of neuropeptide Y contents and the seizure-induced elevation of hippocampal messenger RNA in a novel spontaneous epileptic mutant rat: Noda epileptic rat. In the present study, we investigated the change of neuropeptide Y Y1 and Y2 receptor messenger RNA expressions and binding sites in the hippocampus following a spontaneous generalized tonic-clonic seizure of Noda epileptic rat. Furthermore, the binding sites of a more recently isolated receptor subtype, neuropeptide Y Y5 receptors, were also evaluated by receptor autoradiography. A marked elevation of neuropeptide Y immunoreactivity in the mossy fiber, and Y2-receptor up-regulation in the dentate gyrus were observed in the hippocampus of Noda epileptic rat, which coincided with the previous results of the other epileptic models. In contrast, Y1-receptor down-regulation was not found after a spontaneous seizure of Noda epileptic rat while this occurs in kindling and after kainic acid-induced seizures. [125I][Leu31, Pro34]peptide YY/BIBP 3226-insensitive (Y5 receptor) binding sites in CA1 stratum radiatum were significantly decreased following a spontaneous seizure of Noda epileptic rat. The present results suggest that a spontaneous seizure of Noda epileptic rat induces significant changes in neuropeptide Y-mediated transmission in the hippocampus via Y2 and Y5 receptors, but not Y1 receptors. Therefore, specific subset of neuropeptide Y receptor subtypes might be involved in the epileptogenesis of Noda epileptic rat. Topics: Animals; Dentate Gyrus; Disease Models, Animal; Epilepsy; Gene Expression Regulation; Hippocampus; Immunohistochemistry; Iodine Radioisotopes; Male; Mossy Fibers, Hippocampal; Neurons; Neuropeptide Y; Peptide Fragments; Pyramidal Cells; Rats; Rats, Mutant Strains; Receptors, Neuropeptide Y; RNA, Messenger | 2002 |
Somatostatin, cholecystokinin and neuropeptide Y mRNAs in normal and weaver mouse brain.
The distribution of mRNAs encoding for somatostatin, cholecystokinin and neuropeptide Y was determined by in situ hybridization histochemistry in the weaver (wv/wv) mouse, a model of dopamine deficiency as well as in normal (+/+) controls. Weaver mutants did not show any appreciable departure from the normal pattern of expression for mRNA encoding for neuropeptide Y. In contrast, an 82% increase in mRNA encoding for somatostatin was observed in the reticular thalamic nucleus, whereas increases in the order of 20-87% were observed in different hypothalamic nuclei of the weaver brain. In addition, a 47-103% increase of the hybridization signal encoding for cholecystokinin was observed in the cerebral cortex, hippocampus and thalamus of the weaver brain. It can be assumed that the elevated and region-specific somatostatin and cholecystokinin levels observed in the weaver brain may be due to a secondary or compensatory response under conditions of altered neurotransmitter levels. Topics: Animals; Brain; Cholecystokinin; Disease Models, Animal; Dopamine; In Situ Hybridization; Mice; Mice, Neurologic Mutants; Neuropeptide Y; RNA, Messenger; Somatostatin; Up-Regulation | 2002 |
Effect of leptin on LH and FSH release in ovariectomized rats.
We compared the estradiol/progesterone-induced luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release between normally fed and leptin-supplemented starved ovariectomized female rats and studied also the effect of hyper-leptinaemia on the steroid-induced hormonal release in normally fed ovariectomized rats. Three days' starvation completely abolished steroid-induced LH and FSH release. Significant recovery of the hormonal release was shown in the leptin-supplemented starved group. The magnitudes of LH and FSH release in the normally fed animals with a higher dose of leptin were statistically the same as those in the normally fed group without leptin. These observations indicate that physiological concentrations of circulating leptin exert a stimulatory effect on steroid-induced LH and FSH release. Topics: Analysis of Variance; Animals; Body Weight; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Female; Follicle Stimulating Hormone; Hypothalamo-Hypophyseal System; Leptin; Luteinizing Hormone; Neuropeptide Y; Nitric Oxide; Ovariectomy; Rats; Reproductive Medicine; Starvation; Time Factors | 2002 |
A model of 'epileptic tolerance' for investigating neuroprotection, epileptic susceptibility and gene expression-related plastic changes.
Previous insult, for example, sustained epileptic seizures, confers a substantial temporary protection against the cellular damage induced by subsequent epileptic challenge. Here we describe a useful model of this so-called 'epileptic tolerance'. Expression of a status epilepticus was triggered by infusing the excitotoxic agent, kainate, into the right hippocampus of adult rats. An appropriate dose of kainate was used to cause brain damage in the homolateral, but not contralateral, hippocampus. At various times following this preconditioning insult, kainate was then re-administered into the lateral ventricle and neuroprotection was observed in the contralateral side between 1 and 15 days later. This model can be used to investigate the mechanisms of this endogenous neuroprotection. It is also particularly suitable for studying the epileptic susceptibility, as reflected by the modifications of the after-discharge threshold, as well as any changes in gene expression induced associated with the preconditioning episode. Topics: Animals; Cell Death; Cell Survival; Disease Models, Animal; Epilepsy; Excitatory Amino Acid Agonists; Gene Expression Regulation; Hippocampus; Ischemic Preconditioning; Kainic Acid; Male; Neuronal Plasticity; Neuropeptide Y; Pyramidal Cells; Rats; Rats, Wistar; Status Epilepticus | 2002 |
Acute changes in 3H-PAC and 125I-PYY binding in the nucleus tractus solitarii and hypothalamus after a hypertensive stimulus.
Activation of alpha-2-adrenergic and neuropeptide Y (NPY) receptors in the nucleus tractus solitarii (NTS) induces hypotension and bradycardia. On the contrary, activation of angiotensin II (Ang II) receptors leads to hypertension. Acute changes in binding parameters of alpha-2-adrenergic, NPY and Ang II receptors were evaluated in the NTS and paraventricular hypothalamic nucleus (PVN) of rats after a hypertensive stimulus employing quantitative receptor autoradiography. Saturation experiments showed a decrease in the number (Bmax) of alpha-2-adrenergic binding sites in the NTS 6 hours after coarctation-induced hypertension. Furthermore, the affinity of NPY receptors was diminished as seen by the increase in the KD value of 125I-PYY. Tyrosine hydroxylase and NPY immunoreactivities were increased in the NTS and ventral medulla. Binding of 125I-Ang II was not changed in the NTS. Binding of all ligands analyzed was not altered in the PVN. The results suggest an acute down-regulation of alpha-2-adrenergic and NPY receptors involved with hypotension in response to hypertensive stimulus, which might be related to an increased availability of catecholamines and NPY in the NTS. Topics: Animals; Antibodies; Aorta; Disease Models, Animal; Hypertension; Immunohistochemistry; Iodine Radioisotopes; Male; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Radioligand Assay; Rats; Rats, Wistar; Receptors, Adrenergic, alpha-2; Receptors, Angiotensin; Receptors, Neuropeptide Y; Solitary Nucleus; Tritium; Tyrosine 3-Monooxygenase | 2002 |
Neuropeptide Y inhibits the hyperexcitability of type A neurons in chronically compressed dorsal root ganglion of the rat.
Our recent data revealed adrenergic sensitivity in chronically compressed dorsal root ganglion (DRG) of rats. As neuropeptide Y (NPY) is a common sympathetic co-transmitter, we investigated the effect of NPY on injured DRG neurons. The expression of NPY Y1 and Y2 receptors and the effect of NPY on chronically compressed DRG neurons were studied using in situ hybridization and extracellular single fiber recording in vitro, respectively. After DRG compression, the expression of Y1 receptor was distinctly increased in large and medium-sized DRG neurons, while Y2 receptor was increased in small DRG neurons. NPY inhibited both the spontaneous activity and the excitatory effect of norepinephrine in injured DRG A-neurons. The results suggest a possibility that NPY may inhibit the hyperexcitability of injured DRG A-neurons via increased Y1 receptor following chronic compression. Topics: Action Potentials; Animals; Disease Models, Animal; Female; Ganglia, Spinal; In Situ Hybridization; Male; Nerve Compression Syndromes; Neurons, Afferent; Neuropeptide Y; Norepinephrine; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Spinal Stenosis | 2002 |
Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor.
The results of several studies have contributed to the hypothesis that BDNF promotes seizure activity, particularly in adult hippocampus. To test this hypothesis, BDNF, vehicle (phosphate-buffered saline, PBS), or albumin was infused directly into the hippocampus for 2 weeks using osmotic minipumps. Rats were examined behaviorally, electrophysiologically, and anatomically. An additional group was tested for sensitivity to the convulsant pilocarpine. Spontaneous behavioral seizures were observed in BDNF-infused rats (8/32; 25%) but not in controls (0/20; 0%). In a subset of six animals (three BDNF, three albumin), blind electrophysiological analysis of scalp recordings contralateral to the infused hippocampus demonstrated abnormalities in all BDNF rats; but not controls. Neuronal loss in BDNF-treated rats was not detected relative to PBS- or albumin-treated animals, but immunocytochemical markers showed a pattern of expression in BDNF-treated rats that was similar to rats with experimentally induced seizures. Thus, BDNF-infused rats had increased expression of NPY in hilar neurons of the dentate gyrus relative to control rats. NPY and BDNF expression was increased in the mossy fiber axons of dentate gyrus granule cells relative to controls. The increase in NPY and BDNF expression in BDNF-treated rats was bilateral and occurred throughout the septotemporal axis of the hippocampus. Mossy fiber sprouting occurred in five BDNF-treated rats but no controls. In another group of infused rats that was tested for seizure sensitivity to the convulsant pilocarpine, BDNF-infused rats had a shorter latency to status epilepticus than PBS-infused rats. In addition, the progression from normal behavior to severe seizures was faster in BDNF-treated rats. These data support the hypothesis that intrahippocampal BDNF infusion can facilitate, and potentially initiate, seizure activity in adult hippocampus. Topics: Animals; Behavior, Animal; Brain-Derived Neurotrophic Factor; Dentate Gyrus; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Drug Administration Routes; Electroencephalography; Hippocampus; Infusions, Parenteral; Limbic System; Male; Mossy Fibers, Hippocampal; Neuropeptide Y; Pilocarpine; Rats; Seizures; Status Epilepticus | 2002 |
Antihyperalgesic effects of intrathecal neuropeptide Y during inflammation are mediated by Y1 receptors.
Inflammation induces an up-regulation of neuropeptide tyrosine (NPY) and its receptors in the dorsal horn, suggesting an important role in nociceptive transmission. Our initial studies revealed that NPY dose-dependently increased hotplate response latency, and to a lesser degree, thermal paw withdrawal latency (PWL); these effects occurred at doses that affect neither motor coordination (as assessed by the rotarod test) nor paw skin temperature. We next evaluated the behavioral effects of intrathecal administration of NPY and NPY antagonists with the aim of assessing the contribution of NPY to correlates of persistent nociception associated with the unilateral plantar injection of carrageenan or complete Freund's adjuvant (CFA). NPY robustly and dose-dependently increased PWL on the side ipsilateral to carrageenan injection, with only a small effect on the contralateral side. Similarly, NPY (30 microg) produced a large and long-lasting increase in PWL on the side ipsilateral to CFA injection (140% change), with only a small effect on the contralateral side (25% change). The ipsilateral effect of NPY was completely inhibited with the potent Y1 antagonist, BIBO 3304 (3 microg), but not the Y2 antagonist, BIIE 0246. When administered alone, BIBO 3304 (but not BIIE 0246) slightly decreased thermal PWL on the side ipsilateral (25% change), but not contralateral, to CFA injection; this suggests that inflammation strengthens inhibitory NPY tone. We conclude that spinal Y1 receptors contribute to the inhibitory effects of NPY on thermal hypersensitivity in the awake rat. Further studies are necessary to determine whether enhanced release of NPY and Y1-mediated inhibition of spinal nociceptive transmission ultimately results in a compensatory, adaptive inhibition of thermal hypersensitivity in the setting of inflammation. Topics: Acute Disease; Animals; Arginine; Body Temperature; Carrageenan; Disease Models, Animal; Freund's Adjuvant; Hot Temperature; Hyperalgesia; Injections, Spinal; Male; Motor Activity; Neurogenic Inflammation; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Spinal Cord | 2002 |
Characterization of diet-induced obese rats that develop persistent obesity after 6 months of high-fat followed by 1 month of low-fat diet.
A subset of Sprague-Dawley rats developed persistent obesity when maintained on a high-fat diet for 6 months followed by a low-fat diet for 1 month, while another subset from the same cohort of rats remained lean on the same diet regimens. The diet-induced obese (DIO) rats had higher energy intake than expenditure, while diet-resistant (DR) rats maintained energy balance. DIO rats also had an increased respiratory quotient and higher levels of plasma leptin, insulin and cholesterol. In the hypothalamic areas, DIO rats had elevated NPY and AGRP mRNA, but not MCH mRNA. Our data suggest that the increase in hypothalamic expression of NPY and AGRP may contribute to the development of persistent obesity in DIO rats. Topics: Agouti-Related Protein; Animals; Cell Respiration; Cholesterol; Dietary Fats; Disease Models, Animal; Eating; Energy Metabolism; Food, Formulated; Genetic Predisposition to Disease; Homeostasis; Hypothalamic Hormones; Hypothalamus; Insulin; Intercellular Signaling Peptides and Proteins; Leptin; Melanins; Neuropeptide Y; Obesity; Pituitary Hormones; Predictive Value of Tests; Proteins; Rats; Rats, Sprague-Dawley; RNA, Messenger; Up-Regulation | 2002 |
Changed concentrations of tachykinins and neuropeptide Y in brain of a rat model of depression: lithium treatment normalizes tachykinins.
Lithium's therapeutic mechanism of action is unknown. In lithium-treated normal rats, increased striatal concentrations of neurokinin A (NKA)-like immunoreactivity (LI), substance P (SP-LI) and neuropeptide Y (NPY-LI) have been reported. To investigate whether these effects might be of therapeutic relevance, Flinders Sensitive Line rats (FSL), an animal model of depression, and control Flinders Resistant Line (FRL) rats were during a 6-week period fed chow to which either lithium or vehicle was admixed. Following sacrifice, the peptides were extracted from dissected brain regions and measured by radioimmunoassay. NKA-LI and SP-LI were markedly decreased in striatum and increased in frontal cortex in FSL compared to control FRL animals. Lithium treatment abolished these differences. Basal concentrations of NPY-LI were decreased in hippocampus of FSL rats, but unaffected by lithium. The present study suggests that changed tachykinins and NPY may underlie the characterized depressive-like phenotype of the FSL rats. It is hypothesized that altering tachykinin peptidergic neurotransmission in striatum and frontal cortex constitutes a mechanism of action of lithium and that such a mechanism might be of therapeutic relevance. Topics: Animals; Brain; Depression; Disease Models, Animal; Lithium Chloride; Male; Neuropeptide Y; Rats; Species Specificity; Tachykinins | 2001 |
Decreased orexigenic response to neuropeptide Y in rats with obstructive cholestasis.
Neuropeptide Y (NPY) is a key factor in the neurochemical control of food intake, and obstructive cholestasis can be associated with disturbances in food intake. Our aim in this study was to determine whether obstructive cholestasis in the rat is associated with defective central responsiveness to NPY. Cholestasis was induced in rats by surgical bile duct resection. Rats with obstructive cholestasis exhibited a 20% reduction in food intake 2 days after laparotomy (compared with sham-resected controls) that had resolved by 4 days after surgery. Responsiveness to the orexigenic action of NPY was tested by measuring food intake after intracerebroventricular injection of NPY. In sham-resected rats, NPY infusion strikingly increased food intake, whereas bile duct-resected (BDR) rats showed a consistent significantly impaired feeding response to NPY at postlaparotomy days 2, 4, and 7. Separate experiments measured specific binding of [(3)H]NPY to hypothalamic receptors. Fos protein expression was measured in the hypothalamic paraventricular nucleus (PVN) as a marker of NPY-induced neuronal activation. The decreased orexigenic responsiveness to NPY was not caused by altered NPY binding at hypothalamic receptors or its ability to activate neurons in the PVN. Therefore, cholestatic rats demonstrate an attenuated NPY-induced orexigenic drive that occurs early after biliary obstruction, when cholestatic rats exhibit reduced food intake, and persists despite the return of food intake to normal levels and the presence of intact central NPY-related neuronal pathways. Topics: Animals; Bile Ducts; Binding, Competitive; Cholestasis; Disease Models, Animal; Dose-Response Relationship, Drug; Drinking; Eating; Gastric Emptying; Hypothalamus; Injections, Intraventricular; Male; Neuropeptide Y; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y | 2001 |
Anti-nociceptive effect of neuropeptide Y in periaqueductal grey in rats with inflammation.
Experimental inflammation was induced by subcutaneous injection of carrageenan into the left hindpaw of rats. Intra-periaqueductal grey (PAG) injection of 0.02 or 0.1 nmol of neuropeptide Y (NPY), but not 0.004 nmol, induced significant increases in hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation in rats with inflammation. Furthermore, the anti-nociceptive effect of NPY was blocked partly by following intra-PAG injection of the Y1 receptor antagonist NPY28-36. The results demonstrated that NPY plays an anti-nociceptive role in PAG in rats with inflammation, in which Y1 receptor is involved. Topics: Animals; Carrageenan; Disease Models, Animal; Hindlimb; Hot Temperature; Inflammation; Male; Microinjections; Neuropeptide Y; Pain Measurement; Peptide Fragments; Periaqueductal Gray; Physical Stimulation; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Neuropeptide Y | 2001 |
Orexin A immunoreactivity and preproorexin mRNA in the brain of Zucker and WKY rats.
The primary role of the orexins was originally believed to be appetite regulation, but is now believed to be the regulation of sleep, arousal and locomotor activity. Orexin A immunoreactivity (orexin A-IR) and prepro-orexin mRNA were measured in the CNS of obese and lean Zucker rats. There were no differences in orexin A-IR or prepro-orexin mRNA levels between obese and lean Zucker rats. The orexins are therefore unlikely to be important in this model of obesity. Levels of orexin A-IR and prepro-orexin mRNA were measured in the CNS of Wistar-Kyoto (WKY) rats, which are hypoactive and have abnormal sleep architecture. Compared to Wistar rats, WKY rats had significantly lower orexin A-IR (with differences of up to 100% in some brain regions) and prepro-orexin mRNA levels. These observations suggest that the sleep and activity phenotype of the WKY strain may be related to orexin deficiency and that this strain may be a useful model of partial orexin deficiency. Topics: Animals; Antibodies; Brain Chemistry; Carrier Proteins; Disease Models, Animal; Gene Expression; Hypothalamus; Intracellular Signaling Peptides and Proteins; Locomotion; Male; Neuropeptide Y; Neuropeptides; Obesity; Orexins; Protein Precursors; Rats; Rats, Inbred WKY; Rats, Wistar; Rats, Zucker; RNA, Messenger; Sleep; Species Specificity | 2001 |
Decreased epileptic susceptibility correlates with neuropeptide Y overexpression in a model of tolerance to excitotoxicity.
Prior epileptic episodes have been shown to decrease markedly the neuronal damage induced by a second epileptic episode, similar to the tolerance following an episode of mild ischemia. Endogenous neuroprotective effects mediated by various mechanisms have been put forward. This study investigated whether neuroprotection against the excitotoxic damage induced by re-exposure to an epileptic challenge can reflect a change in epileptic susceptibility. Tolerance was elicited in rats by a preconditioning session using intrahippocampal kainic acid (KA) administration followed at 1, 7 and 15-day intervals by a subsequent intraventricular KA injection. The degree of pyramidal cell loss in the vulnerable CA3 subfield contralateral to the KA-injected hippocampus was extensively reduced in animals experiencing KA ventricular administration. This neuroprotection was highly significant 1 and 7 days after injection, but not 15 days after injection. In preconditioned animals, the after-discharge threshold was assessed as an index of epileptic susceptibility. It increased significantly from 1 to 15 days after intrahippocampal KA administration. Finally, an enhancement of neuropeptide Y expression in both non-principal cells and mossy fibers was detected, occurring at the same time as the decrease in epileptic susceptibility. These results provide further evidence of an 'epileptic tolerance' as shown by the substantial neuroprotective effect of a prior episode of epileptic activity upon subsequent epileptic insult and suggest that the prevention of excitotoxic damage after preconditioning results from an endogenous neuroprotective mechanism against hyperexcitability and seizures. Topics: Adaptation, Physiological; Animals; Behavior, Animal; Cell Death; Disease Models, Animal; Disease Susceptibility; Epilepsy; Excitatory Amino Acid Agonists; Hippocampus; Immunohistochemistry; Kainic Acid; Male; Nerve Degeneration; Neuropeptide Y; Neurotoxins; Pyramidal Cells; Rats; Rats, Wistar | 2001 |
Neuropeptide expression in the ferret trigeminal ganglion following ligation of the inferior alveolar nerve.
Previous studies have found changes in neuropeptide expression in trigeminal ganglion cells after inferior alveolar nerve (IAN) section. These changes may play a part in the persistent sensory abnormalities that can be experienced after trigeminal nerve injuries. Here, neuropeptide expression after IAN ligation was studied, as this type of injury is thought to be more likely to result in sensory disturbances. The neuropeptides investigated were substance P, calcitonin gene-related peptide, enkephalin (ENK), galanin (GAL), neuropeptide Y (NPY) and vasoactive intestinal polypeptide. In anaesthetised adult female ferrets the left IAN was sectioned and the central stump tightly ligated. Recovery was allowed for 3 days, 3 or 12 weeks before perfusion-fixation. In a second procedure, 1 week before perfusion, the IAN was exposed and an injection made central to the injury site, using a mixture of 4% Fluorogold and 4% Isolectin B4 conjugated to horseradish peroxidase, to identify cell bodies with axons in the inferior alveolar nerve and cells with unmyelinated axons within this population, respectively. Control experiments involved tracer injection alone. After harvesting the tissue, sagittal sections were taken from both the right and left ganglia and immunohistochemical staining used to reveal the presence of peptides and Isolectin B4 tracer. The results showed a significant decrease in GAL expression after injury and an increase in ENK and NPY expression. No significant differences were seen in the expression of the other peptides or in the proportion of lectin-positive cells at any time after injury. When compared with previous data, significant differences were found between peptide expression following nerve ligation and nerve section. These results reveal that the changes in neuropeptide expression in the trigeminal ganglion that follow IAN injury are dependent upon the type of injury. The extent to which changes in the central neuropeptide levels contribute to the development of sensory disorders remains to be established. Topics: Analysis of Variance; Animals; Axons; Calcitonin Gene-Related Peptide; Cell Count; Disease Models, Animal; Enkephalins; Female; Ferrets; Fluorescent Dyes; Follow-Up Studies; Galanin; Gene Expression; Horseradish Peroxidase; Immunohistochemistry; Lectins; Ligation; Mandibular Nerve; Neural Pathways; Neuropeptide Y; Neuropeptides; Sensation Disorders; Statistics as Topic; Stilbamidines; Substance P; Trigeminal Ganglion; Trigeminal Nerve Injuries; Vasoactive Intestinal Peptide | 2001 |
Effect of vanadium on insulin sensitivity and appetite.
Vanadium, a potent nonselective inhibitor of protein tyrosine phosphatases, has been shown to mimic many of the metabolic actions of insulin both in vivo and in vitro. The mechanism(s) of the effect of vanadium on the decrease in appetite and body weight in Zucker fa/fa rats, an insulin-resistant model, is still unclear. Because insulin may inhibit hypothalamic neuropeptide Y (NPY), which is known to be related to appetite, and increase leptin secretion in adipose tissue, we studied the possibility that the changes in appetite produced by vanadium may be linked to altered NPY levels in the hypothalamus. We also examined effects of vanadium on leptin. Zucker lean and fatty rats were chronically treated with bis(maltolato)oxovanadium(IV) (BMOV), an organic vanadium compound, in the drinking water. Plasma and adipose tissue leptin levels were measured by radioimmunoassay and immunoblotting, respectively. Hypothalamic NPY mRNA and peptide levels were measured using in situ hybridization and immunocytochemistry, respectively. BMOV treatment significantly reduced food intake, body fat, body weight, plasma insulin levels, and glucose levels in fatty Zucker rats. Fifteen minutes after insulin injection (5 U/kg, intravenous [IV]), circulating leptin levels (+100%) and adipose leptin levels (+60%) were elevated in BMOV-treated fatty rats, although these effects were not observed in untreated fatty rats. NPY mRNA levels in the arcuate nucleus (ARC) (-29%), NPY peptide levels in ARC (-31%), as well as in the paraventricular nucleus (PVN) (-37%) were decreased with BMOV treatment in these fatty rats. These data indicate that BMOV may increase insulin sensitivity in adipose tissue and decrease appetite and body fat by decreasing NPY levels in the hypothalamus. BMOV-induced reduction in appetite and weight gain along with normalized insulin levels in models of obesity, suggest its possible use as a therapeutic agent in obesity. Topics: Adipose Tissue; Animals; Appetite; Arcuate Nucleus of Hypothalamus; Blood Glucose; Cell Nucleus; Disease Models, Animal; Hypoglycemic Agents; Hypothalamus; Immunohistochemistry; In Situ Hybridization; Insulin; Leptin; Male; Neuropeptide Y; Obesity; Pyrones; Rats; Rats, Zucker; RNA, Messenger; Vanadates; Vanadium | 2001 |
Intestinal neuronal dysplasia-like pathology in Ncx/Hox11L.1 gene-deficient mice.
Ncx/Hox11L.1-deficient (Ncx-/-) mice specifically created by the authors had mega-ileo-ceco-colon (mega-ICC) with a caliber change in the proximal colon. The authors studied the nerve distribution in the bowel of these Ncx-/- mice to determine the cause of their bowel dysmotility.. Four-week-old Ncx-/- mice (n = 10; 5 with mega-ICC, 5 without mega-ICC) were killed and the bowel harvested. Half of each specimen was snap frozen for AchE and NADPH-diaphorase histochemistry, and the other half were fixed with 10% formalin for H&E staining and immunohistochemistry using PGP9.5 antibody (a marker for neurons), C-kit antibody (a marker for intestinal pacemaker cells), and stem cell factor antibody (a marker for C-kit ligand). Age-matched wild-type normal mice (n = 5) served as controls.. In the ileum, cecum, and proximal colon from all Ncx-/- mice (irrespective of the association of mega-ICC), typical findings of human intestinal neuronal dysplasia (IND) ie, obvious hyperganglionosis in neuronal plexuses on PGP9.5 immunohistochemistry, ectopic ganglia in the mucosal and muscular layers on AchE histochemistry, and ghostlike ganglia on NADPH-diaphorase histochemistry were found. Likewise, in normal caliber distal colon from these mice, the distribution of ganglion cells, C-kit, and stem cell factor was normal. In control specimens, there was no ectopic ganglia or hyperganglionosis.. These findings suggest that the Ncx/Hox11L.1 gene is required for the proper innervation of the enteric nervous system in mice, and our deficient strain may be useful as a model for studying IND in humans. Topics: Animals; Colon; Colonic Diseases; Culture Techniques; Disease Models, Animal; Enteric Nervous System; Ganglia; Gastrointestinal Motility; Homeodomain Proteins; Immunohistochemistry; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Transgenic; Neuropeptide Y; Oncogene Proteins; Reference Values; Sensitivity and Specificity | 2001 |
The influence of experimentally induced osteoarthrosis on articular nerve fibers of the sheep temporomandibular joint.
To study the effect of experimentally induced osteoarthrosis, or non-inflammatory degenerative changes, on the innervation of the sheep temporomandibular joint (TMJ) through the use of indirect immunohistochemistry and image analysis quantification.. Bilateral condylar scarification was performed in 8 sheep, which were killed at 16 weeks post-operation; 3 unoperated sheep served as controls. Tissues from 8 osteoarthrotic joints and 4 control joints were processed for the immunostaining with antisera for protein gene product 9.5 (PGP 9.5), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and tyrosine hydroxylase (TH). An additional 10 joints were decalcified to study the morphologic changes induced by the condylar abrasion.. Osteoarthrotic changes were commonly seen in the anterior and lateral regions of the joint and included fibrosis, peripheral osteophyte formation, cysts, and erosion of articular surfaces. In the osteoarthrotic joints, the distribution of PGP 9.5-, CGRP-, and SP-immunoreactive (IR) nerve fibers was similar to that observed for control joints in the capsule, synovium, and capsule/disc junction. There were statistically detectable decreases in the percent surface area of IR nerve fibers in the capsule for both PGP 9.5 and CGRP in arthrotic joints compared with control joints. The lateral and anterior regions of the capsule had greater density of PGP 9.5- and CGRP-IR nerve fibers than other parts of the capsule in both control and arthrotic joints, and the medial capsule was poorly innervated in all joints. Immunostaining for substance P was always weaker.. This study suggests that while inflammatory arthritis has a marked influence on the density of sensory and autonomic nerve fibers in synovium in a variety of joints in different species, experimentally induced non-inflammatory osteoarthrosis in the sheep TMJ also leads to a depletion of the density of nerve fibers in the capsule, especially in the lateral part of the joint. Further work is required to determine whether other parts of the joint, such as synovium and marrow, respond differently to experimentally induced osteoarthrosis. Topics: Analysis of Variance; Animals; Autonomic Nervous System; Calcitonin Gene-Related Peptide; Cicatrix; Cysts; Disease Models, Animal; Fibrosis; Image Processing, Computer-Assisted; Immunohistochemistry; Joint Capsule; Male; Mandibular Condyle; Nerve Fibers; Nerve Tissue Proteins; Neurons, Afferent; Neuropeptide Y; Osteoarthritis; Sheep; Statistics, Nonparametric; Substance P; Synovial Membrane; Temporomandibular Joint; Temporomandibular Joint Disc; Temporomandibular Joint Disorders; Thiolester Hydrolases; Tyrosine 3-Monooxygenase; Ubiquitin Thiolesterase; Vasoactive Intestinal Peptide | 2001 |
Early maternal separation alters neuropeptide Y concentrations in selected brain regions in adult rats.
Human and animal studies support the involvement of neuropeptide Y (NPY) in the pathophysiology of depression. Thus, hippocampal NPY-LI is decreased in genetic models of depression, the Flinders Sensitive Line and Fawn Hooded rats. Maternal "deprivation" has been identified as one risk factor in the development of psychopathology, including depression in adulthood. In view of these findings we hypothesized that brain NPY may also be decreased in an animal model of early life maternal deprivation. To test this hypothesis, male and female Sprague-Dawley rats were maternally separated (MS) 6 h/day or briefly handled from postnatal day 2 (PN2) to PN6 and from PN9 to PN13. At 12 weeks of age the rats were sacrificed, the brains dissected and NPY-LI measured by radioimmunoassay. MS rats had lower NPY-LI in the hippocampus. NPY-LI was also lower in female compared to male rats in hippocampus. Lastly, NPY-LI was increased in the hypothalamus of both male and female MS rats. These findings support the hypothesis that altered NPY in the limbic region is a common denominator of several models of depression and might be a trait marker of vulnerability to affective disorders. Topics: Animals; Animals, Newborn; Depression; Disease Models, Animal; Female; Frontal Lobe; Hippocampus; Hypothalamus; Male; Maternal Deprivation; Neuropeptide Y; Pregnancy; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Sex Factors | 2001 |
Experimental nerve compression and upregulation of CPON in DRG.
Expression of C-terminal flanking peptide of neuropeptide Y (CPON) in DRG and cell proliferation (incorporation of BrdU) in sciatic nerve of rats following chronic nerve compression (silicone tubes with different internal diameters) was studied by immunocytochemistry. An increased number of CPON-positive neurons and cells incorporating BrdU was induced on the compressed side, most pronounced when a tight tube was used, while no cells expressed CPON or BrdU in intact nerves. The increase was transient and declined with time. Nerve compression induces transient cell proliferation in the nerve and expression of CPON in nerve cell bodies, but this is of a lesser magnitude than those following nerve transection. Topics: Animals; Axons; Bromodeoxyuridine; Cell Count; Cell Division; Chronic Disease; Denervation; Disease Models, Animal; Female; Ganglia, Spinal; Immunohistochemistry; Nerve Compression Syndromes; Nerve Degeneration; Neurons, Afferent; Neuropeptide Y; Pain; Peptide Fragments; Rats; Rats, Wistar; Schwann Cells; Sciatic Nerve; Up-Regulation | 2001 |
Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y.
Altered fat distribution is a consequence of menopause, but the mechanisms responsible are unknown. Estrogen insufficiency in humans can be modeled using ovariectomized rats. We have shown that increased adiposity in these rats is due to reduced physical activity and transient hyperphagia, and can be reversed with 17beta-estradiol treatment. The aims of this study were to examine whether this altered energy balance is associated with circulating leptin insufficiency, central leptin insensitivity, decreased hypothalamic leptin receptor (Ob-Rb) expression, and/or increased hypothalamic neuropeptide Y (NPY).. Plasma leptin levels, adipose tissue ob gene expression, energy balance responses to i.c.v. leptin, hypothalamic Ob-Rb expression and NPY concentration in five separate hypothalamic regions were measured in adult female rats after either ovariectomy or sham operations.. Obesity was not associated with hypoleptinemia or decreased ob gene expression in ovariectomized rats; however, it was associated with insensitivity to central leptin administration. Food intake was less suppressed and spontaneous physical activity was less stimulated by leptin. This was not due to decreased hypothalamic Ob-Rb expression. NPY concentration in the paraventricular nucleus of the hypothalamus was elevated in the ovariectomized rats, consistent with leptin insensitivity; however this effect was transient and disappeared as body fat and leptin levels increased further and hyperphagia normalized.. Impaired central leptin sensitivity and overproduction of NPY may contribute to excess fat accumulation caused by estrogen deficiency. Topics: Absorptiometry, Photon; Adipose Tissue; Animals; Body Composition; Body Weight; Carrier Proteins; Disease Models, Animal; Energy Intake; Estrogens; Female; Hypothalamus; Leptin; Neuropeptide Y; Obesity; Ovariectomy; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, Leptin; Reverse Transcriptase Polymerase Chain Reaction; RNA; RNA, Messenger | 2001 |
Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin.
The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed. Topics: Animals; Calbindin 2; Calbindins; Calcium-Binding Proteins; Carrier Proteins; Cell Survival; Disease Models, Animal; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agonists; GABA Plasma Membrane Transport Proteins; Gene Expression Regulation; Hippocampus; Immunohistochemistry; Interneurons; Kainic Acid; Membrane Proteins; Membrane Transport Proteins; Mice; Mice, Knockout; Neurodegenerative Diseases; Neuropeptide Y; Organic Anion Transporters; Parvalbumins; Receptors, GABA-A; S100 Calcium Binding Protein G; Seizures; Somatostatin | 2000 |
Neuropeptide Y in brains of the Flinders Sensitive Line rat, a model of depression. Effects of electroconvulsive stimuli and d-amphetamine on peptide concentrations and locomotion.
Neuropeptide Y (NPY), has been implicated in the pathophysiology of depression and the mechanisms of action of electroconvulsive treatment (ECT). In this series of experiments, we explored whether there are differences between Flinders Sensitive Line (FSL) rats, an animal model of depression, and controls, Flinders Resistant Line (FRL) in (1) baseline brain NPY-LI concentrations, (2) effects of ECS on locomotion and brain neuropeptides, (3) amphetamine effects on behavior, and (4) effects of ECS pretreatment on subsequent effects of amphetamine on behavior. Both strains were divided into two groups, receiving eight ECS or ShamECS. Twenty-four hours after the last session, animals were habituated in activity boxes for 45 min before given d-amphetamine (1.5 mg.kg(-1), subcutaneously) or vehicle. Locomotor activity was then recorded for an additional 45 min. Twenty-four hours later, rats were sacrificed by microwave irradiation, the brains dissected into frontal cortex, occipital cortex, hippocampus, hypothalamus and striatum, and the neuropeptides extracted and measured by radioimmunoassay. No differences between FSL and FRL rats in baseline locomotor activity were found. FSL compared to FRL animals showed a significantly larger locomotion increase following saline and a significantly smaller increase following amphetamine. ECS pretreatment significantly decreased the saline effects on locomotion in the FSL and the amphetamine effects in the FRL rats. 'Baseline' NPY-like immunoreactivity (LI) concentrations were lower in the hippocampus of the 'depressed' rats. ECS increased NPY-LI in frontal cortex, occipital cortex and hippocampus of both strains. The hippocampal NPY-LI increase was significantly larger in the FSL compared to FRL animals. Topics: Animals; Depression; Dextroamphetamine; Disease Models, Animal; Dopamine; Electroconvulsive Therapy; Hippocampus; Locomotion; Male; Neuropeptide Y; Rats; Rats, Inbred Strains | 2000 |
Learning performances, brain NGF distribution and NPY levels in transgenic mice expressing TNF-alpha.
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine involved in a variety of neurobiological activities including changing behavior and regulation of both neurotrophin and neuropeptide levels. In this study we used two lines of transgenic mice overexpressing brain TNF-alpha characterized by neurological deficits (line Tg6074) or phenotypically normal (line TgK3). We analyzed whether or not impairments in learning and memory processes due to TNF-alpha overexpression were associated with changes in endogenous brain NGF, NPY and beta-amyloid. The results indicate that full TNF-alpha transgene expression disrupted the learning capabilities of transgenic mice (both Tg6074 and TgK3). NGF decreased in the hippocampus of both transgenic mice whereas hippocampal NPY slightly potentiated in Tg6074. The decrease in NGF is correlated with deficits in spatial learning and memory whereas inflammation in the brain of Tg6074 could be responsible of the hippocampal increase in NPY. As a whole, these results show that transgenic mice overexpressing TNF-alpha in the brain represent a useful model for studying neuronal degeneration and brain inflammatory processes. Topics: Amyloid beta-Peptides; Animals; Disease Models, Animal; Female; Gene Expression; Hippocampus; Immunohistochemistry; Male; Maze Learning; Memory; Mice; Mice, Transgenic; Nerve Growth Factor; Neurodegenerative Diseases; Neuropeptide Y; Radioimmunoassay; Swimming; Tumor Necrosis Factor-alpha | 2000 |
Role of neuropeptide Y in the development of two-kidney, one-clip renovascular hypertension in the rat.
Along with the renin-angiotensin system, sympathetic stimulation may contribute to renovascular hypertension. The vasoactive peptide neuropeptide Y (NPY) is co-released with and potentiates the pressor effects of norepinephrine through the Y-1 receptor. NPY, by exaggerating sympathetic activity, may contribute to renovascular hypertension, possibly by augmenting adrenergic-mediated renin release. This was studied by determining the effect of continuous Y-1 blockade on the development of two-kidney, one-clip renovascular hypertension and the effect of NPY on in vitro renin release.. Mean arterial pressure and renal blood flow responses to NPY (10 microg/kg, administered intravenously) were measured in five anesthetized Sprague-Dawley rats before and after BIBO3304TF administration to test the Y-1 antagonist BIBO3304TF. In hypertension studies, 28 rats underwent left renal artery clipping. Of these, 13 were implanted with a mini-osmotic pump for continuous BIBO3304TF infusion (0.3 microg/h, administered intravenously); the other 15 underwent sham implantation. Systolic blood pressure was then monitored for 4 weeks. Finally, in vitro renin release was measured from renal cortical slices (n = 6-12) incubated with NPY (10(-8) to 10(-6) mol/L) or NPY plus the adrenergic agonist isoproterenol (10(-4) mol/L).. BIBO3304TF attenuated the NPY-induced increase in mean arterial pressure by 54% (P <.02) and the NPY-induced decrease in renal blood flow by 38% (P <.05). In 4-week hypertension studies, systolic blood pressure in clipped controls increased from 130 +/- 3 mm Hg to 167 +/- 6 mm Hg (P <.01), whereas BIBO3304TF-treated rats had no significant increase (125 +/- 3 mm Hg to 141 +/- 8 mm Hg). Final systolic blood pressure was 26 mm Hg lower in BIBO3304TF-treated rats than in controls (P <.01). In renal cortical slices, no NPY effect was observed in basal or isoproterenol-stimulated renin release.. The Y-1 receptor antagonist BIBO3304TF attenuated acute pressor responses to NPY and blunted the development of two-kidney, one-clip renovascular hypertension in rats. NPY may contribute to the hypertensive response in this renovascular hypertension model. Our in vitro data do not suggest that this is due to NPY enhancement of renin release. Topics: Animals; Arginine; Blood Pressure Determination; Disease Models, Animal; Hemodynamics; Hypertension, Renal; Injections, Intravenous; Kidney; Male; Neuropeptide Y; Probability; Rats; Rats, Sprague-Dawley; Reference Values; Renin | 2000 |
Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss.
Melanin-concentrating hormone (MCH) is an orexigenic neuropeptide produced by neurons of the lateral hypothalamic area (LHA). Because genetic MCH deficiency induces hypophagia and loss of body fat, we hypothesized that MCH neurons may represent a specific LHA pathway that, when inhibited, contributes to the pathogenesis of certain anorexia syndromes. To test this hypothesis, we measured behavioral, hormonal, and hypothalamic neuropeptide responses in two models of hyperestrogenemia in male rats, a highly reproducible anorexia paradigm. Whereas estrogen-induced weight loss engaged multiple systems that normally favor recovery of lost weight, the expected increase of MCH mRNA expression induced by energy restriction was selectively and completely abolished. These findings identify MCH neurons as specific targets of estrogen action and suggest that inhibition of these neurons may contribute to the hypophagic effect of estrogen. Topics: Agouti-Related Protein; Animals; Anorexia; Corticotropin-Releasing Hormone; Disease Models, Animal; Drug Implants; Eating; Energy Metabolism; Estrogens; Hormones; Hypothalamic Hormones; Hypothalamus; Intercellular Signaling Peptides and Proteins; Leydig Cell Tumor; Male; Melanins; Neoplasm Transplantation; Neuropeptide Y; Pituitary Hormones; Pro-Opiomelanocortin; Proteins; Rats; Rats, Wistar; RNA, Messenger; Weight Loss | 2000 |
A new NPY-antagonist strongly stimulates apoptosis and lipolysis on white adipocytes in an obesity model.
Neuropeptide Y (NPY) is a 36 amino acid peptide released in central and peripheral mammalian neurons, which appears to contribute to adiposity regulation by increasing food intake, thus promoting weight gain on animals. Nevertheless, little is known about NPY direct actions on white adipocytes. This trial, which was designed to test the possible effects of a new NPY antagonist, S.A.0204, on white adipose tissue, revealed that the administration of this novel molecule strongly ex vivo stimulates apoptosis and lipolysis in animals fed on a high-fat diet. Topics: Adipocytes; Animals; Apoptosis; Body Temperature; Disease Models, Animal; Feeding Behavior; Female; Lipolysis; Neuropeptide Y; Obesity; Rats; Rats, Wistar | 2000 |
Quantitative autoradiography of adrenergic, neuropeptide Y and angiotensin II receptors in the nucleus tractus solitarii and hypothalamus of rats with experimental hypertension.
Catecholamines, neuropeptide Y (NPY) and angiotensin II (Ang II) are known to participate in the central control of blood pressure. However, the modulation of these neurotransmitter receptors in response to a hypertensive stimulus is not appropriately established. The purpose of the present study was to examine binding parameters of alpha(2)-adrenergic, NPY and Ang II receptors in the nucleus tractus solitarii (NTS) and paraventricular hypothalamic nucleus (PVN) following a hypertensive stimulus in the aortic-coarcted rat by means of quantitative receptor autoradiography. No changes were seen in binding parameters of alpha(2)-adrenergic and NPY receptors in the NTS of the hypertensive rat compared to control. However, an increased affinity (54%) of noradrenaline competing for 3H-PAC was seen in the PVN. Moreover, an increased binding (49%) of 125I-PYY was also observed in the PVN. The affinity of Ang II for 125I-Sar(1)Ile(8)-Ang II binding sites was also increased (57%) in the NTS of the hypertensive rat. No changes in the binding parameters of radioactive Ang II were observed in the PVN. The results suggest that systems involved with hypertension like Ang II in the NTS and catecholamines in the PVN might collaborate in the development/maintenance of high blood pressure in the aortic-coarcted rat. Topics: Adrenergic Agents; Animals; Aortic Coarctation; Autoradiography; Binding Sites; Binding, Competitive; Blood Pressure; Disease Models, Animal; Evaluation Studies as Topic; Hypertension; Male; Neuropeptide Y; Paraventricular Hypothalamic Nucleus; Radiography; Rats; Rats, Wistar; Receptors, Angiotensin; Solitary Nucleus | 2000 |
Effects of lifelong moderate caloric restriction on levels of neuropeptide Y, proopiomelanocortin, and galanin mRNA.
We are interested in how neuropeptides that regulate both food intake and reproductive function change with age and how life-prolonging moderate caloric restriction may influence the expression of these neuropeptides. We measured neuropeptide Y (NPY) and proopiomelanocortin (POMC) mRNA in the arcuate nucleus (AN), and galanin (GAL) mRNA in the AN, paraventricular nucleus (PVN) and medial septum-diagonal band of Broca in young, middle-aged and old female rats on a controlled feeding regimen. Female Sprague-Dawley rats (7 weeks old) were placed on caloric restriction (CR; n = 70) which was 60% of ad libitum (AL) intake measured in control rats (n = 70). Rats were rapidly decapitated 2.5 weeks following ovariectomy, when they were 4, 12, or 18 months old. Brains were frozen and coronal sections (12 microns) were cut at -20 degrees C using a cryostat. Relative levels of NPY, POMC and GAL mRNA were measured using in situ hybridization histochemistry. cDNA clones complementary to rat NPY, mouse POMC and rat GAL were used to synthesize 35S-UTP-labeled cRNA probes. Slides were dipped in photographic emulsion. Silver grains were quantified using computer-assisted image analysis. Caloric restriction increased NPY mRNA/cell, decreased POMC mRNA/cell in the AN, and did not influence GAL mRNA/cell. Age and caloric restriction did not influence the number of cells with detectable NPY mRNA, POMC mRNA or GAL mRNA. Reproductive status at the time of decapitation influenced both the level and the number of cells expressing GAL mRNA in the PVN. In summary, CR differentially affects levels of NPY, POMC and GAL mRNA in the AN. In this animal model, there was no statistically significant effect of age nor any interaction between age and diet on expression of any of these genes between 4 and 18 months of age. Topics: Aging; Analysis of Variance; Animals; Arcuate Nucleus of Hypothalamus; Cell Count; Coloring Agents; Disease Models, Animal; DNA, Complementary; Energy Intake; Female; Frontal Lobe; Galanin; Gene Expression Regulation; Histocytochemistry; Image Processing, Computer-Assisted; In Situ Hybridization; Mice; Neuropeptide Y; Ovariectomy; Paraventricular Hypothalamic Nucleus; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; RNA, Complementary; RNA, Messenger; Silver | 1999 |
Alterations in neuropeptide Y levels and Y1 binding sites in the Flinders Sensitive Line rats, a genetic animal model of depression.
Previously, we observed specific alterations of neuropeptide Y (NPY) and Y1 receptor mRNA expression in discrete regions of the Flinders Sensitive Line rats (FSL), an animal model of depression. In order to clarify the correlation between mRNA expression and protein content, radioimmunoassay and receptor autoradiography were currently performed. In the FSL rats, NPY-like immunoreactivity (NPY-LI) was decreased in the hippocampal CA region, while Y1 binding sites were increased; NPY-LI was increased in the arcuate nucleus. Fluoxetine treatment elevated NPY-LI in the arcuate and anterior cingulate cortex and increased Y1 binding sites in the medial amygdala and occipital cortex in both strains. No differences were found regarding the Y2 binding sites. The results demonstrate a good correlation between NPY peptide and mRNA expression, and sustain the possible involvement of NPY and Y1 receptors in depression. Topics: Amygdala; Animals; Antidepressive Agents, Second-Generation; Arcuate Nucleus of Hypothalamus; Brain Chemistry; Depression; Disease Models, Animal; Fluoxetine; Gastrointestinal Hormones; Hippocampus; Iodine Radioisotopes; Ligands; Neuropeptide Y; Occipital Lobe; Radioligand Assay; Rats; Rats, Mutant Strains; Rats, Sprague-Dawley; Receptors, Neuropeptide Y | 1999 |
Neuropeptide Y expression and endogenous leptin concentrations in a dietary model of obesity.
To determine how leptin concentrations and neuropeptide (NPY) are regulated in a model of dietary obesity in relation to relative growth (RG) and relative food consumption (RFC).. Sprague-Dawley rats were fed a moderately high-fat diet for 14 weeks over which time animals diverged into obesity-prone (OP) and obesity-resistant (OR) populations. RG rates and RFC were calculated weekly. Following the study, an adiposity index was calculated and arcuate nucleus (ARC) NPY expression was determined by in situ hybridization (ISH) or ribonuclease protection (RPA) assays.. Body weights were greater in OP rats after 2 weeks on the diet compared to OR rats and remained different throughout the study. RG and RFC were greater in OP rats compared to OR rats only during the first 2 weeks of the study. Leptin concentrations rose in both groups during the experiment, but the increase was greater in OP rats than in OR rats. Insulin changes paralleled those for leptin. ARC NPY mRNA expression was not different between OP and OR rats as measured by ISH and RPA.. Although NPY expression has been reported to be different initially in OP and OR rats, this difference dissipates following divergence of body weight. RFC and RG data suggest the initial NPY elevation may contribute to increased weight gain of OP rats during the first 2 weeks of the diet. Higher relative leptin concentrations in OP rats may be necessary to normalize differences in adiposity and apparent leptin and insulin resistance of OP rats. Topics: Animals; Body Composition; Body Weight; Dietary Fats; Disease Models, Animal; Eating; Energy Intake; Gene Expression; Hypothalamus; In Situ Hybridization; Leptin; Male; Neuropeptide Y; Obesity; Rats; Rats, Sprague-Dawley; RNA, Messenger | 1999 |
Neuropeptide Y, neurokinin A and neurotensin in brain regions of Fawn Hooded "depressed", Wistar, and Sprague Dawley rats. Effects of electroconvulsive stimuli.
1. Concentrations of neuropeptide Y (NPY)-, neurokinin A (NKA)- and neurotensin (NT)-like immunoreactivity (-LI) were measured in brain tissues of Fawn Hooded (FH) (a model of depression), Wistar (W) (control for depression) and Sprague Dawley (SD) rats (control for strain) with the aim to explore possible associations between neuropeptides and models of depression. 2. In addition, peptides were determined after six electroconvulsive stimuli (ECS) or six sham ECS ("baseline") in order to investigate ECS mechanisms of action. 3. Baseline NPY-LI concentrations were markedly lower in the hippocampus of the "depressed" FH compared to the W and SD animals. 4. Baseline NKA-LI concentrations were higher in the occipital cortex and NT-LI concentrations in the occipital cortex, frontal cortex, and hypothalamus of the FH and W compared to the SD rats. 5. ECS increased NPY-LI in the hippocampus, frontal cortex and occipital cortex of all three strains. In the hippocampus, the increase was significantly larger in the FH compared to the W and SD rats. ECS also increased NKA-LI in the hippocampus. 6. In contrast, ECS decreased NT-LI in the occipital cortex of the FH and W animals. 7. The results indicate that NPY may play a role in depression and that changes in NPY and NKA probably constitute one of the mechanisms of ECT action. More speculatively, NT may also be involved in depression. Topics: Animals; Brain Chemistry; Depressive Disorder; Disease Models, Animal; Electroshock; Immunohistochemistry; Male; Neurokinin A; Neuropeptide Y; Neurotensin; Rats; Rats, Sprague-Dawley; Rats, Wistar | 1998 |
An experimental model of tennis elbow in rats: a study of the contribution of the nervous system.
The contribution of the sensory and autonomic nervous system to experimentally induced tennis elbow or lateral epicondylalgia was investigated by analyses of the release of neuropeptides from sensory (substance P, SP, neurokinin A, NKA, calcitonin gene-related peptide, CGRP) and sympathetic (neuropeptide Y, NPY) nerves. SP, CGRP, NKA, NPY-like immunoreactivity (-LI) was studied in rats cerebrospinal fluid (CSF), plasma and perfusates (PF) from the enthesis of the extensor carpi radialis brevis (ECRB) of the right elbow at 2, 6 and 24 h following 0.01 ml injection of either complete Freund adjuvans (FA) or 2% Carrageenan (CAR). The control group was injected with 0.01 ml saline. In general the changes of neuropeptide-LI in the CSF and plasma were similar for both treated groups compared with the controls, but they were more pronounced in the FA group than the CAR. SP-, NKA-, CGRP- and NPY-LI were significantly increased to a similar degree in the perfusates of the ECRBs of the treated groups with a greater increase in SP-LI in the FA than the CAR group compared with controls. When comparing the neuropeptide-LI in the CSF, plasma and PF between the 2 treated groups, there were thus few differences found. Generally a unilateral injection with either FA or CAR into the rat ECRB induced a similar alteration in the concentration of SP-, NKA-, CGRP- and NPY-LI in the CSF, plasma and PF at 2, 6 and 24 h following injection. However, the most pronounced changes in neuropeptide-LI occurred locally in the elbow ECRBs PF in both treated groups. Topics: Animals; Calcitonin Gene-Related Peptide; Carrageenan; Disease Models, Animal; Freund's Adjuvant; Immunohistochemistry; Male; Nervous System; Neurokinin A; Neurons, Afferent; Neuropeptide Y; Neuropeptides; Rats; Rats, Sprague-Dawley; Substance P; Sympathetic Nervous System; Tennis Elbow | 1998 |
Contribution of the sensory and sympathetic nervous system to scalding-induced edema in the rat paw.
It has recently been hypothesized that both the sensory and sympathetic nervous system contribute to the inflammatory reaction. A scalding model was developed in anaesthetized rats to investigate the contribution of neuropeptides in heat-induced edema localized to the hindpaw. After immersing the paw in water at 60 degrees C for 10, 20, 30 and 60 s, edemic reactions were registered as change of paw volume in a plethysmograph and hindpaw perfusates collected to measure the content of neuropeptides by radioimmunoassay. A scalding period of 30 s induced the most prominent edemic reaction. There was a marked increase of the sensory neuropeptide neurokinin A and the sympathetic related transmitter neuropeptide Y in hindpaw perfusates after scalding. The effect of peripheral nerve ligation on edemic reaction and on the release of neuropeptides was investigated in rats scalded for 30 s at 60 degrees C. There was a significant decrease of edema formation in the scalded nerve ligated paw as compared with the scalded paw on the non-ligated side. Neurokinin A was not detected in nerve ligated rats before or after scalding, whereas mononeuropathic rats showed increased concentrations of neuropeptide Y. The present results indicate that the sensory as well as the sympathetic nervous system, possibly through the release of neuropeptides, may contribute to scald-induced edema. Topics: Animals; Burns; Disease Models, Animal; Edema; Ganglia, Sensory; Hindlimb; Hot Temperature; Ligation; Male; Neurokinin A; Neuropeptide Y; Neuropeptides; Plethysmography; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Sympathetic Nervous System | 1998 |
Increased neuropeptide Y pressor activity in Goldblatt hypertensive rats: in vivo studies with BIBP 3226.
Nanomoles of neuropeptide Y (NPY) and noradrenaline (NA), administered i.v. to pentobarbital-anesthetized rats, caused nearly equipotent dose-dependent pressor responses in normotensive rats. However, in renovascular Goldblatt hypertensive rats, the dose-response curves for both NPY and NA were significantly displaced to the left, approximately threefold. Intravenous administration of BIBP 3226 (30-180 microg/kg) did not consistently lower blood pressure, per se, but did evoke competitive antagonism of the NPY pressor response in both rat populations. The magnitude of the NPY antagonism evoked by BIBP 3226 was comparable in normotensive and hypertensive rats. The absence of NA antagonism demonstrates the selectivity of the BIBP 3226 blockade. Topics: Animals; Arginine; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Renovascular; Kidney; Male; Neuropeptide Y; Norepinephrine; Rats; Rats, Sprague-Dawley; Renal Artery | 1998 |
Endogenous neuropeptide Y mediates vasoconstriction during endotoxic and hemorrhagic shock.
Neuropeptide Y (1-36), NPY, is a sympathetic vasoconstrictor whose activities in blood vessels is determined by the presence of vasoconstrictive Y1 receptors and the enzyme dipeptidyl peptidase IV (DPPIV), which converts NPY to non-vasoconstrictive peptides. While the role of the NPY system has been established during cold water stress, its role in hypotensive conditions has not; yet, exogenous NPY improves hemodynamics and survival in rats with endotoxic shock. We used a new selective non-peptidergic Y1 receptor antagonist, BIBP-3226, to determine the role of the endogenous NPY/Y1 system in endotoxic shock (induced by i.v. injection of 10 mg/kg of Escherichia coli lipopolysaccharide 0127:B8, LPS) and hemorrhagic shock (bleeding of 15 ml/kg over 1.5 min). Conscious rats received a bolus of BIBP-3226 or the vehicle 5 min before endotoxin challenge or induction of hemorrhage, followed by continuous infusion. Mean arterial pressure (MAP) at 5 min after LPS administration dropped in the control group by 15%, compared to 36% in the BIBP-3226-treated group (p < 0.01). Similarly, the hemorrhage-induced drop in MAP in the control group was 32% at 5 min, compared to 53% in the BIBP-treated rats (p < 0.01). Plasma NPY levels were unchanged in the endotoxic shock group, but were significantly elevated in the hemorrhagic shock group. BIBP-3226 pretreatment abrogated the increased plasma NPY levels after hemorrhagic shock. Endogenous NPY contributes to blood pressure recovery during endotoxic and hemorrhagic shock. Topics: Animals; Arginine; Blood Pressure; Disease Models, Animal; Heart Rate; Lipopolysaccharides; Male; Neuropeptide Y; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Shock, Hemorrhagic; Shock, Septic; Vasoconstriction | 1998 |
Antiepileptic effects of NPY on pentylenetetrazole seizures.
Intracerebroventricular (i.c.v.) administration of NPY inhibits limbic seizure activity induced by kainic acid or electrical hippocampal stimulation in vivo. Similarly, antiepileptiform effects have been demonstrated in hippocampal slice models. This suggests a possible antiepileptic potential of NPYergic agonists in future treatment of complex partial seizures in humans. To further characterize the antiepileptic potential of NPY, the effects of NPY administered i.c.v. were studied on seizures induced by subcutaneous injection of pentylenetetrazole (PTZ), a widely used antiepileptic screening test believed to model generalized myoclonic seizures. NPY significantly and dose-dependently inhibited PTZ-induced clonic seizures as revealed by increases in seizure latencies. In addition, NPY caused an overall significant reduction in the number of rats developing tonic seizures and in mortality following PTZ, indicating that NPY also reduces seizure severity. By demonstrating antiepileptic activity of NPY in yet another seizure model, this study further adds to the concept of NPY receptors as potentially novel targets in future treatment of seizure disorders. Specifically, antiepileptic effects in the PTZ model suggest that NPYergic agonists might also prove active against human myoclonic seizures. Topics: Animals; Anticonvulsants; Convulsants; Disease Models, Animal; Humans; Injections, Intraventricular; Male; Neuropeptide Y; Pentylenetetrazole; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Seizures | 1998 |
Altered gene expression for catecholamine biosynthetic enzymes and stress response in rat genetic model of depression.
Although stress is a major contributory factor in the development of depression, the relationship between stress and depression is still unclear. In this study, we evaluated basal mRNA levels of several genes involved in neurotransmitter biosynthesis and the effect of stress in Flinder's Sensitive Line (FSL), a genetic rat model of depression. In adrenals, basal levels of tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT) and GTP cyclohydrolase I (GTPCH) mRNAs were markedly elevated in FSL rats compared to the control strain. As opposed to control strain, immobilization stress (IMO) to FSL rats, did not further raise DBH, PNMT or GTPCH mRNAs and had relatively mild effect on TH. In contrast to enzymes involved in catecholamine biosynthesis, basal NPY and its response to IMO were unchanged in FSL rats. In the brain, the two major dopaminergic nuclei displayed differences. In substantia nigra, TH mRNA levels were similar in both strains, and elevated by IMO only in FSL rats. In ventral tegmental area in FSL rats, TH mRNA was 2-fold higher than in the control strain and not further elevated by IMO. These high basal mRNA levels and abnormal response to stress in several catecholaminergic cell types in FSL rats may be related to the manifestations of depression. Topics: Animals; Brain; Brain Chemistry; Catecholamines; Depression; Disease Models, Animal; Dopamine; Dopamine beta-Hydroxylase; Gene Expression Regulation, Enzymologic; Male; Neurons; Neuropeptide Y; Rats; Rats, Mutant Strains; Rats, Sprague-Dawley; RNA, Messenger; Stress, Physiological; Tyrosine 3-Monooxygenase | 1998 |
Altered neuropeptide Y Y1 responses in mesenteric arteries in rats with congestive heart failure.
The aim of the present study was to elucidate if the potentiating effect of neuropeptide Y on various vasoactive agents in vitro is (1) altered in mesenteric arteries from rats with congestive heart failure and (2) mediated by the neuropeptide Y Y1 receptor. The direct vascular effects of neuropeptide Y and its modulating effects on the contractions induced by endothelin-1-, noradrenaline-, 5-hydroxytryptamine (5-HT)-, U46619-(9,11-dideoxy-11alpha, 9alpha-epoxymethano-prostaglandin F2alpha) and ATP, and acetylcholine-induced dilatations were studied in the presence and absence of the neuropeptide Y Y1 antagonist, BIBP3226 (BIBP3226¿(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl ]-D-arginine-amide¿). Neuropeptide Y, per se, had no vasoactive effect in the arteries. The potency of endothelin-1 was significantly decreased in congestive heart failure rats. Neuropeptide Y and neuropeptide Y-(13-36) potentiated the endothelin-1-induced contraction in congestive heart failure mesenteric arteries. In 20% of the congestive heart failure rats, sarafotoxin 6c induced a contraction of 31+/-4%. Neuropeptide Y also potentiated U46619- and noradrenaline-induced contractions but not 5-HT-induced contractions in congestive heart failure arteries. In sham-operated animals neuropeptide Y potentiated noradrenaline- and 5-HT-induced contractions. These potentiations were inhibited by BIBP3226. Acetylcholine induced an equipotent relaxation in both groups which was unaffected by neuropeptide Y. In conclusion, neuropeptide Y responses are altered in congestive heart failure rats. The potentiating effect differs between vasoactive substances. Neuropeptide Y Y1 and non-neuropeptide Y1 receptors are involved. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetylcholine; Adenosine Triphosphate; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Endothelins; Heart Failure; Male; Mesenteric Arteries; Muscle Relaxation; Myocardial Contraction; Neuropeptide Y; Norepinephrine; Potassium; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Serotonin; Sympathetic Nervous System; Vasoconstrictor Agents | 1998 |
Detection of alterations in the levels of neuropeptides and salivary gland responses in the non-obese diabetic mouse model for autoimmune sialoadenitis.
The salivary glands of non-obese diabetic (NOD) mice and BALB/c controls were evaluated for the stimulatory effects of the following neuropeptides; substance P (SP), vasoactive intestinal polypeptide (VIP), and neuropeptide Y (NPY). Injection of either of the three neuropeptides in combination with the muscarinic-cholinergic agonist pilocarpine increased saliva flow rates in BALB/c mice while there was no observable augmentation to flow rates in pre-diabetic or diabetic NOD mice. Small increases in protein content of the stimulated saliva were observed in the BALB/c group of animals with the injection of any of the above neuropeptides in combination with pilocarpine. In pre-diabetic NOD animals, only VIP and NPY increased the protein content-ratio above pilocarpine alone. Radioimmunoassay determination of neuropeptide concentrations in the submandibular and parotid glands revealed reduced levels of SP with diabetes onset as compared with pre-diabetic NOD or BALB/c mice. The levels of NPY were similar between BALB/c and NOD animals except in the pre-diabetic parotid gland where NPY concentrations were 1.3-fold greater. On the other hand, VIP concentrations were substantially reduced in the submandibular gland of NOD mice, while in the parotid gland neuropeptide levels were evaluated 3.8-fold relative to BALB/c controls. Immunohistochemical staining of the parotid and submandibular glands for SP revealed primarily ductal cell staining which was reduced with diabetes onset in NOD animals. These findings further define the sialoadenitis observed in NOD mice to be due, in part, to a general loss of neurotransmitter responsiveness on the part of salivary gland cells. Topics: Animals; Autoimmune Diseases; Disease Models, Animal; Mice; Mice, Inbred BALB C; Mice, Inbred NOD; Neuropeptide Y; Neuropeptides; Salivary Glands; Sialadenitis; Substance P; Vasoactive Intestinal Peptide | 1997 |
alpha-Cell neogenesis in an animal model of IDDM.
Currently there is debate regarding the capacity of pancreatic islets to regenerate in adult animals. Because pancreatic endocrine cells are thought to arise from duct cells, we examined the pancreatic ductal epithelium of the diabetic NOD mouse for evidence of islet neogenesis. We have evidence of duct proliferation as well as ductal cell differentiation, as suggested by bromodeoxyuridine-labeling and the presence of glucagon-containing cells within these ducts. In addition, the ductal epithelia in diabetic NOD mice expressed the neuroendocrine markers neuropeptide Y and tyrosine hydroxylase. These ducts also expressed the homeobox gene product, insulin promoter factor 1. Ductal cell proliferation and expression of these markers was not observed in transgenic NOD mice (NOD-E), which do not develop clinical or histopathological symptoms of IDDM. This suggests that the observed ductal cell proliferation and differentiation was a direct result of beta-cell destruction and insulin insufficiency in these adult diabetic mice, which further suggests that these events are recapitulating islet ontogeny observed during embryogenesis. It is possible that comparable processes occur in the human diabetic pancreas. Topics: Animals; Antimetabolites; Bromodeoxyuridine; Diabetes Mellitus, Type 1; Disease Models, Animal; Female; Glucagon; Guinea Pigs; Homeodomain Proteins; Immune Sera; Immunohistochemistry; Insulin; Male; Mice; Mice, Inbred NOD; Neuropeptide Y; Pancreatic Ducts; Rabbits; Rats; Regeneration; Trans-Activators; Tyrosine 3-Monooxygenase | 1997 |
An experimental study of the neurogenic and the immunological contribution to "tennis elbow" in rats.
In the present study the content of substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)- and neuropeptide Y (NPY)-like immunoreactivity (-LI) was measured in rats cerebrospinal fluid (CSF), plasma and perfusates (PF) from both elbow enthesis during acute inflammation. Either substance P, SP, (10-5 M, 0.01 ml) or human recombinant interleukin-1 alpha (hrIl-1 alpha, 0.01 ml) were injected into the right enthesis of the extensor carpi radialis brevis (ECRB). The left ECRB and both ECRBs of control rats, were injected with 0.01 ml saline. Samples of CSF, plasma and PF from both ECRBs were obtained at 2, 6, and 24 h following injection and neuropeptide-LI was analysed by specific radioimmunoassays. Neuropeptide-LI was compared with control values and between the treated groups. In both treated groups NKA- and CGRP-LI was increased in CSF and NKA-LI decreased in plasma, while CGRP- and NPY-LI were raised to a similarly significant degree in the enthesis of the ECRB. SP-LI was increased in ECRB PF in comparison with controls and NKA-LI levels were higher in the hrIl-1 alpha group both in comparison with controls and between treated groups. In summary an unilateral injection of either SP or hrIl-1 alpha into the enthesis of the ECRB of the rat showed a similar influence at 2, 6, and 24 h following injection. The most pronounced changes in neuropeptide-LI occurred in the ECRB PF of both treated groups. Topics: Animals; Calcitonin Gene-Related Peptide; Disease Models, Animal; Injections, Intra-Arterial; Interleukin-1; Male; Neurokinin A; Neuropeptide Y; Neuropeptides; Perfusion; Rats; Rats, Sprague-Dawley; Substance P; Tennis Elbow | 1997 |
Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors.
Neuropeptide Y (NPY) is widely distributed in interneurons of the central nervous system (CNS), including the hippocampus and cerebral cortex, in concentrations exceeding those of any other known neuropeptides. Sequence data comparing different species show that NPY is highly conserved. This suggests a critical role in regulation of regional neuronal excitability. Kainic acid, a glutamate agonist at kainic acid receptors, causes severe limbic motor seizures culminating in status epilepticus. We here report that NPY administered into the lateral ventricle is a powerful inhibitor of motor as well as electroencephalographic (EEG) seizures induced by kainic acid. This effect was mediated via receptors with a pharmacological profile similar to the recently cloned rat Y5 receptor. The present study is the first to demonstrate that NPY possesses anticonvulsant activity. This is consistent with the concept that NPY is an endogenous anticonvulsant and suggests that agonists acting at Y5-like receptors may constitute a novel group of drugs in antiepileptic therapy. Topics: Animals; Anticonvulsants; Disease Models, Animal; Humans; Kainic Acid; Male; Neuropeptide Y; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Receptors, Neuropeptide Y; Seizures | 1997 |
Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment.
The effects of trimethyltin on the hippocampus were investigated in terms of changes in histology, depth electroencephalography, learning acquisition and memory retention, choline acetyltransferase and neuropeptides, and seizure-induced c-fos messenger RNA expression. The results were as follows. (1) Morphologically, trimethyltin produced a progressive loss of hippocampal CA3 and CA4 pyramidal cells, starting from four days after peroral treatment with trimethyltin hydroxide (9 mg/kg), as described previously. (2) Neurophysiologically, the increased seizure susceptibility to pentylenetetrazol treatment reached a maximum at four days post-trimethyltin and then declined after five days post-trimethyltin. The maximal seizure susceptibility at four days post-trimethyltin was confirmed by the immediate and long-lasting appearance of spike discharge in the hippocampus. However, this was not verified by the expression of c-fos messenger RNA in the hippocampus, which was comparable between trimethyltin-treated and control rats. (3) Behaviorally, the time-courses of aggression and learning impairment were similar to that of the seizure susceptibility. (4) Neurochemically, trimethyltin treatment caused changes of neurochemical markers, which were manifested by the elevation of neuropeptide Y content in the entorhinal cortex, and of choline acetyltransferase in the hippocampal CA3 subfield. Trimethyltin may offer potential as a tool for investigations on the relationship between neuronal death in the hippocampus and the development of seizure susceptibility and learning impairment. Alterations in glucocorticoids, glutamate and neuropeptides may all contribute to the manifestation of the trimethyltin syndrome. Topics: Animals; Brain Chemistry; Choline O-Acetyltransferase; Corticotropin-Releasing Hormone; Disease Models, Animal; Electroencephalography; Hippocampus; Immunohistochemistry; In Situ Hybridization; Learning; Male; Maze Learning; Memory; Neurodegenerative Diseases; Neuropeptide Y; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Seizures; Somatostatin; Trimethyltin Compounds | 1997 |
Changes of immunoreactive neuropeptide Y, somatostatin and corticotropin-releasing factor (CRF) in the brain of a novel epileptic mutant rat, Ihara's genetically epileptic rat (IGER).
Ihara's genetically epileptic rat (IGER) is a rat mutant with genetically scheduled spontaneous convulsions mimicking human limbic seizures. In the present study, the possible changes of three neuropeptides, neuropeptide Y (NPY), somatostatin (SRIF) and corticotropin-releasing factor (CRF), in the brains of IGER were investigated. Increased contents of immunoreactive (IR) NPY were found only in the hippocampus of 2-month IGERs before developing convulsive seizures, while similar increases of IR-NPY were discovered in the striatum and pyriform and entorhinal cortex as well as hippocampus in 8-month IGERs with repetitive seizures. There were no significant differences in the brain contents of IR-SRIF and IR-CRF between IGERs and the controls at both ages. These findings indicate an enhanced rate of NPY synthesis in this experimental model of epilepsy which may play a critical role in the development of epileptogenesis. Topics: Animals; Antibody Specificity; Brain Chemistry; Corticotropin-Releasing Hormone; Disease Models, Animal; Epilepsy; Female; Male; Neuropeptide Y; Rats; Rats, Mutant Strains; Rats, Wistar; Somatostatin | 1997 |
Effects of capsaicin in temporomandibular joint arthritis in rats.
Temporomandibular joint (TMJ) arthritis was induced in female Lewis rats by unilateral injection of a suspension of heat-killed Mycobacterium butyricum in paraffin oil into the TMJ. Control rats received paraffin oil by the same route. Arthritic and control rats were pretreated either with capsaicin or denervation of the mandibular branch of the trigeminal nerve. Tissues were collected for neuropeptide extraction and analysed by radioimmunoassay and reverse-phase high-performance liquid chromatography. In all groups, the levels of substance P-(SP), calcitonin gene-related peptide- (CGRP) and neuropeptide Y- (NPY) like immunoreactivity (LI) were higher in the trigeminal ganglia than in the TMJs. In control rats, capsaicin significantly lowered the levels of SP-LI in the trigeminal ganglia and TMJ, but not CGRP-LI and NPY-LI. In the arthritic rats, capsaicin pretreatment significantly lowered the SP-LI and CGRP-LI in the trigeminal ganglia and TMJ, but not the NPY-LI. In the trigeminal ganglia the unilateral denervation significantly lowered SP-LI in control rats, and in arthritic rats SP-LI and CGRP-LI. On the denervated side of the arthritic TMJ, NPY-LI, SP-LI and CGRP- LI were significantly lowered as compared to the arthritic control rats and to the contralateral side. In this rat model, pretreatment with capsaicin and surgical denervation decreased the neuropeptide content in the trigeminal ganglia and the TMJ. The results clearly demonstrate a close interaction between increased neuropeptide release from sensory and sympathetic neurones after induction of arthritis in the rat. Topics: Animals; Arthritis; Calcitonin Gene-Related Peptide; Capsaicin; Chromatography, High Pressure Liquid; Denervation; Disease Models, Animal; Female; Mandibular Nerve; Neurons, Afferent; Neuropeptide Y; Neurotoxins; Nontuberculous Mycobacteria; Radioimmunoassay; Rats; Rats, Inbred Lew; Substance P; Sympathetic Nervous System; Temporomandibular Joint; Temporomandibular Joint Disorders; Trigeminal Ganglion | 1997 |
A model for experimental induction of acute temporomandibular joint inflammation in rats: effects of substance P(SP) on neuropeptide-like immunoreactivity.
This is a study of neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)- and neuropeptide Y (NPY)- like immunoreactivity(-LI) in the cerebrospinal fluid (CSF), plasma and perfusates (PF) from the temporomandibular joints (TMJs) of the rat during acute inflammation. Substance P (10(-5) M, 0.01 ml) was injected into the right TMJ of the rat. The TMJs of the control rats, were injected with 0.01 ml saline. CSF, plasma and PF from TMJs were taken at 2, 6 and 24 hrs following injection. The neuropeptide-LI level was analysed by specific radioimmunoassays and compared with control values. Unilateral injection of SP into the rat TMJ resulted in a general increase in the concentration of NKA-, CGRP- and NPY-LI in the TMJ PF at 2, 6 and 24 hrs following injection. In the CSF NKA- and CGRP-LI was increased leaving the NPY-LI unaffected. In general no changes in peptide concentrations were seen in plasma. The results indicate that SP directly or indirectly induces a local release of peptides through an action at sensory and sympathetic neurons. Topics: Animals; Calcitonin Gene-Related Peptide; Chromatography, High Pressure Liquid; Disease Models, Animal; Inflammation; Male; Neurokinin A; Neuropeptide Y; Neuropeptides; Rats; Rats, Sprague-Dawley; Substance P; Temporomandibular Joint; Temporomandibular Joint Disorders | 1996 |
Obesity: advances in understanding and treatment. IBC's Second Annual International Symposium on Obesity: Advances in Understanding and Treatment. Washington, DC, USA, 4-6 March 1996.
Topics: Amyloid; Colipases; Diabetes Mellitus, Type 2; Diet; Disease Models, Animal; Enzyme Precursors; Humans; Islet Amyloid Polypeptide; Leptin; Neuropeptide Y; Neurotransmitter Agents; Obesity; Protein Precursors; Proteins; Serotonin; Tryptophan | 1996 |
Neuropeptide Y expression in animal models of temporal lobe epilepsy.
Topics: Amygdala; Animals; Brain Mapping; Disease Models, Animal; Epilepsy, Temporal Lobe; Frontal Lobe; Gene Expression; Hippocampus; Male; Neuropeptide Y; Rats; RNA, Messenger | 1996 |
Peripheral hyperalgesia in experimental neuropathy: exacerbation by neuropeptide Y.
Injury of peripheral nerves often results in hyperalgesia (an increased sensitivity to painful stimuli). This hyperalgesia is mediated in part by sympathetic neurotransmitters. We examined the effect of neuropeptide Y (NPY), specific Y1 and Y2 agonists, and an NPY antagonist on peripheral hyperalgesia in rats whose sciatic nerves had been partially transected. NPY and the Y2 agonist, N-acetyl [Leu28,Leu31] NPY 24-36 exacerbated both mechanical and thermal hyperalgesia, while the Y1 agonist, [Leu31, Pro34]NPY relieved thermal hyperalgesia. Mechanical and thermal hyperalgesia were both relieved by alpha-trinositol (PP56), a non-competitive antagonist of the actions of neuropeptide Y. Hyperalgesia was also relieved by surgical sympathectomy, which eliminated the effects of NPY and its agonists. These results suggest that neuropeptide Y contributes to peripheral hyperalgesia by actions at Y2 receptors, which may be located on postganglionic sympathetic terminals. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Disease Models, Animal; Female; Hyperalgesia; Inositol Phosphates; Neuropeptide Y; Rats; Rats, Wistar; Sciatic Nerve; Sympathectomy | 1995 |
Changes in neuronal markers in a mononeuropathic rat model relationship between neuropeptide Y, pre-emptive drug treatment and long-term mechanical hyperalgesia.
Using the chronic constriction model (CCI) of Bennett and Xie (1988), changes in the lumbar spinal cord in neuropeptides and lectin IB4 were examined at 28 days post-nerve constriction and were compared with the degree of mechanical hyperalgesia. Animals following nerve ligation were significantly more hyperalgesic than sham-operated animals (P < 0.0001). Lectin IB4, a marker of primary afferent C fibres, showed a qualitative decrease in staining intensity in laminae 1-2 with ligation compared with both the unoperated contralateral side and with sham animals. Using fluorescent immunohistochemistry to quantify changes in neuropeptides in the dorsal horn we found that substance P showed significant decreases with ligation compared to sham operation (P < 0.002). CGRP and galanin showed no significant changes in laminae 1-2 compared to sham-operated animals. Neuropeptide Y (NPY) showed no significant changes in intensity in laminae 1-2; however, in laminae 3-4 there was a significant increase with nerve ligation compared to sham (P < 0.005). We examined how pre-emptive drug treatment affected these neuronal markers at 28 days. We used (1) clonidine, an alpha 2-adrenoreceptor agonist (1 mg/kg, i.p.), (2) morphine, a mu-opioid agonist (5 mg/kg, i.p.) or (3) MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist (0.3 mg/kg, s.c.) administered 30 min prior and 6 h following nerve ligation or sham-operation. Hyperalgesia in the ligated group at 28 days was suppressed by treatment with pre-emptive clonidine (P = 0.003) or MK-801 (P = 0.003) but not morphine. With the exception of NPY there was no effect of pre-emptive drug treatment on any neuronal marker examined. Pre-emptive MK-801 reduced the magnitude of the increase in NPY in laminae 3-4 in the ligated group (P < 0.005) and clonidine showed a similar trend but this did not reach significance. Morphine had no effect on NPY staining. There was a significant correlation between the increase in NPY staining in laminae 3-4 and the degree of hyperalgesia (r = 0.6, P < 0.001). These results suggest that the increased NPY expression in laminae 3-4 of the spinal cord (the territory of the myelinated sensory input) may be crucial to the development of hyperalgesia in this model. Topics: Analgesics; Animals; Biomarkers; Disease Models, Animal; Hyperalgesia; Ligation; Lumbosacral Region; Neurons; Neuropeptide Y; Neuropeptides; Peripheral Nervous System Diseases; Rats; Reaction Time; Sciatic Nerve; Spinal Cord; Time Factors | 1995 |
Neuropeptide Y immunoreactive neurons in murine trisomy 16 cortical cultures. Plasticity of expression and differentiation.
Neuropeptide Y (NPY)-containing neurons are depleted in the cortices of individuals with Alzheimer disease (AD), yet spared in the striatum of patients with Huntington chorea. It is unknown whether this neuronal phenotype is inherently susceptible to the neurodegenerative processes that are a hallmark of AD. To study this question, the murine trisomy 16 model of Down syndrome and Alzheimer disease was investigated. Since trisomic fetuses die in utero, studies were carried out on primary cultures of dissociated cortical neurons. These were prepared from 15-d gestational trisomy 16 fetuses and their littermate euploid controls, and examined by immunocytochemical staining for neuropeptide Y at 7 and 12 d in vitro. Trisomy 16 neurons were also grown on euploid glial carpets, whereas euploid neurons were grown on trisomic glia. The results demonstrate a significant increase in the number of NPY neurons and a stunting in the dendritic arbor of these neurons in trisomic vs euploid cortex. Both of these parameters could be normalized by direct contact with euploid glia. When euploid cortex was plated on trisomic glia, the number of NPY neurons and their morphology were altered so that they began to resemble trisomic NPY cortical neurons. These results indicate a dysregulation of NPY neuronal expression and differentiation in trisomy 16 cortex that are modifiable by interaction with euploid glia and imply an abnormal trophic (glial) environment in trisomic cortex. Topics: Alzheimer Disease; Animals; Cell Differentiation; Cerebral Cortex; Disease Models, Animal; Down Syndrome; Female; Male; Mice; Mice, Inbred C57BL; Neuroglia; Neuronal Plasticity; Neurons; Neuropeptide Y; Trisomy | 1994 |
NADPH-diaphorase histochemistry and functional analysis of human fetal striatal brain tissue transplanted into a rodent model of Huntington's disease.
Topics: Animals; Biomarkers; Brain Tissue Transplantation; Cyclosporine; Disease Models, Animal; Fetal Tissue Transplantation; Histocytochemistry; Humans; Huntington Disease; Motor Activity; NADPH Dehydrogenase; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Rotation; Somatostatin | 1994 |
Norepinephrine and neuropeptide Y increase intracellular Ca2+ in cultured porcine aortic smooth muscle cells.
We used the fluorescent Ca2+ indicator Fura-2 in cultured porcine aortic smooth muscle cells (PASMC) to study effects of the sympathetic neurotransmitters norepinephrine (NE) and neuropeptide Y (NPY) on free intracellular Ca2+ (Cai). Both transmitters transiently increased intracellular Ca2+ in a concentration-dependent manner. Selective agonists and antagonists demonstrated that the NE-stimulated Cai increase is predominantly (if not exclusively) mediated by alpha 2-adrenoceptors, whereas the NPY response appears to be mediated by the peptide YY-insensitive Y3-like receptor subtype. Pretreatment of cells with pertussis toxin abolished NPY and alpha-adrenoceptor agonist-stimulated intracellular Ca2+ elevations (but not those stimulated by angiotensin II) suggesting involvement of a Gi-like G-protein. alpha 2-Adrenoceptor-stimulated Ca2+ increases resulted from mobilization from intracellular stores, whereas Y3-like NPY receptors mobilized Ca2+ from intracellular stores and also promoted Ca2+ influx. Topics: Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Aorta; Arteriosclerosis; Calcium; Cells, Cultured; Disease Models, Animal; GTP-Binding Proteins; Muscle, Smooth, Vascular; Neuropeptide Y; Norepinephrine; Swine | 1993 |
Intracerebroventricular neuropeptide Y increases gastric and pancreatic secretion in the dog.
Neuropeptide Y (NPY), a centrally located neurotransmitter, is known to increase appetite in fasted and satiated animals. In addition to evaluating NPY's effect on eating behavior, this study was intended to determine whether intracerebroventricular (ICV) NPY would have an effect on canine gastric and pancreatic secretion.. Four dogs were prepared with cerebroventricular guides and gastric and pancreatic fistulas. ICV and intravenous NPY was administered during intragastric titration of a glucose and peptone meal. During this study, gastric and pancreatic secretion was measured, as well as insulin levels and pancreatic polypeptide (PP). An additional set of four dogs were prepared with esophageal fistulas and cerebroventricular guides, and the effect of ICV NPY on sham feeding was studied.. ICV NPY significantly increased sham feeding, meal-stimulated gastric and pancreatic secretion, basal gastric acid, pancreatic bicarbonate, insulin levels, and PP. Vagotomy blocked the effect of ICV NPY on gastric acid secretion in a urethane-anesthetized rat model with acute gastric fistula.. ICV NPY increased sham feeding, gastric and pancreatic secretion, insulin levels, and PP in the dogs. NPY's effect on gastric secretion was blocked by vagotomy in a rat model. NPY should be considered a candidate mediator of cephalic phase secretion. Topics: Analysis of Variance; Animals; Bicarbonates; Disease Models, Animal; Dogs; Eating; Female; Gastric Acid; Gastric Acidity Determination; Gastric Fistula; Gastric Mucosa; Glucose; Injections, Intravenous; Injections, Intraventricular; Insulin; Insulin Secretion; Male; Neuropeptide Y; Pancreas; Pancreatic Polypeptide; Peptones; Rats; Rats, Sprague-Dawley; Vagus Nerve | 1993 |
Diminished neuropeptide Y and dopamine beta-hydroxylase immunoreactivity in a guinea pig model of left ventricular hypertrophy.
The aims of the study were to determine the effect of chronic pressure overload of the left ventricle on the density and distribution of neuropeptide-Y-like immunoreactive (NPY-LI) nerve fibres in heart and to compare any changes to those observed in adrenergic nerve fibres, identified by dopamine beta-hydroxylase immunoreactivity.. Pressure overload was produced in female adult guinea pigs by constriction of the abdominal aorta, using a modified Weck haemoclip. The same operation was performed on a separate group of animals except that no clip was placed around the aorta. Five weeks after surgery, animals were anaesthetised, and the hearts were fixed by perfusion for immunohistochemistry. Cryostat sections were stained, using an indirect peroxidase/antiperoxidase method, for NPY or dopamine beta-hydroxylase.. Aortic stenosis caused a 45% increase in left ventricular weight and a 58% increase in left atrial weight at 5 weeks postsurgery. Pulmonary oedema, a sign of cardiac failure, was evident in most of the animals with aortic stenosis. Immunohistochemical studies showed that in atria and right ventricles from animals with abdominal aortic stenosis the distribution and density of NPY-LI nerve fibres were similar to those in the sham operated guinea pigs. However, the left ventricles obtained from the animals with aortic stenosis were nearly devoid of NPY-LI nerve fibres. The density of dopamine beta-hydroxylase-LI nerve fibres was also substantially reduced in the hypertrophied left ventricles.. Aortic stenosis resulting in left ventricular hypertrophy caused a nearly complete loss of NPY-LI and dopamine beta-hydroxylase-LI nerve fibres from the left ventricle. The parallel reduction in both neuropeptide Y and dopamine beta-hydroxylase is in accordance with the association of neuropeptide Y with sympathetic (adrenergic) nerve fibres in the left ventricle and suggests that chronic left ventricular hypertrophy causes a severe degeneration of sympathetic axons supplying this chamber and/or reduces the ability of these sympathetic neurones to maintain normal levels of neurotransmitter related enzymes and neuropeptides. Topics: Animals; Disease Models, Animal; Dopamine beta-Hydroxylase; Female; Guinea Pigs; Heart Ventricles; Hypertrophy, Left Ventricular; Immunohistochemistry; Nerve Fibers; Neuropeptide Y; Organ Size | 1993 |
The importance of the brain in the aetiology of obesity and type 2 diabetes.
Topics: Adipose Tissue; Animals; Autonomic Nervous System; Brain; Diabetes Mellitus; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucocorticoids; Glucose; Humans; Hyperinsulinism; Insulin; Insulin Resistance; Insulin Secretion; Lipids; Liver; Muscles; Neuropeptide Y; Obesity; Rats; Weight Gain | 1992 |
Neuropeptide Y in the primate model of subarachnoid hemorrhage.
The cause of cerebral vasospasm after subarachnoid hemorrhage (SAH) remains unknown. Recently, an association between the potent vasoconstricting peptide, neuropeptide Y, and delayed cerebral vasospasm after SAH has been postulated. This was based on the findings of increased neuropeptide Y levels in the cerebrospinal fluid (CSF) and plasma after SAH in animals and humans. For this study, the primate model of SAH was used to assess the possible role of neuropeptide Y in delayed vasospasm after SAH. Fifteen cynomolgus monkeys underwent placement of a clot of either whole blood or red blood cells in the subarachnoid space around the middle cerebral artery (MCA). Sequential arteriography for assessment of MCA diameter and sampling of blood and CSF for neuropeptide Y were performed: before SAH (Day 0); 7 days after SAH, when signs of delayed cerebral vasospasm peak in this model and in humans; 12 days after SAH; and 28 days after SAH. Subarachnoid hemorrhage did not evoke changes in CSF or plasma levels of neuropeptide Y. Nine monkeys had arteriographic evidence of vasospasm on Day 7, but no change in neuropeptide Y levels occurred in plasma or CSF. In addition, neuropeptide Y levels did not change, even after resolution of vasospasm on Day 12 or Day 28. Neuropeptide Y levels were substantially higher in CSF than in arterial plasma (p less than 0.003 at each interval). No correlation was found between neuropeptide Y levels in CSF and in plasma. These results do not confirm a relationship between neuropeptide Y levels in the CSF or peripheral plasma and delayed cerebral vasospasm in SAH. Topics: Analysis of Variance; Animals; Cerebral Angiography; Disease Models, Animal; Female; Ischemic Attack, Transient; Macaca fascicularis; Male; Neuropeptide Y; Radioimmunoassay; Subarachnoid Hemorrhage | 1992 |
Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the "dormant basket cell" hypothesis and its possible relevance to temporal lobe epilepsy.
The relationship between an episode of status epilepticus, the resulting hippocampal pathology, and the subsequent development of pathophysiological changes possibly relevant to human epilepsy was explored using the experimental epilepsy model of perforant path stimulation in the rat. Granule cell hyperexcitability and decreased feedforward and feedback inhibition were evident immediately after 24 hours of intermittent perforant path stimulation and persisted relatively unchanged for more than 1 year. All of the pathophysiological changes induced by perforant path stimulation were replicated in normal animals by a subconvulsive dose of bicuculline, suggesting that the permanent "epileptiform" abnormalities produced by sustained perforant path stimulation may be due to decreased GABA-mediated inhibition. Granule cell pathophysiology was seen only in animals that exhibited a loss of adjacent dentate hilar mossy cells and hilar somatostatin/neuropeptide Y-immunoreactive neurons. GABA-immunoreactive dentate basket cells survived despite the extensive loss of adjacent hilar neurons. However, parvalbumin immunoreactivity, present normally in a subpopulation of GABA-immunoreactive dentate basket cells, was absent on the stimulated side. Whether this represents decreased parvalbumin synthesis in surviving basket cells or a loss of a specific subset of inhibitory cells is unclear. Hyperexcitability and decreased paired-pulse inhibition in response to ipsilateral perforant path stimulation were also present in the CA1 pyramidal cell layer on the previously stimulated side, despite minimal damage to CA1 pyramidal cells or interneurons. The possibility that CA1 inhibitory neurons were hypofunctional or "dormant" due to a loss of excitatory input to inhibitory cells from damaged CA3 pyramidal cells was tested by stimulating the contralateral perforant path in order to activate the same CA1 basket cells via different inputs. Contralateral stimulation evoked CA1 pyramidal cell paired-pulse inhibition immediately in the previously stimulated hippocampus. Thus, we propose the "dormant basket cell" hypothesis, which implies that despite malfunction, inhibitory systems remain intact in "epileptic" tissue and are capable of functioning if appropriately activated. Topics: Animals; Calbindins; Disease Models, Animal; Electric Stimulation; Epilepsy, Temporal Lobe; gamma-Aminobutyric Acid; Hippocampus; Humans; Immunohistochemistry; Male; Nerve Tissue Proteins; Neuropeptide Y; Parvalbumins; Rats; Rats, Sprague-Dawley; S100 Calcium Binding Protein G; Somatostatin; Status Epilepticus; Time Factors | 1991 |
Chronic quinolinic acid lesions in rats closely resemble Huntington's disease.
We previously found a relative sparing of somatostatin and neuropeptide Y neurons 1 week after producing striatal lesions with NMDA receptor agonists. These results are similar to postmortem findings in Huntington's disease (HD), though in this illness there are two- to threefold increases in striatal somatostatin and neuropeptide Y concentrations, which may be due to striatal atrophy. In the present study, we examined the effects of striatal excitotoxin lesions at 6 months and 1 yr, because these lesions exhibit striatal shrinkage and atrophy similar to that occurring in HD striatum. At 6 months and 1 yr, lesions with the NMDA receptor agonist quinolinic acid (QA) resulted in significant increases (up to twofold) in concentrations of somatostatin and neuropeptide Y immunoreactivity, while concentrations of GABA, substance P immunoreactivity, and ChAT activity were significantly reduced. In contrast, somatostatin and neuropeptide Y concentrations did not increase 6 months after kainic acid (KA) or alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) lesions. At both 6 months and 1 yr, QA lesions showed striking sparing of NADPH-diaphorase neurons as compared with both AMPA and KA lesions, neither of which showed preferential sparing of these neurons. Long-term QA lesions also resulted in significant increases in concentrations of both 5-HT and 5-hydroxyindoleacetic acid (HIAA), similar to findings in HD. Chronic QA lesions therefore closely resemble the neurochemical features of HD, because they result in increases in somatostatin and neuropeptide Y and in 5-HT and HIAA. These findings strengthen the possibility that an NMDA receptor-mediated excitotoxic process could play a role in the pathogenesis of HD. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Atrophy; Biogenic Amines; Cerebral Cortex; Choline O-Acetyltransferase; Corpus Striatum; Disease Models, Animal; gamma-Aminobutyric Acid; Glutamates; Huntington Disease; Ibotenic Acid; Kainic Acid; Male; Mesencephalon; NADPH Dehydrogenase; Neurons; Neuropeptide Y; Quinolinic Acid; Quinolinic Acids; Rats; Rats, Inbred Strains; Reference Values; Somatostatin; Substance P | 1991 |
Catecholamine and acetylcholine in the rat cerebral cortex with special reference to pathogenetic mechanisms of Alzheimer's disease.
A direct synapse between catecholamine fibers and neuropeptide Y-containing neurons is demonstrated in rat cerebral cortex using an immunohistochemical double-staining method under the electron microscope. A new method to produce a selective reduction in cholinergic neurons in the basal forebrain without damage to the non-cholinergic neurons, passing fibers or other cholinergic systems, is described. This animal model seems to be very useful to analyze the pathogenesis of Alzheimer's disease and to examine the function of cholinergic neurons of the basal forebrain. Topics: Acetylcholine; Alzheimer Disease; Animals; Catecholamines; Cerebral Cortex; Disease Models, Animal; Neurons; Neuropeptide Y; Rats | 1991 |
Hyperphagia in obesity is associated with a central peptidergic dysregulation in rats.
Hyperphagia and obesity are often associated, and the origins of the biochemical modifications leading to these syndromes might be in the hypothalamus. Indeed, food intake is regulated by numerous neuropeptides in various hypothalamic nuclei, including the paraventricular (PVN), arcuate (ARC), ventromedian (VMN) and suprachiasmatic (SCH) nuclei. Among these peptides, neuropeptide Y (NPY) is the most potent inducer of food intake whereas neurotensin (NT) decreases food intake. We measured these two peptides in microdissected hypothalamic nuclei in obese Zucker rats that ate 30% more food than their lean counterparts. Neuropeptide Y and neurotensin levels varied in opposite directions: In the hyperphagic obese Zucker rats, the NPY concentrations were significantly greater than those in the lean normophagic rats in the ARC (+30%), PVN (+60%) and SCH (+94%) nuclei, whereas the NT levels were significantly lower in the ARC (-40%), PVN (-31%) VMN (-66%) and SCH (-47%) nuclei. Both these variations tend to increase food intake. Feeding periodicity might also be modified because large variations of the two peptides have been measured in the supra-chiasmatic nucleus, which is considered the most important regulator of feeding rhythm. The results reinforce the hypothesis that hyperphagia in obesity is associated with a biochemical modification in the central nervous system because the peripheral status of NT and NPY was not modified in the obese rats. Because levels of other hypothalamic peptides, such as opioid peptides and somatostatin, are also slightly modified, it can be concluded that hyperphagia in obesity is associated with a central peptidergic dysregulation. Research on drugs reacting specifically with the receptor of these peptides might have interesting implications for the treatment of hyperphagia and, therefore, of obesity. Topics: Animals; Arcuate Nucleus of Hypothalamus; Disease Models, Animal; Hyperphagia; Hypothalamus; Neuropeptide Y; Neurotensin; Obesity; Paraventricular Hypothalamic Nucleus; Rats; Rats, Zucker; Ventromedial Hypothalamic Nucleus | 1990 |
Biochemical events in spontaneous seizures in the Mongolian gerbil.
The Mongolian gerbil, with its spontaneous epileptiform seizures, was chosen as an experimental model of human epilepsy. Neurochemical parameters possibly related to the seizure process were studied. In the immediate seizure process amino acid profiles of cortex, hippocampus, and striatum were not different in seizuring animals when compared to seizure-resistance controls. Of two peptides analyzed, only somatostatin appeared elevated in the cortex 2 hr postictal (143 fmol/mg protein; controls, 123 fmol/mg protein); neuropeptide Y was not affected. A follow up of the time course of cyclic AMP and cyclic GMP showed significant elevations of both substances as a consequence of seizures. Most prominent was a 5.5-fold increase in cyclic GMP in the cerebellum 30 sec after seizure onset. Topics: Amino Acids; Animals; Brain; Disease Models, Animal; Female; Gerbillinae; Male; Neuropeptide Y; Nucleotides, Cyclic; Seizures; Somatostatin; Time Factors | 1989 |
Systemic approaches to modifying quinolinic acid striatal lesions in rats.
Quinolinic acid (QA) is an endogenous excitotoxin present in mammalian brain that reproduces many of the histologic and neurochemical features of Huntington's disease (HD). In the present study we have examined the ability of a variety of systemically administered compounds to modify striatal QA neurotoxicity. Lesions were assessed by measurements of the intrinsic striatal neurotransmitters substance P, somatostatin, neuropeptide Y, and GABA. Histologic examination was performed with Nissl stains. The antioxidants ascorbic acid, beta-carotene, and alpha-tocopherol administered s.c. for 3 d prior to striatal QA lesions had no significant effect. Other drugs were administered i.p. 1/2 hr prior to QA striatal lesions. The following were ineffective in blocking QA excitotoxicity: allopurinol, 50 and 100 mg/kg; ketamine, 75 mg/kg; nimodipine, 2.4, and 10 mg/kg; baclofen, 10 mg/kg; 2-amino-5-phosphonovalerate, 50 mg/kg; and 2-amino-7-phosphonoheptanoate, 50 mg/kg. Oral taurine administration for 4 weeks resulted in significantly increased levels of brain taurine but had no significant effect in blocking QA neurotoxicity. Systemic administration of the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK-801 resulted in a dose-responsive protection against QA toxicity, with complete block at a dose of 4 mg/kg. If the pathogenesis of HD involves QA or another excitotoxin acting at the NMDA receptor, it is possible that MK-801 could retard the degenerative process. Topics: 2-Amino-5-phosphonovalerate; Allopurinol; Amino Acids; Animals; Antioxidants; Baclofen; Corpus Striatum; Dibenzocycloheptenes; Disease Models, Animal; Dizocilpine Maleate; Huntington Disease; Ketamine; Male; Neuropeptide Y; Nimodipine; Peptides; Pyridines; Quinolinic Acid; Quinolinic Acids; Rats; Rats, Inbred Strains; Substance P; Taurine; Valine | 1988 |
Changes of neuropeptide immunoreactivity in cerebrovascular nerve fibers after experimentally produced SAH. Immunohistochemical study in the dog.
The immunoreactivity of vasoactive intestinal polypeptide (VIP)-, substance P (SP)-, and neuropeptide Y (NPY)-containing nerve fibers in the basilar artery (BA) and proximal portion of the middle cerebral artery (M1) was immunohistochemically examined in the dog after experimentally produced subarachnoid hemorrhage (SAH). The SAH was produced by a single injection of fresh autologous arterial blood (1 ml/kg body weight) into the cisterna magna. The density (the averaged number of nerve fibers in a unit area) of VIP-, SP-, and NPY-immunoreactive perivascular nerve fibers in the M1 segment and the BA was markedly decreased (5% to 40% of the normal value) immediately after the injection. The density of VIP- and SP-immunoreactive perivascular fibers increased 2 or 3 weeks after SAH and became normal by the 63rd day after injection. On the other hand, no substantial recovery was observed in the density of NPY-immunoreactive perivascular fibers by 63 days after injection. Topics: Animals; Basilar Artery; Cerebral Arteries; Disease Models, Animal; Dogs; Female; Immunoenzyme Techniques; Male; Nerve Fibers; Neuropeptide Y; Subarachnoid Hemorrhage; Substance P; Vasoactive Intestinal Peptide | 1987 |