nepicastat and Disease-Models--Animal

nepicastat has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for nepicastat and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Effects of dopamine beta-hydroxylase inhibition with nepicastat on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure.
    Circulation, 2000, Oct-17, Volume: 102, Issue:16

    Inhibition of dopamine beta-hydroxylase (DBH) results in a decrease in norepinephrine synthesis. The present study was a randomized, blinded, placebo-controlled investigation of the long-term effects of therapy with the DBH inhibitor nepicastat (NCT) on the progression of left ventricular (LV) dysfunction and remodeling in dogs with chronic heart failure (HF).. Moderate HF (LV ejection fraction [LVEF] 30% to 40%) was produced in 30 dogs by intracoronary microembolization. Dogs were randomized to low-dose NCT (0.5 mg/kg twice daily, n=7) (L-NCT), high-dose NCT (2 mg/kg twice daily, n=7) (H-NCT), L-NCT plus enalapril (10 mg twice daily, n=8) (L-NCT+ENA), or placebo (PL, n=8). Transmyocardial (coronary sinus-arterial) plasma norepinephrine (tNEPI), LVEF, end-systolic volume, and end-diastolic volume were measured before and 3 months after initiating therapy. tNEPI levels were higher in PL compared with NL (86+/-20 versus 13+/-14 pg/mL, P:<0.01). L-NCT alone and L-NCT+ENA reduced tNEPI toward normal (28+/-4 and 39+/-17 pg/mL respectively), whereas HD-NCT reduced tNEPI to below normal levels (3+/-10 pg/mL). In PL dogs, LVEF decreased but was unchanged with L-NCT and increased with L-NCT+ENA. L-NCT and L-NCT+ENA prevented progressive LV remodeling, as evidenced by lack of ongoing increase in end-diastolic volume and end-systolic volume, whereas H-NCT did not. In dogs with HF, therapy with L-NCT prevented progressive LV dysfunction and remodeling. The addition of ENA to L-NCT afforded a greater increase in LV systolic function. NCT at doses that normalize tNEPI may be useful in the treatment of chronic HF.

    Topics: Animals; Chronic Disease; Disease Models, Animal; Disease Progression; Dogs; Dopamine beta-Hydroxylase; Dose-Response Relationship, Drug; Enalapril; Enzyme Inhibitors; Heart Failure; Imidazoles; Norepinephrine; Stroke Volume; Thiones; Ventricular Dysfunction, Left; Ventricular Function, Left

2000