nephrin has been researched along with Hyperglycemia* in 20 studies
1 review(s) available for nephrin and Hyperglycemia
Article | Year |
---|---|
Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update.
Epithelial-mesenchymal transition (EMT) is a tightly regulated process by which epithelial cells lose their hallmark epithelial characteristics and gain the features of mesenchymal cells. For podocytes, expression of nephrin, podocin, P-cadherin, and ZO-1 is downregulated, the slit diaphragm (SD) will be altered, and the actin cytoskeleton will be rearranged. Diabetes, especially hyperglycemia, has been demonstrated to incite podocyte EMT through several molecular mechanisms such as TGF-β/Smad classic pathway, Wnt/β-catenin signaling pathway, Integrins/integrin-linked kinase (ILK) signaling pathway, MAPKs signaling pathway, Jagged/Notch signaling pathway, and NF-κB signaling pathway. As one of the most fundamental prerequisites to develop ground-breaking therapeutic options to prevent the development and progression of diabetic kidney disease (DKD), a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of podocyte EMT is compulsory. Therefore, the purpose of this paper is to update the research progress of these underlying signaling pathways and expound the podocyte EMT-related DKDs. Topics: Diabetic Nephropathies; Epithelial-Mesenchymal Transition; Humans; Hyperglycemia; Intracellular Signaling Peptides and Proteins; Membrane Proteins; Podocytes; Signal Transduction; Tight Junction Proteins | 2017 |
19 other study(ies) available for nephrin and Hyperglycemia
Article | Year |
---|---|
Shenkang protects renal function in diabetic rats by preserving nephrin expression.
Shenkang injection has been used clinically to lower creatinine levels. This study explored the mechanism of Shenkang injection on protecting kidney function from hyperglycemia-mediated damage.. This study utilized a STreptoZotocin (STZ)-induced rat model of diabetes. In total, 60 rats were randomized into either the control group (n = 15) injected with vehicle or treatment group (n = 45) injected with STZ to induce hyperglycemia. Eight weeks after diabetes onset, diabetic rats were further randomized to receive different treatments for 4 consecutive weeks, including vehicle (diabetic nephropathy group, n = 15), Shenkang (n = 15), or Valsartan (n = 15). At 12 weeks, a series of urine and blood measures were examined and damage to the kidney tissue was examined using histology. Expression of nephrin and transforming growth factor-β1 (TGF-β1) were characterized using immunohistochemistry and Western blot.. Compared to the control group, rats in the diabetic nephropathy group showed significant kidney damage demonstrated by high kidneyindex, high levels of urinary albumin, albumin/creatinine ratio (ACR), blood urea nitrogen as well as histological evidence. Shenkang injection significantly improved kidney function in the diabetic rats by decreasing kidney index, ACR, and serum creatinine. Shenkang treatment also mitigated kidney damage, improved nephrin expression, and decreased TGF-β1 expression in the kidneys.. Shenkang treatment protected renal function in diabetic rats by increasing nephrin expression, which protects diabetic rats from hyperglycemia-mediated kidney damage. Topics: Albumins; Animals; Creatinine; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Hyperglycemia; Kidney; Rats; Transforming Growth Factor beta1 | 2023 |
Inhibition of p38 MAPK decreases hyperglycemia-induced nephrin endocytosis and attenuates albuminuria.
Chronic hyperglycemia, as in diabetes mellitus, may cause glomerular damage with microalbuminuria as an early sign. Noteworthy, even acute hyperglycemia can increase glomerular permeability before structural damage of the glomerular filter can be detected. Despite intensive research, specific antiproteinuric therapy is not available so far. Thus, a deeper understanding of the molecular mechanisms of albuminuria is desirable. P38 MAPK signaling is involved in the development of hyperglycemia-induced albuminuria. However, the mechanism of increased p38 MAPK activity leading to increased permeability and albuminuria remained unclear. Recently, we demonstrated that acute hyperglycemia triggers endocytosis of nephrin, the key molecule of the slit diaphragm, and induces albuminuria. Here, we identify p38 MAPK as a pivotal regulator of hyperglycemia-induced nephrin endocytosis. Activated p38 MAPK phosphorylates the nephrin c-terminus at serine 1146, facilitating the interaction of PKCα with nephrin. PKCα phosphorylates nephrin at threonine residues 1120 and 1125, mediating the binding of β-arrestin2 to nephrin. β-arrestin2 triggers endocytosis of nephrin by coupling it to the endocytic machinery, leading to increased glomerular permeability. Pharmacological inhibition of p38 MAPK preserves nephrin surface expression and significantly attenuates albuminuria. KEY MESSAGES: Acute hyperglycemia triggers endocytosis of nephrin. Activated p38 MAPK phosphorylates the nephrin c-terminus at serine 1146, facilitating the interaction of PKCα with nephrin. PKCα phosphorylates nephrin at threonine residues 1120 and 1125, mediating the binding of β-arrestin2 to nephrin. β-arrestin2 triggers endocytosis of nephrin by coupling it to the endocytic machinery, leading to a leaky glomerular filter. Pharmacological inhibition of p38 MAPK preserves nephrin surface expression and significantly attenuates albuminuria under hyperglycemic conditions. Topics: Albuminuria; Endocytosis; Humans; Hyperglycemia; Membrane Proteins; p38 Mitogen-Activated Protein Kinases; Podocytes; Protein Kinase C-alpha; Serine; Threonine | 2022 |
Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia.
A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology. Topics: Animals; Cathepsin C; Diabetic Nephropathies; Disease Models, Animal; Female; Gene Knockdown Techniques; Glucose; Humans; Hyperglycemia; Insulin Resistance; Kidney; Membrane Proteins; Metabolic Syndrome; Obesity; Permeability; Podocytes; Rats; Rats, Zucker; RNA, Messenger; Serum Albumin; Transcriptome | 2020 |
Activation of the Nrf2-ARE Pathway Ameliorates Hyperglycemia-Mediated Mitochondrial Dysfunction in Podocytes Partly Through Sirt1.
Previously we have shown that activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element (ARE) attenuated hyperglycemia-induced damage in podocytes, but the molecular mechanism remains unknown.. Tert-butylhydroquinone (t-BHQ) and small interfering RNAs (siRNAs) were used to regulate Nrf2 expression, while nicotinamide and siRNAs were used to regulate sirtuin 1 (Sirt1) activity and expression, respectively. Mitochondrial superoxide, membrane potential and ATP levels were measured to assess changes in mitochondrial function. Nephrin and synaptopodin expression were measured by western blot analysis. Human podocytes and db/db diabetic mice were used in this study.. t-BHQ pretreatment of human podocytes exposed to high glucose (HG) alleviated mitochondrial dysfunction, enhanced the expression of Sirt1, nephrin and synaptopodin and lowered BSA permeability compared with podocytes exposed to HG without t-BHQ pretreatment (p< 0.05). Human podocytes exposed to HG had more severe mitochondrial dysfunction, lower expression of Sirt1, synaptopodin and nephrin and higher BSA permeability than podocytes exposed to HG when Nrf2 expression was downregulated by siRNAs (p< 0.05). The protection provided by activation of the Nrf-ARE pathway in podocytes exposed to HG was partially diminished when Sirt1 expression or activity was decreased by siRNAs or inhibitor compared with podocytes exposed to HG and pretreated with t-BHQ (p< 0.05). When nicotinamide and t-BHQ were both administered to db/db mice, we observed higher levels of urinary albumin/creatinine, lower nephrin and synaptopodin expression, more severe mesangial matrix deposition, collagen deposition on pathological slides and mitochondrial structural damage in podocytes compared to db/db mice treated only with t-BHQ.. Our findings suggest that crosstalk between Sirt1 and the Nrf2-ARE anti-oxidative pathway forms a positive feedback loop and that protection provided by t-BHQ activation of the Nrf2-ARE pathway in db/db mice is partly dependent on Sirt1. Topics: Adenosine Triphosphate; Animals; Cell Line; Creatinine; Diabetes Mellitus, Experimental; Glucose; Humans; Hydroquinones; Hyperglycemia; Male; Membrane Proteins; Mice; Mitochondria; NF-E2-Related Factor 2; Podocytes; RNA Interference; RNA, Small Interfering; Signal Transduction; Sirtuin 1; Superoxides | 2018 |
Assessment of urinary microparticles in normotensive patients with type 1 diabetes.
Assessment of urinary extracellular vesicles including exosomes and microparticles (MPs) is an emerging approach for non-invasive detection of renal injury. We have previously reported that podocyte-derived MPs are increased in diabetic mice in advance of albuminuria. Here, we hypothesised that type 1 diabetes and acute hyperglycaemia would increase urinary podocyte MP levels in uncomplicated diabetes.. In this post hoc exploratory analysis, we examined archived urine samples from normoalbuminuric patients with uncomplicated type 1 diabetes studied under clamped euglycaemia and hyperglycaemia and compared with healthy controls. Urinary vesicles were assessed by electron microscopy and nanoparticle tracking while podocyte MPs were assessed by flow cytometry.. Neither vesicle size nor total number were significantly altered in type 1 diabetes or acute hyperglycaemia. By contrast, urinary podocyte MP levels were higher in type 1 diabetes (0.47 [0.00-3.42] MPs/μmol creatinine [Cr]) compared with healthy controls (0.00 [0.00-0.00] MPs/μmol Cr, p < 0.05) and increased under hyperglycaemic clamp (0.36 [0.00-4.15] MPs/μmol Cr during euglycaemia vs 2.70 [0.00-15.91] MPs/μmol Cr during hyperglycaemia, p < 0.05). Levels of urinary albumin to creatinine ratio and nephrin (surrogates of podocyte injury) were unchanged by type 1 diabetes or acute hyperglycaemia.. Taken together, our data show that urinary podocyte MP levels are higher in patients with type 1 diabetes in advance of changes in other biomarkers (albuminuria, nephrin). Examination of podocyte MPs may serve as an early biomarker of glomerular injury in uncomplicated type 1 diabetes. Topics: Adult; Albuminuria; Biomarkers; Blood Pressure; Creatinine; Diabetes Mellitus, Type 1; Flow Cytometry; Humans; Hyperglycemia; Male; Membrane Proteins; Microscopy, Electron; Microscopy, Electron, Transmission; Nanoparticles; Podocytes; Young Adult | 2017 |
Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways.
The aim of this research was to investigate the effects of cyclopropanyldehydrocostunolide (also named LJ), a derivative of sesquiterpene lactones (SLs), on high glucose (HG)-induced podocyte injury and the associated molecular mechanisms.. Differentiated mouse podocytes were incubated in different treatments. The migration and albumin filtration of podocytes were examined by Transwell filters. The protein and mRNA levels of MCP-1 were measured using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (q-PCR). Protein expression and phosphorylation were detected by western blot, and the nuclear translocation of NF-κB was performed with a confocal microscope. The gene expression of the receptor activator for NF-κB (RANK) was silenced by small interfering RNA (siRNA).. Our results showed that HG enhanced migration, albumin filtration and MCP-1 expression in podocytes. At the molecular level, HG promoted the phosphorylation of NF-κB/p65, IKKβ, IκBα, mitogen-activated protein kinase (MAPK) and the nuclear translocation of p65. LJ reversed the effects of HG in a dose-dependent manner. Furthermore, our data provided the first demonstration that the receptor activator for NF-κB ligand (RANKL) and its cognate receptor RANK were overexpressed in HG-induced podocytes and were downregulated by LJ. RANK siRNA also attenuated HG-induced podocyte injury and markedly inhibited the activation of NF-κB and MAPK signaling pathways.. LJ attenuates HG-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways. Topics: Active Transport, Cell Nucleus; Animals; Biomarkers; Cell Line, Transformed; Cell Movement; Chemokine CCL2; Diabetic Nephropathies; Gene Expression Regulation; Hyperglycemia; Hypoglycemic Agents; Lactones; MAP Kinase Signaling System; Membrane Proteins; Mice; Phosphorylation; Podocytes; Protein Processing, Post-Translational; RANK Ligand; Receptor Activator of Nuclear Factor-kappa B; RNA Interference; Sesquiterpenes; Transcription Factor RelA | 2016 |
MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy.
MiR-155 has been reported to be involved in both innate and adaptive immune responses. But the role of miR-155 in hyperglycemia-induced nephropathy is still unknown. In our current study, 3-month-old male wild-type C57 mice and Mir-155(-/-) mice were used to establish hyperglycemia-induced nephropathy. In our hyperglycemia-induced nephropathy model, the expression of podocyte injury marker desmin was markedly increased in the diabetes group when compared with control. Diabetes also significantly decreased the levels of nephrin and acetylated nephrin, whereas the expression of miR-155 was markedly increased in diabetes group when compared with control. MiR-155(-/-) mice showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with wild-type control. MiR-155 deficiency results in significantly decrease in IL-17A expression both in vivo and in vitro. And the increased expression of WT-1, nephrin, and ac-nephrin was reversed with additional treatment of rmIL-17. Furthermore, we found that the inhibited Th17 differentiation induced by miR-155 deficiency was dependent on increased expression of SOCS1. In conclusion, miR-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. This was associated with inhibited IL-17 production through enhancement of SOCS1 expression. Topics: Acetylation; Acute Kidney Injury; Animals; Cell Differentiation; Desmin; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Hyperglycemia; Interleukin-17; Kidney; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Podocytes; Repressor Proteins; Streptozocin; Suppressor of Cytokine Signaling 1 Protein; Suppressor of Cytokine Signaling Proteins; Th17 Cells; WT1 Proteins | 2015 |
MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction.
Podocyte dysfunction is a detrimental feature in diabetic nephropathy, with loss of nephrin integrity contributing to diabetic podocytopathy. MicroRNAs (miRs) reportedly modulate the hyperglycemia-induced perturbation of renal tissue homeostasis. This study investigated whether regulation of histone deacetylase (HDAC) actions and nephrin acetylation by miR-29 contributes to podocyte homeostasis and renal function in diabetic kidneys. Hyperglycemia accelerated podocyte injury and reduced nephrin, acetylated nephrin, and miR-29a levels in primary renal glomeruli from streptozotocin-induced diabetic mice. Diabetic miR-29a transgenic mice had better nephrin levels, podocyte viability, and renal function and less glomerular fibrosis and inflammation reaction compared with diabetic wild-type mice. Overexpression of miR-29a attenuated the promotion of HDAC4 signaling, nephrin ubiquitination, and urinary nephrin excretion associated with diabetes and restored nephrin acetylation. Knockdown of miR-29a by antisense oligonucleotides promoted HDAC4 action, nephrin loss, podocyte apoptosis, and proteinuria in nondiabetic mice. In vitro, interruption of HDAC4 signaling alleviated the high glucose-induced apoptosis and inhibition of nephrin acetylation in podocyte cultures. Furthermore, HDAC4 interference increased the acetylation status of histone H3 at lysine 9 (H3K9Ac), the enrichment of H3K9Ac in miR-29a proximal promoter, and miR-29a transcription in high glucose-stressed podocytes. In conclusion, hyperglycemia impairs miR-29a signaling to intensify HDAC4 actions that contribute to podocyte protein deacetylation and degradation as well as renal dysfunction. HDAC4, via epigenetic H3K9 hypoacetylation, reduces miR-29a transcription. The renoprotective effects of miR-29a in diabetes-induced loss of podocyte integrity and renal homeostasis highlights the importance of post-translational acetylation reactions in podocyte microenvironments. Increasing miR-29a action may protect against diabetic podocytopathy. Topics: Acetylation; Animals; Diabetes Mellitus, Experimental; Histone Deacetylases; Histones; Hyperglycemia; Male; Membrane Proteins; Mice, Transgenic; MicroRNAs; Podocytes; Signal Transduction | 2014 |
Overexpression of Mafb in podocytes protects against diabetic nephropathy.
We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. Topics: Animals; Apoptosis; Blood Glucose; Body Weight; Cell Line, Transformed; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gene Expression; Glutathione Peroxidase; Hyperglycemia; Insulin; MafB Transcription Factor; Membrane Proteins; Mice, Inbred C57BL; Mice, Transgenic; Podocytes; Promoter Regions, Genetic; Receptor, Notch2; Signal Transduction | 2014 |
Rosiglitazone treatment of type 2 diabetic db/db mice attenuates urinary albumin and angiotensin converting enzyme 2 excretion.
Alterations within the renal renin angiotensin system play a pivotal role in the development and progression of cardiovascular and renal disease. Angiotensin converting enzyme 2 (ACE2) is highly expressed in renal tubules and has been shown to be renoprotective in diabetes. The protease, a disintegrin and metalloprotease (ADAM) 17, is involved in the ectodomain shedding of several transmembrane proteins including ACE2. Renal ACE2 and ADAM17 were significantly increased in db/db mice compared to controls. We investigated the effect of the insulin sensitizer, rosiglitazone, on albuminuria, renal ADAM17 protein expression and ACE2 shedding in db/db diabetic mice. Rosiglitazone treatment of db/db mice normalized hyperglycemia, attenuated renal injury and decreased urinary ACE2 and renal ADAM17 protein expression. Urinary excreted ACE2 is enzymatically active. Western blot analysis of urinary ACE2 demonstrated two prominent immunoreactive bands at approximately 70 & 90 kDa. The predominant immunoreactive band is approximately 20 kDa shorter than the one demonstrated for kidney lysate, indicating possible ectodomain shedding of active renal ACE2 in the urine. Therefore, it is tempting to speculate that renoprotection of rosiglitazone could be partially mediated via downregulation of renal ADAM17 and ACE2 shedding. In addition, there was a positive correlation between blood glucose, urinary albumin, plasma glucagon, and triglyceride levels with urinary ACE2 excretion. In conclusion, urinary ACE2 could be used as a sensitive biomarker of diabetic nephropathy and for monitoring the effectiveness of renoprotective medication. Topics: ADAM Proteins; ADAM17 Protein; Albuminuria; Angiotensin-Converting Enzyme 2; Animals; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Glucagon; Glucose Tolerance Test; Glycosuria; Hyperglycemia; Hypoglycemic Agents; Kidney Diseases; Male; Membrane Proteins; Mice; Peptidyl-Dipeptidase A; Rosiglitazone; Thiazolidinediones; Tissue Inhibitor of Metalloproteinase-3; Triglycerides | 2013 |
Ameliorative effect of berberine on renal damage in rats with diabetes induced by high-fat diet and streptozotocin.
Berberine (BBR) is one of the main constituents in Rhizoma coptidis and it has widely been used for the treatment of diabetic nephropathy. The aims of the study were to investigate the effects and mechanism of action of berberine on renal damage in diabetic rats. Diabetes and hyperglycaemia were induced in rats by a high-fat diet and intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Rats were randomly divided into 5 groups, such as i) control rats, ii) untreated diabetic rats iii) 250 mg/kg metformin-treated, iv and v) 100 and 200 mg/kg berberine-treated diabetic rats and treated separately for 8 weeks. The fasting blood glucose, insulin, total cholesterol, triglyceride, glycosylated hemoglobin were measured in rats. Kidneys were isolated at the end of the treatment for histology, Western blot analysis and estimation of malonaldehyde (MDA), superoxide dismutase (SOD) and renal advanced glycation endproducts (AGEs). The results revealed that berberine significantly decreased fasting blood glucose, insulin levels, total cholesterol, triglyceride levels, urinary protein excretion, serum creatinine (Scr) and blood urea nitrogen (BUN) in diabetic rats. The histological examinations revealed amelioration of diabetes-induced glomerular pathological changes following treatment with berberine. In addition, the protein expressions of nephrin and podocin were significantly increased. It seems likely that in rats berberine exerts an ameliorative effect on renal damage in diabetes induced by high-fat diet and streptozotocin. The possible mechanisms for the renoprotective effects of berberine may be related to inhibition of glycosylation and improvement of antioxidation that in turn upregulate the expressions of renal nephrin and podocin. Topics: Animals; Berberine; Blood Glucose; Body Weight; Cholesterol; Creatinine; Diabetes Mellitus, Experimental; Diet, High-Fat; Glycation End Products, Advanced; Hyperglycemia; Insulin; Intracellular Signaling Peptides and Proteins; Kidney; Kidney Function Tests; Lipid Metabolism; Male; Malondialdehyde; Membrane Proteins; Protective Agents; Rats; Rats, Sprague-Dawley; Streptozocin; Superoxide Dismutase | 2012 |
Diabetic kidney disease in FVB/NJ Akita mice: temporal pattern of kidney injury and urinary nephrin excretion.
Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process. Topics: Albuminuria; Animals; Biomarkers; Blotting, Western; Diabetes Complications; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Disease Models, Animal; Hyperglycemia; Immunoenzyme Techniques; Kidney; Male; Membrane Proteins; Mice; Mice, Inbred Strains; Phenotype; Podocytes; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2012 |
PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia.
Nephrin, the key molecule of the glomerular slit diaphragm, is expressed on the surface of podocytes and is critical in preventing albuminuria. In diabetes, hyperglycemia leads to the loss of surface expression of nephrin and causes albuminuria. Here, we report a mechanism that can explain this phenomenon: hyperglycemia directly enhances the rate of nephrin endocytosis via regulation of the β-arrestin2-nephrin interaction by PKCα. We identified PKCα and protein interacting with c kinase-1 (PICK1) as nephrin-binding proteins. Hyperglycemia induced up-regulation of PKCα and led to the formation of a complex of nephrin, PKCα, PICK1, and β-arrestin2 in vitro and in vivo. Binding of β-arrestin2 to the nephrin intracellular domain depended on phosphorylation of nephrin threonine residues 1120 and 1125 by PKCα. Further, cellular knockdown of PKCα and/or PICK1 attenuated the nephrin-β-arrestin2 interaction and abrogated the amplifying effect of high blood glucose on nephrin endocytosis. In C57BL/6 mice, hyperglycemia over 24 h caused a significant increase in urinary albumin excretion, supporting the concept of the rapid impact of hyperglycemia on glomerular permselectivity. In summary, we have provided a molecular model of hyperglycemia-induced nephrin endocytosis and subsequent proteinuria and highlighted PKCα and PICK1 as promising therapeutic targets for diabetic nephropathy. Topics: Albuminuria; Animals; Arrestins; beta-Arrestins; Blood Glucose; Carrier Proteins; Cell Cycle Proteins; Diabetic Nephropathies; Endocytosis; Humans; Hyperglycemia; Membrane Proteins; Mice; Mice, Knockout; Models, Biological; Nuclear Proteins; Phosphorylation; Protein Kinase C-alpha | 2011 |
Role of the USF1 transcription factor in diabetic kidney disease.
The predominant transcription factors regulating key genes in diabetic kidney disease have not been established. The transcription factor upstream stimulatory factor 1 (USF1) is an important regulator of glucose-mediated transforming growth factor (TGF)-β1 expression in mesangial cells; however, its role in the development of diabetic kidney disease has not been evaluated. In the present study, wild-type (WT; USF1 +/+), heterozygous (USF1 +/-), and homozygous (USF1 -/-) knockout mice were intercrossed with Akita mice (Ins2/Akita) to induce type 1 diabetes. Mice were studied up to 36 wk of age. The degree of hyperglycemia and kidney hypertrophy were similar in all groups of diabetic mice; however, the USF1 -/- diabetic mice had significantly less albuminuria and mesangial matrix expansion than the WT diabetic mice. TGF-β1 and renin gene expression and protein were substantially increased in the WT diabetic mice but not in USF1 -/- diabetic mice. The underlying pathway by which USF1 is regulated by high glucose was investigated in mesangial cell culture. High glucose inhibited AMP-activated protein kinase (AMPK) activity and increased USF1 nuclear translocation. Activation of AMPK with AICAR stimulated AMPK activity and reduced nuclear accumulation of USF1. We thus conclude that USF1 is a critical transcription factor regulating diabetic kidney disease and plays a critical role in albuminuria, mesangial matrix accumulation, and TGF-β1 and renin stimulation in diabetic kidney disease. AMPK activity may play a key role in high glucose-induced regulation of USF1. Topics: Albuminuria; Alleles; AMP-Activated Protein Kinases; Animals; Cell Line; Cell Nucleus; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Disease Progression; Extracellular Matrix; Female; Hyperglycemia; Hypertrophy; Kidney; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Renin-Angiotensin System; RNA, Messenger; Transforming Growth Factor beta; Upstream Stimulatory Factors | 2011 |
Ameliorating effects of L-carnitine on diabetic podocyte injury.
High glucose levels can change podocyte gene expression and subsequently induce podocyte damage through altered glucose metabolism. l-Carnitine is known to play a beneficial role in diabetes; however, there are no studies on the effects of l-carnitine on podocyte alteration under high glucose conditions. This study investigated whether l-carnitine can attenuate diabetic podocyte injury through the prevention of loss of slit diaphragm proteins. The l-carnitine treatment group showed increased glucose uptakes compared to the control group, suggesting that glucose utilization in the podocytes was increased by l-carnitine. l-Carnitine treatment also prevented decreased mRNA expressions of nephrin and podocin in the high glucose-stimulated podocytes. However, mRNA expressions of CD2AP and α-actinin-4 were not significantly changed by the high glucose conditions. When these data are taken together, l-carnitine can increase glucose uptake in podocytes under high glucose conditions, and its mechanism may be at least partly related to the up-regulation of nephrin and podocin. Our results help clarify the beneficial effects of l-carnitine in diabetic nephropathy. Topics: Animals; Carnitine; Cell Line; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gene Expression Regulation; Glucose; Hyperglycemia; Intracellular Signaling Peptides and Proteins; Kidney Glomerulus; Male; Membrane Proteins; Mice; Osmolar Concentration; Podocytes; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2010 |
Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes.
C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy. Topics: Albuminuria; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Genotype; Hyperglycemia; Insulin; Insulin Resistance; JNK Mitogen-Activated Protein Kinases; Membrane Proteins; Mice; Mice, Knockout; Protein Kinase Inhibitors | 2009 |
Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway.
Pancreatic islet microendothelium and beta cells exhibit an interdependent physical and functional relationship. In this study, we analyzed the effect of chronic hyperglycemia on human pancreatic islet microendothelial cells as well as the involvement of the phosphatidylinositol 3-kinase/Akt and nephrin pathways, interleukin-1beta, and nitric oxide production. In addition, whether 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors can reverse the response to high-glucose conditions was investigated. Proliferation of purified islet microendothelial cells cultured under hyperglycemic conditions (28 mmol/L glucose) decreased compared to that of normoglycemic cells (from 12.7% after 2 days to 47.7% after 30 days, P < 0.05). In parallel, apoptosis progressively increased from 7% after 2 days to 79% after 30 days in high glucose (P < 0.05) concomitant with an early increase of caspase-3 activity. Intermittent hyperglycemia induced greater apoptosis than sustained hyperglycemia. Apoptosis was accompanied by a reduced p-Akt/Akt ratio and inhibition of nephrin tyrosine phosphorylation. Pravastatin (1 mumol/L) decreased apoptosis induced by high glucose or oxidized LDL and increased Akt phosphorylation. Hyperglycemia significantly increased the production of the proinflammatory cytokine interleukin-1beta and stimulated the expression of inducible nitric oxide synthase and the production of nitric oxide, possibly relevant to beta cell mass and function. Thus, chronic hyperglycemia reduces islet microendothelial cell survival by inhibiting the serine-threonine kinase Akt pathway, and the effect of pravastatin on this pathway represents a potential tool to improve islet vascularization and, indirectly, islet function. Topics: Apoptosis; Caspase 3; Cell Survival; Cells, Cultured; Endothelial Cells; Endothelium, Vascular; Glucose; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hyperglycemia; Interleukin-1beta; Islets of Langerhans; Membrane Proteins; Microcirculation; Nitric Oxide; Nitric Oxide Synthase Type II; Phosphatidylinositol 3-Kinases; Phosphorylation; Pravastatin; Proto-Oncogene Proteins c-akt; Signal Transduction | 2008 |
Nephrin loss in experimental diabetic nephropathy is prevented by deletion of protein kinase C alpha signaling in-vivo.
Albuminuria in diabetic nephropathy is due to endothelial dysfunction, a loss of negative charges in the basement membrane, and changes a of the slit-membrane diaphragm composition. We have recently shown that protein kinase C alpha (PKCalpha)-deficient mice are protected against the development of albuminuria under diabetic conditions. We here tested the hypothesis that PKCalpha mediates the hyperglycemia-induced downregulation of the slit-diaphragm protein nephrin. After 8 weeks of streptozotocin (STZ)-induced hyperglycemia the expression of glomerular nephrin was significantly reduced. In contrast, other slit-diaphragm proteins such as podocin and CD2AP were unaltered in diabetic state. In PKCalpha-/- mice, hyperglycemia-induced downregulation of nephrin was prevented. Podocin and CD2AP remained unchanged. In addition, the nephrin messenger RNA expression was also reduced in hyperglycemic wild-type mice but remained unaltered in PKCalpha-/- mice. We postulate that the underlying mechanism of the hyperglycemia-induced regulation of various proteins of the glomerular filtration barrier is a PKCalpha-dependent regulation of the Wilms' Tumor Suppressor (WT1) which previously has been shown to act as a direct transcription factor on the nephrin promoter. Our data suggest that PKCalpha activation may be an important intracellular signaling pathway in the regulation of nephrin expression and glomerular albumin permeability in the diabetic state. Topics: Adaptor Proteins, Signal Transducing; Albuminuria; Animals; Cytoskeletal Proteins; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Gene Expression Regulation; Humans; Hyperglycemia; Intracellular Signaling Peptides and Proteins; Kidney Glomerulus; Male; Membrane Proteins; Mice; Mice, Knockout; Protein Kinase C-alpha; RNA, Messenger; Signal Transduction; WT1 Proteins | 2006 |
Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model.
Diabetic nephropathy is one of the major microvascular complications in diabetes and is the leading cause of end-stage renal disease worldwide. Among various factors, angiogenesis-associated factors such as vascular endothelial growth factor (VEGF)-A and angiopoietin (Ang)-2 are involved in the development of diabetic nephropathy. We previously reported the therapeutic efficacy of antiangiogenic tumstatin peptide in the early diabetic nephropathy model. Here, we examine the effect of endostatin peptide, a potent inhibitor of angiogenesis derived from type XVIII collagen, in preventing progression in the type 1 diabetic nephropathy mouse model. Endostatin peptide did not affect hyperglycemia induced by streptozotocin (STZ). Glomerular hypertrophy, hyperfiltration, and albuminuria were significantly suppressed by endostatin peptide (5 mg/kg) in STZ-induced diabetic mice. Glomerular mesangial matrix expansion, the increase of glomerular type IV collagen, endothelial area (CD31(+)), and F4/80(+) monocyte/macrophage accumulation were significantly inhibited by endostatin peptide. Increase in the renal expression of VEGF-A, flk-1, Ang-2, an antagonist of angiopoietin-1, transforming growth factor-beta1, interleukin-6, and monocyte chemoattractant protein-1 was inhibited by endostatin peptide in diabetic mice. Decrease of nephrin mRNA and protein in diabetic mice was suppressed by treatment with endostatin peptide. The level of endostatin in the renal cortex and sera was increased in diabetic mice. Endogenous renal levels of endostatin were decreased in endostatin peptide-treated groups in parallel with VEGF-A. Although serum levels of endostatin were decreased in the low-dose endostatin-peptide group, high-dose administration resulted in elevated serum levels of endostatin. These results demonstrate the potential use of antiangiogenic endostatin peptide as a novel therapeutic agent in diabetic nephropathy. Topics: Albuminuria; Amino Acid Sequence; Animals; Blood Glucose; Body Weight; Collagen Type IV; Creatinine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Nephropathies; Endostatins; Female; Hyperglycemia; Hypertrophy; Immunohistochemistry; Integrin alpha5beta1; Kidney; Kidney Glomerulus; Membrane Proteins; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Organ Size; Peptide Fragments; RNA, Messenger; Transforming Growth Factor beta; Transforming Growth Factor beta1; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2 | 2005 |