necrox-7 and Atherosclerosis

necrox-7 has been researched along with Atherosclerosis* in 2 studies

Other Studies

2 other study(ies) available for necrox-7 and Atherosclerosis

ArticleYear
NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice.
    Atherosclerosis, 2016, Volume: 252

    A large necrotic core is a key feature of atherosclerotic plaque instability. Necrotic cellular debris accumulates in the lipid-rich core and promotes inflammation, destabilization and ultimately rupture of the plaque. Although the role of necrosis in atherosclerosis is rather clear-cut, not many strategies have been performed up till now to specifically target plaque necrosis. In the present study, we tested the plaque stabilizing potential of NecroX-7, a novel compound with antioxidative and anti-necrotic properties.. Male apolipoprotein E (Apoe) knockout mice were treated with NecroX-7 (30 mg/kg) or vehicle, 3 times per week, via intraperitoneal injections for 16 weeks. Meanwhile, mice were fed a western-type diet to induce plaque formation.. NecroX-7 reduced total plaque burden in the thoracic aorta as compared to vehicle-treated mice, without affecting total plasma cholesterol. Plaques in the aortic root of NecroX-7-treated mice showed a significant decrease in necrotic core area, 8-oxodG, iNOS and MMP13 expression, while collagen content and minimum fibrous cap thickness were increased. Moreover, NecroX-7 treatment reduced the expression of multiple inflammation markers such as TNFα, IL1β, iNOS, HMGB1 and RAGE in a NF-κB-dependent manner. In vitro, NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced mitochondrial ROS formation, necrosis, iNOS expression and HMGB1 release in primary macrophages.. NecroX-7 improves features of plaque stability in Apoe knockout mice by reducing necrotic core formation, oxidative stress and inflammation, and by increasing collagen deposition and fibrous cap thickness. Therefore, NecroX-7 could be a promising pleiotropic drug for the treatment of atherosclerosis.

    Topics: Animals; Atherosclerosis; Bone Marrow Cells; Cholesterol, LDL; Collagen; HMGB1 Protein; Inflammation; Lipid Peroxidation; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout, ApoE; Necrosis; Organic Chemicals; Oxidative Stress; Plaque, Atherosclerotic

2016
NecroX-7 may appear as a new molecule to stabilize atherosclerotic plaques.
    Atherosclerosis, 2016, Volume: 252

    Topics: Apoptosis; Atherosclerosis; Humans; Organic Chemicals; Plaque, Atherosclerotic

2016