natriuretic-peptide--c-type has been researched along with Hyperammonemia* in 3 studies
3 other study(ies) available for natriuretic-peptide--c-type and Hyperammonemia
Article | Year |
---|---|
Sensitivity of the Natriuretic Peptide/cGMP System to Hyperammonaemia in Rat C6 Glioma Cells and GPNT Brain Endothelial Cells.
C-type natriuretic peptide (CNP) is the major natriuretic peptide of the central nervous system and acts via its selective guanylyl cyclase-B (GC-B) receptor to regulate cGMP production in neurons, astrocytes and endothelial cells. CNP is implicated in the regulation of neurogenesis, axonal bifurcation, as well as learning and memory. Several neurological disorders result in toxic concentrations of ammonia (hyperammonaemia), which can adversely affect astrocyte function. However, the relationship between CNP and hyperammonaemia is poorly understood. Here, we examine the molecular and pharmacological control of CNP in rat C6 glioma cells and rat GPNT brain endothelial cells, under conditions of hyperammonaemia. Concentration-dependent inhibition of C6 glioma cell proliferation by hyperammonaemia was unaffected by CNP co-treatment. Furthermore, hyperammonaemia pre-treatment (for 1 h and 24 h) caused a significant inhibition in subsequent CNP-stimulated cGMP accumulation in both C6 and GPNT cells, whereas nitric-oxide-dependent cGMP accumulation was not affected. CNP-stimulated cGMP efflux from C6 glioma cells was significantly reduced under conditions of hyperammonaemia, potentially via a mechanism involving changed in phosphodiesterase expression. Hyperammonaemia-stimulated ROS production was unaffected by CNP but enhanced by a nitric oxide donor in C6 cells. Extracellular vesicle production from C6 cells was enhanced by hyperammonaemia, and these vesicles caused impaired CNP-stimulated cGMP signalling in GPNT cells. Collectively, these data demonstrate functional interaction between CNP signalling and hyperammonaemia in C6 glioma and GPNT cells, but the exact mechanisms remain to be established. Topics: Animals; Brain; Cyclic GMP; Endothelial Cells; Glioma; Hyperammonemia; Natriuretic Peptide, C-Type; Natriuretic Peptides; Phosphoric Diester Hydrolases; Rats; Signal Transduction | 2021 |
Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line.
Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [ZieliĆska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy. Topics: Ammonia; Aniline Compounds; Animals; Binding Sites; Binding, Competitive; Calcium; Calcium Channel Blockers; Calcium Signaling; Cell Line; Cell Membrane; Cerebral Arteries; Cerebrovascular Circulation; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Endothelial Cells; Hepatic Encephalopathy; Hyperammonemia; Natriuretic Peptide, C-Type; Protein Binding; Rats; Receptors, Atrial Natriuretic Factor; Xanthenes | 2008 |
Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices.
The decrease of cyclic GMP (cGMP) level in the brain, contributing to cognitive and memory deficit in hyperammonemia (HA), has been attributed to the interference of ammonia with the NMDA/nitric oxide/soluble guanylate cyclase (GC)/cGMP pathway in neurons. The present study tested the hypotheses that (a) HA also affects cGMP synthesis elicited by stimulation of the natriuretic peptide receptor 2 (NPR-2) with its natural ligand, C-type natriuretic peptide (CNP) and (b) the latter effect may involve astrocytes, the ammonia-sensitive cells. In the cerebral cortical slices of control rats, CNP stimulated cGMP synthesis in a degree comparable to the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) used at an optimal concentration. Fluoroacetate (FA), a metabolic inhibitor specifically affecting astrocytic mitochondria, inhibited the CNP-dependent cGMP synthesis by about 50%. Ammonium acetate-induced HA decreased by 68% the CNP-dependent cGMP generation in slices incubated in the absence of FA. In slices incubated in the presence of FA, cGMP synthesis in slices derived from HA rats did not differ from that in control slices. The results indicate that HA inhibits CNP-dependent cGMP synthesis in the FA-vulnerable, astrocytic compartment, but not in the FA-resistant compartment(s) of the brain. HA did not affect the expression of NPR-2 mRNA in the cerebral cortex tissue as tested using real-time PCR, indicating that the effect of ammonia involves as yet unidentified events occurring posttranscriptionally. Deregulation of NPR-2 function in astrocytes by ammonia may contribute to neurophysiological symptoms of HA. Topics: Acetates; Aconitate Hydratase; Animals; Astrocytes; Cerebral Cortex; Cyclic GMP; Disease Models, Animal; Fluoroacetates; Guanylate Cyclase; Hyperammonemia; Male; Natriuretic Peptide, C-Type; Nitric Oxide Donors; Rats; Rats, Wistar; Receptors, Atrial Natriuretic Factor; RNA, Messenger; S-Nitroso-N-Acetylpenicillamine | 2007 |