natriuretic-peptide--c-type has been researched along with Body-Weight* in 14 studies
2 review(s) available for natriuretic-peptide--c-type and Body-Weight
Article | Year |
---|---|
Vosoritide: First Approval.
Vosoritide (VOXZOGO Topics: Achondroplasia; Adolescent; Area Under Curve; Body Weight; Child; Child, Preschool; Drug Approval; Europe; Humans; Metabolic Clearance Rate; Natriuretic Peptide, C-Type; Randomized Controlled Trials as Topic; Receptor, Fibroblast Growth Factor, Type 3 | 2021 |
C-type natriuretic peptide in childhood obesity.
According to the World Health Organization obesity is the result of an energy imbalance between calories assumed and expended and over the past 30 years its incidence has dramatically increased. Recently, the problem of obesity has drastically increased also in childhood, assuming a social relevance. Childhood obesity, in fact, increases the possibility to be obese in adulthood, representing a risk for cardiovascular morbidity and mortality. Aim of this review was to carry out a revision of the literature on childhood obesity focusing on natriuretic peptides (NPs) and in particular on the role of C-type natriuretic peptide (CNP). In obesity NPs play a fundamental role in the regulation of body weight and energy metabolism. Data on plasma CNP levels in children are scarce. The review of the literature relating to the role of CNP in adolescents showed a progressive reduction in the CNP plasma levels in overweight/obese adolescents compared to normal-weight subjects, as previously observed in obese adults, as well as a different modulation in CNP mRNA expression. An independent association between CNP levels and obesity as well as a significant association with the endothelial dysfunction index was reported, indicating that the peptide could play a very important role as a marker of risk of developing obesity. The results of these studies indicate the importance of adopting healthy lifestyles to improve glucometabolic control as well as to provide the rationale for designing and developing new drugs to modulate the NPs system. Topics: Animals; Biomarkers; Body Weight; Child; Child, Preschool; Energy Metabolism; Humans; Natriuretic Peptide, C-Type; Pediatric Obesity | 2021 |
12 other study(ies) available for natriuretic-peptide--c-type and Body-Weight
Article | Year |
---|---|
C-type natriuretic peptide (CNP) inhibits 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor growth by modulating inflammation in Swiss albino mice.
C-type natriuretic peptide (CNP) exhibits anti-inflammatory activity besides its natriuretic and diuretic functions. The present study aimed to determine the anticancer and synergistic therapeutic activity of CNP against a 7,12-Dimethylbenz[a]anthracene (DMBA)/Croton oil-induced skin tumor mouse model. CNP (2.5 µg/kg body weight) was injected either alone and/or in combination with Cisplatin (CDDP) (2 mg/kg body weight) for 4 weeks. The dorsal skin tumor incidences/growth and mortality rate were recorded during the experimental period of 16 weeks. The serum C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels, infiltrating mast cells, and AgNORs proliferating cells count were analyzed in control and experimental mice. Further, the expression profile of marker genes of proliferation, inflammation, and progression molecules were analyzed using Reverse transcriptase-polymerase chain reaction (RT-PCR)/quantitative PCR (qPCR), western blot, and immunohistochemistry. The DMBA/Croton oil-induced mice exhibited 100% tumor incidence. Whereas, CNP alone, CDDP alone, and CNP+CDDP combination-treated mice exhibited 58%, 46%, and 24% tumor incidence, respectively. Also, a marked reduction in the levels of serum CRP and LDH, the number of infiltrating mast cells count and AgNORs proliferating cells count were noticed in the mice skin sections. Further, a significant reduction in both mRNA and protein expression levels of proliferation, inflammation, and progression markers were noticed in CNP (p < 0.01), CDDP (p < 0.01), and CNP+CDDP combination (p < 0.001) treated mice, respectively. The results of the present study suggest that CNP has anticancer activity. Further, the CNP+CDDP treatment has more promising anticancer activity as compared with CNP or CDDP alone treatment, probably due to the synergistic antiproliferative and anti-inflammatory activities of CNP and CDDP. Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Anthracenes; Anti-Inflammatory Agents; Body Weight; Croton; Croton Oil; Inflammation; Mice; Natriuretic Peptide, C-Type; Skin Neoplasms | 2023 |
Exogenous C-type natriuretic peptide restores normal growth and prevents early growth plate closure in its deficient rats.
Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature. Topics: Animals; Biomarkers; Body Weight; Bone Remodeling; Female; Gene Knockout Techniques; Growth Plate; Humans; Hypertrophy; Ligands; Male; MAP Kinase Signaling System; Natriuretic Peptide, C-Type; Phenotype; Rats; Receptors, Atrial Natriuretic Factor; RNA, Messenger; Tibia | 2018 |
Regulation of C-type natriuretic peptides and natriuretic peptide receptor-B expression in diabetic rats renal treated by Tongluo Recipe.
To investigate the expression of C-type natriuretic peptides (CNP) and natriuretic peptide receptor-B (NPR-B) receptor in diabetic rats renal cortex, and the regulation by Tongluo Recipe (TLR).. Sixty male SD rats were divided into 3 groups: the normal control group, diabetic model group and diabetic TLR group. Each group was further divided into two subgroups of ten in each, according to 4-week or 12-week observation period. Streptozotocin (STZ)-induced diabetic rats were treated with TLR (1.0 g·kg(-1)·d(-1)) for 4 and 12 weeks, respectively. (1) The essential information was collected for comparing renal mass, serum creatinine and 24 h urine albumen on each group was calculated. (2) CNP mRNA and NPR-B mRNA were detected by realtime-polymerase chain reaction (PCR) on rats renal cortex. (3) Concentration of CNP on renal cortex or serum were analyzed by enzyme-linked immunosorbent assay (ELISA). (4) Pathological evaluation and NPR-B immunostaining for renal tissue were also performed.. (1) CNP and NPR-B mRNA levels were detected in each treated or untreated group, with slight elevated in untreated diabetes rats administrated with STZ after 4-week and CNP mRNA level remarkable elevated at 39.21 times higher than normal control group after 12 weeks, but NPR-B mRNA level showed a remarkably down-regulation at 98.07% after 12 weeks. CNP mRNA of TLR-treated group was also elevated after 12-week treatment, but less than untreated group. (2) Concentrations of CNP in renal cortex were obviously increased in treated or untreated diabetes rats, within these groups the treatment of TLR was found more significantly on prompting CNP concentration. Comparing to normal group, serum concentrations of CNP were also increased in treated or untreated diabetic groups, but there was no difference between these diabetic groups. (3) Renal lesions like glomerular volume increased are observed mostly in the relative early stage after 4 weeks. Although TLR treated group had no significant difference in their glomerular volume, the degrees of injury of glomerulus were ameliorated, as well as the NPR-B immunostaining enhanced in glomerulus. Weakly positive immunostaining of NPR-B are observed in glomerulus of normal control, and negative in glomerulus of untreated diabetes rats administrated with STZ after 12 weeks, whereas TLR-treatment groups showed a little enhancement.. CNP and NPR-B showed different characteristic on renal cortex at different pathological period in diabetes rats, and TLR regulated their expression. Topics: Animals; Body Weight; Diabetes Mellitus, Experimental; Drugs, Chinese Herbal; Gene Expression Regulation; Hematuria; Immunohistochemistry; Kidney; Kidney Cortex; Kidney Glomerulus; Male; Natriuretic Peptide, C-Type; Organ Size; Rats; Rats, Sprague-Dawley; Receptors, Atrial Natriuretic Factor; RNA, Messenger; Staining and Labeling; Streptozocin | 2013 |
Effects of ozone and particulate matter on cardiac mechanics: role of the atrial natriuretic peptide gene.
A positive association between air pollution exposure and increased human risk of chronic heart disease progression is well established. In the current study, we test two hypotheses: (1) the cardiac compensatory changes in response to air pollution are dependent on its composition and (2) specific cardiac adaptations are regulated by atrial natriuretic peptide (ANP). We address these hypotheses by initially examining the exposure effects of ozone (O(3)) and/or particulate matter (PM) on cardiac function in C57Bl/6J (B6) mice. Subsequently, the results are compared with cardiac functional changes to the same exposures in Nppa (the precursor gene for ANP) knockout (KO) mice. Separate groups of mice underwent 3 consecutive days of the same exposure sequence for 3h each consisting of the following: (1) 6h of filtered air (FAFA), (2) O(3) then FA (O(3)FA), (3) FA then carbon black (FACB), or (4) O(3) then CB. Cardiac function was assessed using a conductance catheter to generate cardiac pressure-volume loops 8-10h following each exposure sequence. As compared with FAFA, each sequence led to a substantial drop (as much as 33%) in stroke volume and cardiac output. However, these losses of cardiac function occurred by different compensatory mechanisms dependent on the pollutant composition. For example, O(3)FA exposure led to reductions in both end-systolic and end-diastolic left ventricular (LV) volumes, whereas FACB exposure led an increase in end-diastolic LV volume. These same cardiac compensatory changes were largely abolished in Nppa KO mice following O(3)FA or FACB exposure. These results suggest that cardiac functional changes in response to air pollution exposure are strongly dependent on the pollutant constituents, especially related to O(3) and/or PM. Furthermore, ANP regulation appears to be crucial to these cardiac compensatory mechanisms induced by air pollution. Topics: Air Pollutants; Animals; Atrial Natriuretic Factor; Body Weight; Bronchoalveolar Lavage Fluid; Gene Expression; Gene-Environment Interaction; Heart Function Tests; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardium; Natriuretic Peptide, C-Type; Organ Size; Ozone; Particulate Matter; Pneumonia; Protein Precursors; Ventricular Function, Left; Ventricular Function, Right | 2013 |
Plasma C-type natriuretic peptide levels in healthy children.
C-type natriuretic peptide (CNP) is assuming increasing importance in cardiovascular disease, and in adults its plasma levels are related to clinical and functional disease severity. Data are scarce regarding the reference values for CNP in infancy. Aim of this study was to assess the reference intervals for CNP in human healthy newborns and infants. Plasma CNP was measured in 121 healthy children divided into: 41 newborns (age 0-3 days), 24 newborns (4-30 days), 22 infants (1-12 months) and 32 children (1-12 years). A group of 32 healthy adult subjects (age 64 ± 1 years) was also studied. CNP was measured by a specific radioimmunoassay. Between- and within-assay variability resulted ≤ 30 and 20%, respectively and analytical sensitivity 0.77 ± 0.05 pg/tube. Plasma CNP resulted significantly higher in children than in adult subjects (13.6 ± 1.2 pg/ml vs. 7.4 ± 1.0 pg/ml, p=0.030). When the results were analyzed as a function of the age the reference intervals for plasma CNP resulted: 11.6 ± 2.1 pg/ml for newborns (0-3 days), 16.4 ± 3.7 pg/ml for newborns (4-30 days), 15.4 ± 2.7 pg/ml for infants (1-12 months), 13.6 ± 2.3 pg/ml for children (1-12 years) [p=0.01 newborns (4-30 days) vs. adults; p=0.03 infants (1-12 months) vs. adults]. CNP showed the highest concentrations after 12h of life with a peak between 4 and 5 days of life and with a progressive decline afterwards. According to these data at least five different reference intervals for CNP determinations should be used. These observations may be helpful for future clinical application of CNP in human children. Topics: Aged; Apgar Score; Body Weight; Child; Child, Preschool; Humans; Infant; Infant, Newborn; Middle Aged; Natriuretic Peptide, C-Type; Reference Values | 2012 |
Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging.
Renal aging is characterized by structural changes in the kidney including fibrosis, which contributes to the increased risk of kidney and cardiac failure in the elderly. Studies involving healthy kidney donors demonstrated subclinical age-related nephropathy on renal biopsy that was not detected by standard diagnostic tests. Thus there is a high-priority need for novel noninvasive biomarkers to detect the presence of preclinical age-associated renal structural and functional changes. C-type natriuretic peptide (CNP) possesses renoprotective properties and is present in the kidney; however, its modulation during aging remains undefined. We assessed circulating and urinary CNP in a Fischer rat model of experimental aging and also determined renal structural and functional adaptations to the aging process. Histological and electron microscopic analysis demonstrated significant renal fibrosis, glomerular basement membrane thickening, and mesangial matrix expansion with aging. While plasma CNP levels progressively declined with aging, urinary CNP excretion increased, along with the ratio of urinary to plasma CNP, which preceded significant elevations in proteinuria and blood pressure. Also, CNP immunoreactivity was increased in the distal and proximal tubules in both the aging rat and aging human kidneys. Our findings provide evidence that urinary CNP and its ratio to plasma CNP may represent a novel biomarker for early age-mediated renal structural alterations, particularly fibrosis. Thus urinary CNP could potentially aid in identifying subjects with preclinical structural changes before the onset of symptoms and disease, allowing for the initiation of strategies designed to prevent the progression of chronic kidney disease particularly in the aging population. Topics: Aging; Animals; Anthropometry; Basement Membrane; Biomarkers; Biopsy; Blood Pressure; Body Weight; Fibrosis; Glomerular Filtration Barrier; Immunohistochemistry; Kidney; Kidney Cortex; Kidney Diseases; Kidney Function Tests; Kidney Medulla; Male; Microscopy, Electron, Transmission; Natriuretic Peptide, C-Type; Organ Size; Proteinuria; Rats; Rats, Inbred F344 | 2011 |
Circulating C-type natriuretic peptide (CNP) rescues chondrodysplastic CNP knockout mice from their impaired skeletal growth and early death.
C-type natriuretic peptide (CNP) is a potent stimulator of endochondral bone growth through a subtype of membranous guanylyl cyclase receptor, GC-B. Although its two cognate natriuretic peptides, ANP and BNP, are cardiac hormones produced from heart, CNP is thought to act as an autocrine/paracrine regulator. To elucidate whether systemic administration of CNP would be a novel medical treatment for chondrodysplasias, for which no drug therapy has yet been developed, we investigated the effect of circulating CNP by using the CNP transgenic mice with an increased circulating CNP under the control of human serum amyloid P component promoter (SAP-Nppc-Tg mice). SAP-Nppc-Tg mice developed prominent overgrowth of bones formed through endochondral ossification. In organ culture experiments, the growth of tibial explants of SAP-Nppc-Tg mice was not changed from that of their wild-type littermates, exhibiting that the stimulatory effect on endochondral bone growth observed in SAP-Nppc-Tg mice is humoral. Then we crossed chondrodysplastic CNP-depleted mice with SAP-Nppc-Tg mice. Impaired endochondral bone growth in CNP knockout mice were considerably and significantly recovered by increased circulating CNP, followed by the improvement in not only their longitudinal growth but also their body weight. In addition, the mortality of CNP knockout mice was greatly decreased by circulating CNP. Systemic administration of CNP might have therapeutic potential against not only impaired skeletal growth but also other aspects of impaired growth including impaired body weight gain in patients suffering from chondrodysplasias and might resultantly protect them from their early death. Topics: Animals; Animals, Newborn; Body Weight; Bone Development; Chondrodysplasia Punctata; Collagen Type II; Collagen Type X; Dose-Response Relationship, Drug; Female; Gene Expression Regulation, Developmental; Humans; Immunohistochemistry; In Situ Hybridization; Male; Mice; Mice, Knockout; Mice, Transgenic; Natriuretic Peptide, C-Type; Organ Culture Techniques; Osteogenesis; Proliferating Cell Nuclear Antigen; Survival Rate; Tibia; Time Factors | 2010 |
C-type natriuretic-peptide-potentiated relaxation response of gastric smooth muscle in streptozotocin-induced diabetic rats.
To study the sensitivity of gastric smooth muscle to C-type natriuretic peptide (CNP) in streptozotocin (STZ)-induced diabetic rats.. The spontaneous contraction of a gastric smooth muscle strip was recorded by using physiological methods in rats. The expressions of CNP and natriuretic peptide receptor-B (NPR-B) in gastric tissue were examined by using immunohistochemistry techniques in the diabetic rat.. At 4 wk after injection of STZ and vehicle, the frequency of spontaneous contraction of gastric smooth muscle was significantly reduced in diabetic rats, and the frequency was decreased from 3.10 +/- 0.14 cycle/min in controls to 2.23 +/- 0.13 cycle/min (n = 8, P < 0.01). However, the amplitude of spontaneous contraction was not significant different from the normal rat. CNP significantly inhibited spontaneous contraction of gastric smooth muscle in normal and diabetic rats, but the inhibitory effect was significantly potentiated in the diabetic rats. The amplitudes of spontaneous contraction were suppressed by 75.15% +/- 0.71% and 58.92% +/- 1.32% while the frequencies were decreased by 53.33% +/- 2.03% and 26.95% +/- 2.82% in diabetic and normal rats, respectively (n = 8, P < 0.01). The expression of CNP in gastric tissue was not changed in diabetic rats, however the expression of NPR-B was significantly increased in diabetic rats, and the staining indexes of NPR-B were 30.67 +/- 1.59 and 17.63 +/- 1.49 in diabetic and normal rat, respectively (n = 8, P < 0.01).. The results suggest that CNP induced an inhibitory effect on spontaneous contraction of gastric smooth muscle, potentiated in diabetic rat via up-regulation of the natriuretic peptides-NPR-B-particulate guanylyl cyclase-cyclic GMP signal pathway. Topics: Animals; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Gastroparesis; Humans; Male; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Natriuretic Peptide, C-Type; Rats; Rats, Sprague-Dawley; Receptors, Atrial Natriuretic Factor; Stomach | 2009 |
Natriuretic peptides: new players in energy homeostasis.
Topics: Atrial Natriuretic Factor; Body Weight; Cyclic GMP; Diabetes Mellitus; Dietary Fats; Energy Metabolism; Homeostasis; Humans; Lipid Peroxidation; Mitochondria; Natriuretic Peptide, Brain; Natriuretic Peptide, C-Type; Natriuretic Peptides; Signal Transduction | 2009 |
Treatment of streptozotocin-induced diabetic rats with AVE7688, a vasopeptidase inhibitor: effect on vascular and neural disease.
In epineurial arterioles, acetylcholine-mediated vascular relaxation is mediated by nitric oxide and endothelium-derived hyperpolarizing factor (EDHF), and both mechanisms are impaired by diabetes. The mediator responsible for the effect of EDHF is unknown. In epineurial arterioles, C-type natriuretic peptide (CNP) has properties consistent with EDHF-like activity. Epineurial arterioles express CNP, and exogenous CNP causes a concentration-dependent vascular relaxation. In streptozotocin-induced diabetic rats, CNP-mediated vascular relaxation in epineurial arterioles is decreased. Since CNP may be a regulator of vascular function, a vasopeptidase inhibitor may be an effective treatment for diabetes-induced vascular and neural disease. Vasopeptidase inhibitors inhibit ACE activity and neutral endopeptidase, which degrades natriuretic peptides. Streptozotocin-induced diabetic rats were treated with AVE7688 (450 mg/kg in the diet), a vasopeptidase inhibitor, for 8-10 weeks after 4 weeks of untreated diabetes. Treatment of diabetic rats corrected the diabetes-induced decrease in endoneurial blood flow, significantly improved motor and sensory nerve conduction velocity, prevented the development of hypoalgesia in the hind paw, and reduced superoxide and nitrotyrosine levels in epineurial arterioles. The diabetes-induced decrease in acetylcholine-mediated vascular relaxation by epineurial arterioles was significantly improved with treatment. These studies suggest that vasopeptidase inhibitors may be an effective approach for the treatment of diabetic vascular and neural dysfunction. Topics: Animals; Arterioles; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Diabetic Angiopathies; Diabetic Neuropathies; Heterocyclic Compounds, 3-Ring; Male; Natriuretic Peptide, C-Type; Neprilysin; Neural Conduction; Peripheral Nerves; Prodrugs; Protease Inhibitors; Rats; Rats, Sprague-Dawley; Streptozocin; Vasodilation | 2007 |
C-type natriuretic peptide expression and pulmonary vasodilation in hypoxia-adapted rats.
Atrial and brain natriuretic peptides (ANP and BNP, respectively) are potent pulmonary vasodilators that are upregulated in hypoxia-adapted rats and may protect against hypoxic pulmonary hypertension. To test the hypothesis that C-type natriuretic peptide (CNP) also modulates pulmonary vascular responses to hypoxia, we compared the vasodilator effect of CNP with that of ANP on pulmonary arterial rings, thoracic aortic rings, and isolated perfused lungs obtained from normoxic and hypoxia-adapted rats. We also measured CNP and ANP levels in heart, lung, brain, and plasma in normoxic and hypoxia-adapted rats. Steady-state CNP mRNA levels were quantified in the same organs by relative RT-PCR. CNP was a less potent vasodilator than ANP in preconstricted thoracic aortic and pulmonary arterial rings and in isolated lungs from normoxic and hypoxia-adapted rats. Chronic hypoxia increased plasma CNP (15 +/- 2 vs. 6 +/- 1 pg/ml; P < 0.05) and decreased CNP in the right atrium (35 +/- 14 vs. 65 +/- 17 pg/mg protein; P < 0.05) and in the lung (3 +/- 1 vs. 14 +/- 3 pg/mg protein; P < 0.05) but had no effect on CNP in brain or right ventricle. Chronic hypoxia increased ANP levels fivefold in the right ventricle (49 +/- 5 vs. 11 +/- 2 pg/mg protein; P < 0.05) but had no effect on ANP in lung or brain. There was a trend toward decreased ANP levels in the right atrium (2,009 +/- 323 vs. 2,934 +/- 397 pg/mg protein; P = not significant). No differences in CNP transcript levels were observed between the two groups of rats except that the right atrial CNP mRNA levels were lower in hypoxia-adapted rats. We conclude that CNP is a less potent pulmonary vasodilator than ANP in normoxic and hypoxia-adapted rats and that hypoxia raises circulating CNP levels without increasing cardiopulmonary CNP expression. These findings suggest that CNP may be less important than ANP or BNP in protecting against hypoxic pulmonary hypertension in rats. Topics: Animals; Aorta, Thoracic; Atrial Natriuretic Factor; Blood Pressure; Body Weight; Brain; Hemodynamics; Hypoxia; In Vitro Techniques; Lung; Male; Muscle, Smooth, Vascular; Natriuretic Peptide, C-Type; Organ Size; Pulmonary Artery; Pulmonary Circulation; Rats; Rats, Sprague-Dawley; Reference Values; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Vasodilation; Ventricular Function, Right | 1998 |
Suppression of atherosclerotic changes in cholesterol-fed rabbits treated with an oral inhibitor of neutral endopeptidase 24.11 (EC 3.4.24.11).
Neutral endopeptidase 24.11 (NEP), widely distributed in the body, hydrolyzes and inactivates a number of endogenous vasoactive peptides, some of which could alter various functions of cells present in the arterial wall. Recently NEP has been found to exist in the vascular endothelium. The aim of this study was to assess the influence of chronic NEP inhibition by daily administration of UK79300 (candoxatril), an orally active NEP inhibitor (NEPI), on the development of atherosclerotic changes in high-cholesterol-fed rabbits. Male New Zealand White rabbits were fed for 8 weeks as follows: normal rabbit diet (Normal, n = 15), 1.5% cholesterol diet (Cholesterol, n = 15), or 1.5% cholesterol diet containing NEPI (20 mg.kg-1.d-1) (Cholesterol+NEPI, n = 15). At the end of the dietary period, NEPI treatment was found to suppress the surface area of the aorta covered by plaques (% surface area: Cholesterol, 59 +/- 6 versus Cholesterol+NEPI, 36 +/- 7, P < .01) and decreased contents of cholesterol and cholesterol esters in the aortas. NEPI also reduced plasma total cholesterol by 27% of Cholesterol rabbits (1781 +/- 130 mg/dL). The endothelial function, estimated by the endothelium-dependent relaxation of the isolated aortas in response to acetylcholine, was preserved in Cholesterol+NEPI rabbits compared with that in Cholesterol rabbits. NEP enzymatic activities in plasma and the particulate fraction of the homogenates from the aortas in Cholesterol rabbits were both increased, 3.1- and 3.9-fold, respectively, above those in Normal rabbits, but the activities in Cholesterol+NEPI rabbits were significantly lower than those in Cholesterol rabbits. UK73967, an active form of UK79300, or phosphoramidon partly reversed the atherosclerotic impairment of relaxation of the isolated thoracic aortic rings from Cholesterol rabbits in response to exogenous additions of C-type natriuretic peptide (CNP) and substance P, which are NEP substrates known to exist endogenously in the vascular endothelium. The results suggest that the increased NEP activity plays a significant role in atherogenesis, and NEPIs might be therapeutically useful in the prevention of atherosclerosis. Reduction of plasma cholesterol and suppression of degradations in the arteries of endogenously released CNP, substance P, or possibly other kinins known to have anti-atherosclerotic actions may at least partially contribute to the inhibitory effects of NEPIs on atherosclerotic changes. Topics: Administration, Oral; Animals; Aorta, Thoracic; Arteriosclerosis; Atrial Natriuretic Factor; Body Weight; Cholesterol, Dietary; Diet, Atherogenic; Drug Evaluation, Preclinical; Enzyme Inhibitors; Glycopeptides; Hemodynamics; Hypercholesterolemia; Indans; Lipids; Male; Natriuretic Peptide, C-Type; Neprilysin; Nitroprusside; Organ Culture Techniques; Propionates; Proteins; Rabbits; Substance P; Vasodilation | 1996 |