natriuretic-peptide--brain has been researched along with Metabolic-Diseases* in 2 studies
2 other study(ies) available for natriuretic-peptide--brain and Metabolic-Diseases
Article | Year |
---|---|
Galectin-3 Is Associated With Stage B Metabolic Heart Disease and Pulmonary Hypertension in Young Obese Patients.
Background Obesity is a precursor to heart failure with preserved ejection fraction. Biomarkers that identify preclinical metabolic heart disease ( MHD ) in young obese patients would help identify high-risk individuals for heart failure prevention strategies. We assessed the predictive value of GAL3 (galectin-3), FSTL3 (follistatin-like 3 peptide), and NT-proBNP (N-terminal pro-B-type natriuretic peptide) to identify stage B MHD in young obese participants free of clinically evident cardiovascular disease. Methods and Results Asymptomatic obese patients (n=250) and non-obese controls (n=21) underwent echocardiographic cardiac phenotyping. Obese patients were classified as MHD positive ( MHD - POS ; n=94) if they had abnormal diastolic function or left ventricular hypertrophy and had estimated pulmonary artery systolic pressure ≥35 mm Hg. Obese patients without such abnormalities were classified as MHD negative (MHD-NEG; n=52). Serum biomarkers timed with echocardiography. MHD - POS and MHD-NEG individuals were similarly obese, but MHD - POS patients were older, with more diabetes mellitus and metabolic syndrome. Right ventricular coupling was worse in MHD - POS patients ( P<0.001). GAL 3 levels were higher in MHD - POS versus MHD -NEG patients (7.7±2.3 versus 6.3±1.9 ng/mL, respectively; P<0.001). Both GAL 3 and FSTL 3 levels correlated with diastolic dysfunction and increased pulmonary artery systolic pressure but not with left ventricular mass. In multivariate models including all 3 biomarkers, only GAL 3 remained associated with MHD (odds ratio: 1.30; 95% CI , 1.01-1.68; P=0.04). Conclusions In young obese individuals without known cardiovascular disease, GAL 3 is associated with the presence of preclinical MHD . GAL 3 may be useful in screening for preclinical MHD and identifying individuals with increased risk of progression to obesity-related heart failure with preserved ejection fraction. Topics: Adult; Biomarkers; Blood Proteins; Case-Control Studies; Echocardiography; Female; Follistatin-Related Proteins; Galectin 3; Galectins; Heart Failure; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Left Ventricular; Male; Metabolic Diseases; Middle Aged; Natriuretic Peptide, Brain; Obesity; Peptide Fragments | 2019 |
Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure.
Metabolic impairment is an important contributor to heart failure (HF) pathogenesis and progression. Dysregulated metabolic pathways remain poorly characterized in patients with HF and preserved ejection fraction (HFpEF). We sought to determine metabolic abnormalities in HFpEF and identify pathways differentially altered in HFpEF versus HF with reduced ejection fraction (HFrEF).. We identified HFpEF cases, HFrEF controls, and no-HF controls from the CATHGEN study of sequential patients undergoing cardiac catheterization. HFpEF cases (N=282) were defined by left ventricular ejection fraction (LVEF) ≥45%, diastolic dysfunction grade ≥1, and history of HF; HFrEF controls (N=279) were defined similarly, except for having LVEF <45%. No-HF controls (N=191) had LVEF ≥45%, normal diastolic function, and no HF diagnosis. Targeted mass spectrometry and enzymatic assays were used to quantify 63 metabolites in fasting plasma. Principal components analysis reduced the 63 metabolites to uncorrelated factors, which were compared across groups using ANCOVA. In basic and fully adjusted models, long-chain acylcarnitine factor levels differed significantly across groups (P<0.0001) and were greater in HFrEF than HFpEF (P=0.0004), both of which were greater than no-HF controls. We confirmed these findings in sensitivity analyses using stricter inclusion criteria, alternative LVEF thresholds, and adjustment for insulin resistance.. We identified novel circulating metabolites reflecting impaired or dysregulated fatty acid oxidation that are independently associated with HF and differentially elevated in HFpEF and HFrEF. These results elucidate a specific metabolic pathway in HF and suggest a shared metabolic mechanism in HF along the LVEF spectrum. Topics: Aged; Analysis of Variance; Biomarkers; Case-Control Studies; Fatty Acids; Female; Heart Failure; Humans; Male; Metabolic Diseases; Metabolomics; Middle Aged; Mitochondria, Heart; Mitochondrial Diseases; Natriuretic Peptide, Brain; Oxidation-Reduction; Peptide Fragments; Stroke Volume | 2016 |