naphthoquinones and Thyroid-Neoplasms

naphthoquinones has been researched along with Thyroid-Neoplasms* in 8 studies

Other Studies

8 other study(ies) available for naphthoquinones and Thyroid-Neoplasms

ArticleYear
YM155 Induces DNA Damage and Cell Death in Anaplastic Thyroid Cancer Cells by Inhibiting DNA Topoisomerase IIα at the ATP-Binding Site.
    Molecular cancer therapeutics, 2022, 06-01, Volume: 21, Issue:6

    Anaplastic thyroid cancer (ATC) is among the most aggressive of human cancers, and currently there are few effective treatments for most patients. YM155, first identified as a survivin inhibitor, was highlighted in a high-throughput screen performed by the National Cancer Institute, killing ATC cells in vitro and in vivo. However, there was no association between survivin expression and response to YM155 in clinical trials, and YM155 has been mostly abandoned for development despite favorable pharmacokinetic and toxicity profiles. Currently, alternative mechanisms are being explored for YM155 by a number of groups. In this study, ATC patient samples show overexpression of topoisomerase Top2α compared with benign thyroid samples and to differentiated thyroid cancers. ATC cell lines that overexpress Top2α are more sensitive to YM155. We created a YM155-resistant cell line, which shows decreased expression of Top2α and is resensitized with Top2α overexpression. Molecular modeling predicts binding for YM155 in the Top2α ATP-binding site and identifies key amino acids for YM155-Top2α interaction. A Top2α mutant abrogates the effect of YM155, confirming the contribution of Top2α to YM155 mechanism of action. Our results suggest a novel mechanism of action for YM155 and may represent a new therapeutic approach for the treatment of ATC.

    Topics: Adenosine Triphosphate; Apoptosis; Binding Sites; Cell Death; Cell Line, Tumor; DNA Damage; Humans; Imidazoles; Inhibitor of Apoptosis Proteins; Naphthoquinones; Survivin; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms

2022
Ym155 Induces Oxidative Stress-Mediated DNA Damage and Cell Cycle Arrest, and Causes Programmed Cell Death in Anaplastic Thyroid Cancer Cells.
    International journal of molecular sciences, 2021, Feb-16, Volume: 22, Issue:4

    Anaplastic thyroid cancer (ATC) is one of the most lethal malignancies with a median survival time of about 4 months. Currently, there is no effective treatment, and the development of new therapies is an important and urgent issue for ATC patients. YM155 is a small molecule that was identified as the top candidate in a high-throughput screen of small molecule inhibitors performed against a panel of ATC cell lines by the National Cancer Institute. However, there were no follow-up studies investigating YM155 in ATC. Here, we determined the effects of YM155 on ATC and human primary benign thyroid cell (PBTC) survival with alamarBlue assay. Our data show that YM155 inhibited proliferation of ATC cell lines while sparing normal thyroid cells, suggesting a high therapeutic window. YM155-induced DNA damage was detected by measuring phosphorylation of γ-H2AX as a marker for DNA double-strand breaks. The formamidopyrimidine-DNA glycosylase (FPG)-modified alkaline comet assay in conjunction with reactive oxygen species (ROS) assay and glutathione (GSH)/glutathione (GSSG) assay suggests that YM155-mediated oxidative stress contributes to DNA damage. In addition, we provide evidence that YM155 causes cell cycle arrest in S phase and in the G2/M transition and causes apoptosis, as seen with flow cytometry. In this study, we show for the first time the multiple effects of YM155 in ATC cells, furthering a potential therapeutic approach for ATC.

    Topics: Apoptosis; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Damage; Humans; Imidazoles; Naphthoquinones; Oxidative Stress; Reactive Oxygen Species; Signal Transduction; Thyroid Carcinoma, Anaplastic; Thyroid Gland; Thyroid Neoplasms

2021
Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1.
    Medical science monitor : international medical journal of experimental and clinical research, 2018, Feb-01, Volume: 24

    BACKGROUND Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. MATERIAL AND METHODS The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. RESULTS Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. CONCLUSIONS Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration.

    Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; DNA (Cytosine-5-)-Methyltransferase 1; Dose-Response Relationship, Drug; Down-Regulation; Gene Amplification; Gene Knockdown Techniques; Humans; Methylation; Naphthoquinones; Neoplasm Invasiveness; PTEN Phosphohydrolase; RNA, Small Interfering; Thyroid Neoplasms

2018
Juglone-ascorbic acid synergy inhibits metastasis and induces apoptotic cell death in poorly differentiated thyroid carcinoma by perturbing SOD and catalase activities.
    Journal of biochemical and molecular toxicology, 2018, Volume: 32, Issue:9

    Anaplastic thyroid carcinoma (ATC) requires more innovative approaches as the current regimes for therapy are inadequate, also most anticancer drugs cause general suppression of physiological functions. However, therapy with limited nontarget tissue damage is desirable. In the present study, we show prooxidant ability of ascorbic acid, which enhances cytotoxicity induced by juglone. We decipher that juglone-ascorbate combination induces reactive oxygen species-mediated apoptosis leading to cell death in ARO cell line originated from ATC. This combination also affects enzyme activity of catalase, glutathione reductase, and superoxide dismutase destabilizing redox balance in cell and thereby making juglone effective at a lower dose. We also show that juglone-ascorbate combination suppresses cell migration, invasion, and expression of tumor-promoting, and angiogenic genes in ARO cell line, thereby disrupting epithelial-mesenchymal transition ability of the cells. Overall, we show that ascorbic acid increases cytotoxic potency of juglone through redox cycling when used in synergy.

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Ascorbic Acid; Cell Line, Tumor; Cell Movement; Drug Resistance, Neoplasm; Drug Synergism; Gene Expression Regulation, Neoplastic; Glutathione; Humans; Inhibitory Concentration 50; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Proteins; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxidoreductases; RNA Interference; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms

2018
Survivin and XIAP - two potential biological targets in follicular thyroid carcinoma.
    Scientific reports, 2017, 09-12, Volume: 7, Issue:1

    Follicular thyroid carcinoma's (FTC) overall good prognosis deteriorates if the tumour fails to retain radioactive iodine. Therefore, new druggable targets are in high demand for this subset of patients. Here, we investigated the prognostic and biological role of survivin and XIAP in FTC. Survivin and XIAP expression was investigated in 44 FTC and corresponding non-neoplastic thyroid specimens using tissue microarrays. Inhibition of both inhibitor of apoptosis proteins (IAP) was induced by shRNAs or specific small molecule antagonists and functional changes were investigated in vitro and in vivo. Survivin and XIAP were solely expressed in FTC tissue. Survivin expression correlated with an advanced tumour stage and recurrent disease. In addition, survivin proved to be an independent negative prognostic marker. Survivin or XIAP knockdown caused a significant reduction in cell viability and proliferation, activated caspase3/7 and was associated with a reduced tumour growth in vivo. IAP-targeting compounds induced a decrease of cell viability, proliferation and cell cycle activity accompanied by an increase in apoptosis. Additionally, YM155 a small molecule inhibitor of survivin expression significantly inhibited tumour growth in vivo. Both IAPs demonstrate significant functional implications in the oncogenesis of FTCs and thus prove to be viable targets in patients with advanced FTC.

    Topics: Adenocarcinoma, Follicular; Animals; Biomarkers, Tumor; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Female; Gene Expression; Gene Knockout Techniques; Humans; Imidazoles; Immunohistochemistry; Male; Mice; Naphthoquinones; Neoplasm Staging; Prognosis; Survivin; Thyroid Neoplasms; X-Linked Inhibitor of Apoptosis Protein; Xenograft Model Antitumor Assays

2017
Inhibition of Survivin with YM155 Induces Durable Tumor Response in Anaplastic Thyroid Cancer.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2015, Sep-15, Volume: 21, Issue:18

    Anaplastic thyroid cancer (ATC) is a rare but lethal malignancy without any effective therapy. The aim of this study is to use a high-throughput drug library screening to identify a novel therapeutic agent that targets dysregulated genes/pathways in ATC.. We performed quantitative high-throughput screening (qHTS) in ATC cell lines using a compound library of 3,282 drugs. Dysregulated genes in ATC were analyzed using genome-wide expression analysis and immunohistochemistry in human ATC tissue samples and ATC cell lines. In vitro and in vivo studies were performed for determining drug activity, effectiveness of targeting, and the mechanism of action.. qHTS identified 100 active compounds in three ATC cell lines. One of the most active agents was the first-in-class survivin inhibitor YM155. Genome-wide expression analysis and immunohistochemistry showed overexpression of survivin in human ATC tissue samples, and survivin was highly expressed in all ATC cell lines tested. YM155 significantly inhibited ATC cellular proliferation. Mechanistically, YM155 inhibited survivin expression in ATC cells. Furthermore, YM155 treatment reduced claspin expression, which was associated with S-phase arrest in ATC cells. In vivo, YM155 significantly inhibited growth and metastases and prolonged survival.. Our data show that YM155 is a promising anticancer agent for ATC and that its target, survivin, is overexpressed in ATC. Our findings support the use of YM155 in clinical trials as a therapeutic option in advanced and metastatic ATC.

    Topics: Adaptor Proteins, Signal Transducing; Animals; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Genome-Wide Association Study; HeLa Cells; Humans; Imidazoles; Immunohistochemistry; Inhibitor of Apoptosis Proteins; Inhibitory Concentration 50; Mice; Naphthoquinones; Neoplasm Metastasis; RNA, Small Interfering; S Phase; Survivin; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Treatment Outcome

2015
The apoptotic effect of shikonin on human papillary thyroid carcinoma cells through mitochondrial pathway.
    Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine, 2014, Volume: 35, Issue:3

    This study aims to explore the apoptotic function of shikonin on the papillary thyroid cancer cells and the related mechanism. The papillary thyroid cancer cell lines K1 and W3 and thyroid follicular epithelial cells NTHY-ORI 3-1 were treated with different concentrations of shikonin. Cell proliferation was tested. Morphological changes of the apoptotic cells were observed by Hoechst 33342 staining. The apoptosis rate of the papillary thyroid cancer cells was measured with flow cytometry. Changes of the cell cycle were explored. The mitochondrial membrane potential changes were analyzed after JC-1 staining. Bcl-2 family proteins and caspase-3 expression with shikonin treatment was analyzed by real-time fluorescence polymerase chain reaction (PCR). Cell proliferation of K1 and W3 was inhibited by shikonin, and the inhibition was dose-time dependent. Papillary thyroid carcinoma cells treated by shikonin had no obvious cell cycle arrest but were observed with the higher apoptosis rate and the typical apoptotic morphological changes of the cell nucleus. JC-1 staining showed that shikonin reduced the mitochondrial membrane potential of papillary thyroid carcinoma cells. Real-time PCR results showed that shikonin significantly increased Bax and caspase-3 expression and upregulated Bcl-2 expression in a dose-dependent manner in papillary thyroid carcinoma cells. However, the NTHY-ORI 3-1 was almost not affected by shikonin treatment. Shikonin can inhibit K1 and W3 cell proliferation in a dose- and time-dependent manner, enhance Bax levels, reduce anti-apoptotic protein Bcl-2 levels, result in decreasing mitochondrial membrane potential and activating caspase-3 enzyme, and finally lead to apoptosis.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Carcinoma; Carcinoma, Papillary; Cell Line, Tumor; Cell Proliferation; Flow Cytometry; Humans; Membrane Potential, Mitochondrial; Naphthoquinones; Real-Time Polymerase Chain Reaction; Thyroid Cancer, Papillary; Thyroid Neoplasms

2014
Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways.
    The Journal of clinical endocrinology and metabolism, 2013, Volume: 98, Issue:12

    Shikonin, which is an active naphthoquinone isolated from traditional Chinese herbal medicine Zi Cao, has been recently developed to use as an antitumor agent in colorectal cancer, melanoma, leukemia, breast cancer, and hepatocellular cancer. However, its antitumor effect in thyroid cancer remains largely unknown.. The aim of the study was to test the therapeutic potential of shikonin for thyroid cancer and explore the mechanisms underlying antitumor effects of shikonin.. We examined the effects of shikonin on proliferation, cell cycle, apoptosis, migration, invasion, and xenograft tumor growth in thyroid cancer cells and the effect of shikonin on proliferation of primary thyroid cancer cells.. Shikonin inhibited thyroid cancer cell proliferation in a dose- and time-dependent manner and induced cell cycle arrest. Moreover, shikonin induced cell apoptosis through reactive oxygen species-mediated DNA damage and activation of the p53 signaling pathway. Our data also showed that shikonin dramatically inhibited thyroid cancer cell migration and invasion by suppressing epithelial-mesenchymal transition and downregulating expression of Slug and MMP-2, -9, and -14. Further elucidation of the mechanisms involved revealed that shikonin markedly repressed the phosphorylation of Erk and Akt and activated the p16/Retinoblastoma protein (Rb) pathway in thyroid cancer cells. Growth of xenograft tumors derived from the thyroid cancer cell line FTC133 in nude mice was significantly inhibited by shikonin. Importantly, we did not find the effect of shikonin on liver function in mice.. We for the first time demonstrated that shikonin is a potentially effective antitumor agent for thyroid cancers.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Cell Line, Tumor; Cell Movement; Cyclin-Dependent Kinase Inhibitor p16; Epithelial-Mesenchymal Transition; Humans; Inhibitory Concentration 50; Liver; Mice; Mice, Nude; Mutant Proteins; Naphthoquinones; Neoplasm Invasiveness; Neoplasm Proteins; Retinoblastoma Protein; Signal Transduction; Thyroid Neoplasms; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays

2013