naphthoquinones has been researched along with Tauopathies* in 2 studies
2 other study(ies) available for naphthoquinones and Tauopathies
Article | Year |
---|---|
Shikonin impedes phase separation and aggregation of tau and protects SH-SY5Y cells from the toxic effects of tau oligomers.
Tauopathies such as Alzheimer's and Parkinson's diseases involve the abnormal deposition of tau aggregates in the brain and neuronal tissues. We report that a natural naphthoquinone, shikonin, impeded the oligomerization and fibrillization of tau. The compound strongly inhibited heparin, arachidonic acid, and RNA-induced tau aggregation. Atomic force microscopy, dynamic light scattering, SDS-PAGE, and dot blot assays revealed that shikonin diminished tau oligomerization and decreased the mean size of tau oligomers. Transmission electron microscopy and atomic force microscopy analysis further showed that shikonin could suppress tau fibrillization and shorten the tau filaments. Shikonin inhibited tau droplet formation. The compound significantly reduced the aggregation rate of a tryptophan mutant (Y310W-tau) of tau. In addition, shikonin disaggregated preformed tau filaments with a half-maximal disaggregation concentration (DC Topics: Alzheimer Disease; Humans; Naphthoquinones; Neurons; tau Proteins; Tauopathies | 2022 |
γ-Aminobutyric acid type A (GABAA) receptor activation modulates tau phosphorylation.
Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3β kinase activity. Topics: Alzheimer Disease; Animals; Cell Line, Tumor; Cyclin-Dependent Kinase 5; Cytoskeleton; Enzyme Inhibitors; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Marine Toxins; Mice; Naphthoquinones; Nerve Degeneration; Neuroblastoma; NIMA-Interacting Peptidylprolyl Isomerase; Oxazoles; Peptidylprolyl Isomerase; Phosphorylation; Protein Kinase Inhibitors; Protein Phosphatase 2; Purines; Rats; Receptors, GABA-A; Roscovitine; tau Proteins; Tauopathies | 2012 |